Cosmic Ray Test Stand MC Study

Kurtis Nishimura
January 10, 2011
UH bPID Meeting

Geometry

- Starting point, (almost) Marc's drawings:

Geometry

- Starting point, (almost) Marc's drawings:

- Some slight changes:
- Rectangular only
- $60 \times 40 \mathrm{~mm}^{2}$
- Only treating the scintillator, not including the PMT.

Conventions

- I've used the Belle / Belle II axis conventions:

- So mirror side of quartz bars is in the $+z$ direction.
\rightarrow The projection to the left is looking from the front.
- Polar and azimuthal angles are defined as in Belle.
\rightarrow Cosmic rays will be primarily near $\theta=90^{\circ}, \phi$ $=90^{\circ}$.
*This can be changed, but if we use these axes our resolutions on θ and ϕ are more easily relatable to those expected in Belle II.

Simulation \& Reconstruction

- Simple simulation and reconstruction:

- All tracks are infinite momentum (straight lines).
- Uniform distribution in $\theta, \phi\left(70^{\circ}-110^{\circ}\right) ; x_{0}$, z_{0} (from one bar edge to the other)
- A point is assigned to each bar that is hit with the following parameters:
- $x_{\text {hit }}=x$ center of bar
- $y_{\text {hit }}=y$ center of bar
- $z_{\text {hit }}=z$ position of track when $y_{\text {track }}$ is equal to y center of bar, with a Gaussian smearing of 20 mm .
- Reconstruction:
- Require at least 1 hit in top TOF layers and 1 hit in the bottom TOF layers.
- Fit a line to the points.
- *Initial guesses are based on the input value... should eventually be based on hits themselves.

θ resolution

ϕ resolution

x_{0} resolution

z_{0} resolution

Next...

- Resolution on ϕ and x_{0} seem too good?
- Bug check.
- Implement more realistic first guess procedure.
- Easy to run more geometries...
$-10 k$ events run in a couple minutes.
- Optimize for best resolutions \& acceptance.

