Mechanical Issues and Recent Progress on the CRT Stand Design

K. Suzuki (Nagoya)

Revised on 7/29/2012

Introduction (1)

- Originally the CRT data taking was planned to start at the beginning of September.
 - Using newly produced IRS2 daughter cards.
 - Having some improvements on cooling, HV divider and PMT sockets with alignment mechanism.
- Given the status, the highest priority is to get the proof of principle for the optics ASAP.
 - That is, for now, the improvement on the β-resolution given by the full PMT-coverage to the radiator end.
 - > The improvement from the half-coverage to the full-coverage has been seen in Arita's MC study (See, Inami-san's talk in the BPID session).
 - > We need to confirm it in data.
 - The strategy is to have a beam test on the LEPS beam line at SPring-8, using the FNAL prototype radiator and mirror and the CFD-readout modules ("LEPS prototype").
 - \triangleright The LEPS beam will be available in Oct. $2^{nd} 9^{th}$.
 - > No expansion block this time due to the shortage of financial/manpower resources to produce front/back-end modules.

 RPID extra session @ R2GM12

Introduction (2)

- By the Oct. beam test, we need to prepare the readout system and to have operational tests and a cosmic-ray test for the "LEPS prototype".
 - The CFD-readout modules for 16ch. SL10 are supposed to be ready for use by the end of August.
 - > As well as associated structures/jigs and back-end modules.
 - The results of the tests are important for the Focused Review (Oct. $1^{st} 2^{nd}$) to show some progress in the right direction.

CRT assembly schedule – option A - (1)

 My proposal of the CRT assembly schedule ("option A") is shown below.
 Schedule Option A

CRT assembly schedule – option A - (2)

- Hence, the CRT stand and Strong Back need to be ready for use by the beginning of September.
 - Considering the "Obon-break" (Aug. 13^{th} 15^{th}) and the KEK power outage (Aug. 16^{th} 18^{th}).
- Given the tight schedule, the existing design should be realized ASAP, taking into account possible extensions and modifications.
 - The existing design is based on Gary Varner's proposal and is modified/drawn by Marc Rosen.
 - Extensions/modifications should be applied time to time.
 - What are the mechanical issues for realization?

Issues on the CRT design

- Need to decide the followings.
 - Dimensions and "shelf"-spacing,
 - > What is the baseline config.? Possible extensions?
 - Assembly method,
 - ➤ Where/how/how many people to assemble? Need a crane during the assembly? Where to anchor? How to secure the range stack?
 - Operation scheme.
 - ➤ How to install a module? How many incident positions to take? Use IP-assumed tracks?
- Need to evaluate the followings.
 - Sag of a counter module with the Strong Backs attached,
 - Sag of the beams of the CRT stand with counter modules installed,
 - Seismic performance assessment,
 ➤ 1G for vertical load, 0.25G for lateral load.
 ➤ Natural frequency.
 - Cost.

Flat beams: 2989mm long x 250mm high x 20mm thick, modeled in

"Strong Back" by Marc Rosen

CRT stand by Marc Rosen

Dimensions and spacing

- Dimensions and "shelf"-spacing.
 - Baseline: SciFi trackers, timing counters,
 TOF trig. counters and a range stack.
 - Extension: cherenkov counters for further β-selection?, a movable range stack?
 - Where/how to mount them? How much spaces do they need?
 - See Matt Barrett's talk and Jim Fast's talk in this session.
- Accumulation of small space-savings would help to lower the height or to make more spaces.
 - For safety (seismic proof), module installation and possible CRT extensions.
 - > Al-beams: 100x200 mm² -> (50-100)x100 mm²?
 - > D:700 mm -> D: 600 mm?
 - ➤ More steep slope for the buttresses?
 - Lead, instead of iron, for the range stack?

 BPID extra session @ B2GM12

Layout plan for the Tent House (660 x 880 cm²): ver. 2012/07/04

Lower-roof section (640 x 360 x H~250 cm³) Higher-roof section (640 x 490 x H~500 cm³) Roof can be open $(305 \times 475 \text{ cm}^2)$. Table for CRT DAQ Cable $(60 \times 180 \times 70 \text{ cm}^3)$ delay $(305 \times 500 \text{ cm}^2)$ Roll-up door rack **CRT** stand (70 x 340 x 410 cm³) CRT test area CRT stand area Work desk $(180 \times 90 \text{ cm}^2)$ (soldering, etc.) Beam at the roof $(75 \times 180 \times 75 \text{ cm}^3)$ Column from the Mech. floor to the roof test area ront-end Front-end Granite table test area $(150 \times 400 \times 80 \text{ cm}^3)$ Roof can be open $(305 \times 475 \text{ cm}^2)$.

Door (180 x 180 cm²)

Lead for the range stack (1)_{500-1000 mm?}

(Clearance)

100 mm?

(Tracker)

4,100mm

3.400mm

 X_0/ρ

1.76

0.56

0.32

[q/cm³]

7.874

11.350

1.44

Front view CRT frame

[= 400 (space) + 100 (pipe)]

500 mm?

• Especially, a smaller height and more vertical spacing would be desirable for the CRT stand.

-H < 5.2 m (phys. limit).

12.7.23

— 0.5-1 m clearance at the top (safety+work)?

- 16 cm for timing counters (4 cm x 4 layers).

Ph

Pb/Fe

BPID extra session @ B2GM12

114.1

1.40

199.6

1.51

6.37

0.46

1.122

0.77

Lead for the range stack (1)'

- Made a mistake to evaluate the range stack height.
 - Particle of interest is μ , not e.
 - We should have looked at the energy loss (dE/dx), not the radiation length (X0).
 - Resulting height reduction in Pb to Fe is only 11%.
 - > No significant advantage to use lead instead of iron.

Material	λ _τ [g/cm²]	λ _ι [g/cm²]	X _o [g/cm²]	dE/dx _{min} [MeV •cm²/g]	ρ [g/cm³]	dE/dx*ρ [MeV/cm]
Fe	81.7	132.1	13.84	1.451	7.874	11.425
Pb	114.1	199.6	6.37	1.122	11.350	12.735
Pb/Fe	1.40	1.51	0.46	0.77	1.44	1.11

Lead for the range stack (2)

- Hayashi-san kindly offered to use the lead stored in the Belle Tent.
 - Lead sheet (100 x 110 x ~23 cm³)
 - Lead wool (25 kg x 8 boxes)
- Adachi-san is kindly trying to get more lead for us.
 - There are many lead bricks at East Counter Hall, but they belong to the J-PARC division. Can we use them?
 - Anything else?

Operation scheme (1)

- Module installation scheme
 - Use of a crane folk (palette hunger) was considered, but seems not favored at KEK.
 - ➤ 1-2 cm level position adjustment is difficult.
 - > Not an easy-operation through the roof opening.
 - ➤ Storage and cost (~300k yen?) issues.

Use of slide rails was proposed as an alternative.

➤ Suggested by Matsuoka-san.

➤ Place a counter module on a pair of slide-rails, then slide it into the CRT stand shelf.

Can be used in a usual operation with, for instance, hookers and/or slinging wires.

➤ Need to put something, e.g. props, between the strong backs to prevent from unwanted moment.

 The "slide-rail scheme" is being implemented in the CRT stand design.

Length Travel					Load tolerance					Price
品番	レール長さ	移動距離	Α	В	С	耐荷重		質量	1箱	¥定価
3509-12	305	327	_	149.2	273	2666N/ペア	272kgf/ペア	3.99kg/ペア	4セット	13,200/1セット
3509-14	356	378	_	200	323.8	2626N/ペア	268kgf/ペア	4.67kg/ペア	4セット	13,800/1セット
3509-16	406	428	_	250.8	374.6	2538N/ペア	259kgf/ペア	5.35kg/ペア	4セット	14,300/1セット
3509-18	457	479	212.7	301.6	425.4	2450N/ペア	250kgf/ペア	6.03kg/ペア	4セット	15,100/1セット
3509-20	508	530	238.1	352.4	476.2	2362N/ペア	241kgf/ペア	6.67kg/ペア	4セット	16,100/1セット
3509-22	559	581	263.5	403.2	527	2244N/ペア	229kgf/ペア	7.35kg/ペア	2セット	16,900/1セット
3509-24	610	632	288.9	454	577.8	2117N/ペア	216kgf/ペア	8.03kg/ペア	2セット	17,800/1セット
3509-26	660	682	314.3	504.8	628.6	1960N/ペア	200kgf/ペア	8.71kg/ペア	2セット	18,700/1セット
3509-28	711	733	339.7	555.6	679.4	1784N/ペア	182kgf/ペア	9.34kg/ペア	2セット	19,500/1セット

Fork-lift pockets

Operation scheme (2)

- A movable range stack
 - It would be difficult to have full-coverage of the range stack over the quartz optics (~2.7 m).
 - ➤ Not easy to handle/secure such a massive range stack.
 - ➤ Even unnecessary. What is the required coverage, i.e. planned incident positions, then?
 - Inami-san suggested to use IP-assumed tracks.
 - > What are "incident positions" within the acceptance?
 - > Should a single module go through all the shelves?
 - > Do we not need to move the range stack at all, then?
 - If we want the range stack be movable, use of pair of linear guides seems to work.
 - Suggested by Toshi Kawai (Nagoya engineering group) based on his experience with telescope construction.
 - ➤ Need an iron plate (~10 mm) under the linear guides to bolt them; the CRT stand can be anchored through the plate.
 - ➤ Need an iron plate (~20 mm) on top of the linear guide blocks to place the lead/iron.
 - A hand-winch works to move; a horizontal resistance can be a few percent of the vertical load.

- ~150k yen/guide for 3m length.
- •~1 month to deliver.

Mechanical performance assessment

- Sag of the Strong Back
 - Marc Rosen evaluated the sag using FEM.
 - \triangleright A preliminary result indicates acceptable sag (~45 μ m) sag for Al Strong Back (L2989 x H250 x T20 mm³).
 - Need to incorporate more details.
 - Can we make the Strong Back smaller to reduce its weight and the vertical clearance in the CRT stand?
 - ➤ What about possible moments given by the installation scheme?
- Sag/seismic performance of the CRT stand.
 - Jim Fast and a PNNL engineer evaluated using FEM.
 - > See Jim's talk in this session.

Consideration on the Sep. CRT test

- To be used for the operational and CRT tests of the "LEPS prototype".
 - -Less than 1 month running.
 - -Need enough operational tests for the Oct. beam test.
 - -For the Focused Review, even with a certain period CRT running, N_{hit} would be only the material to be presented.
 - \triangleright θ -selection would not be good enough to deliver a meaningful θ -resolution.
- Realizing the above items and using the lead sheets, we can build a simple CRT stand dedicated for the Sep. runs.
 - -Suggested Hayakawa-san.
 - —See Hayakawa-san's/Iijima-san's talk in this session for more details.

Further simplification of the CRT stand (1)

Further simplification of the CRT stand (2)

- $-Each is L100 \times W50 \times H50 cm^{3}$.
- —Adachi-san kindly keeps them at the North Counter Hall.
- Need experts' comments on how high the range stack can be for such a simple bench.

CRT assembly schedule – option B –

 My proposal of the CRT assembly schedule ("option B") is shown below.

Schedule Option B

 Extension of designing

Summary

- There are progresses on the CRT stand design.
 - Especially many people got involved seriously.
 - We should keep the activity level.
- There are, however, still various parameters, assembly method and operation scheme.
 - Need inputs form MC studies.
 - Need to discuss the possible conditions, e.g. incident positions, to take CR data.
 - Need to decide the base line configuration and possible extensions on the CRT test bench.
 - Iterate designing examining using FEM.
- Having a simple, temporary CRT bench can be considered for the Sep. CRT runs.
 - Giving ~1 month to finalize the CRT stand design based on careful considerations/discussions on the long-term CRT tests.