FDIRC Simulations and Measurements Update

L. Ruckman Instrumentation Development Laboratory (ID-Lab) University of Hawai'i at Mānoa, Department of Physics Aug 6, 2009

Data Cuts to .dts2 files for Cherenkov Imaging

Table 4.1: List of parameter cuts done to the CRT data set to measure Cherenkov angular resolution.

Charge Cut

CRT Measured Resolution After Dip Corrects

G4 Charge Cut

Monte Carlo Resolution After Dip Corrects

Why the Wide Secondary Superimposed Gaussian in CRT measurement?

- Possible reason:
 - Electrical cross-talk
 - "fake" hit
 - Due to capacitive loading transitions + AMP oscillations
- I believe it's some kind of random background hits in timing window
 - Electrical
 - Maybe light leak (optical)
- Thus, I redid G4 Monte Carlo with 0.35% chance of a fake hit for every pad per event

Monte Carlo Resolution After Dip Corrects

Cherenkov Angular Resolution Comparison ¹⁹

- $\Theta_{\rm C} = \cos^{-1}(ky)$
- Slightly greater sigma for CRT measurement due to mistagging photons + muon tracking error for dip angle
 - Tracking error ~1.1 mrad (quantization error)
- Difference in mean likely due to measurement error in MaPMT slot position

End of Slides