Instrumentation Frontier

1

2

3

4

5

Summary

Draft

Snowmass Authors

February 1, 2013

This is a skeleton outline for the 30-page Snowmass summary report of the Instrumentation Frontier. Indicated are suggested topics to be included. It is expected that there will be many supporting whitepapers that will be referenced for further details. The breadth of topics is vast; some consolidation of sections is foreseen at a later stage, but we tried to be complete for the skeleton outline. Feedback is much appreciated.

11 **Introduction**

Despite the recent discovery of a fundamental scalar and despite the fact that only 4% of the matter 12 and energy content of the universe can be described by the known laws of physics, a robust future for 13 particle physics research in the United States is not guaranteed. Now, more than ever, we must work 14 to ensure that the US continues to lead in innovation in the area of instrumentation for high-energy 15 physics rather than lag behind it. The goal of this summary report is to outline the opportunities that 16 exist for investment in the development of instrumentation for the various high-energy physics frontiers 17 that would enable the field to take a leadership position in certain areas of particle physics and establish 18 itself as an indispensable partner for projects based off-shore. 19

²⁰ This report is organized as follows. The first section will

21 **2** The Intensity Frontier

22 2.1 The Neutrino Sector

23 **2.1.1** Current And Planned Projects

Succinct description of science goal(s), methodology, reach and limitation. Preferably captured in a table. This may be multiple parts based on the science goals such as neutrino mixing matrix, mass hierarchy, neutrino-mass, ... Separate section on ultra-high energy neutrinos and $0\nu\beta\beta$ -decays? Some words about the Global Scene. What efforts are ongoing elsewhere and their competitive advantage or alternate approach.

29 2.1.2 Key Issues and Next Steps

Description of the instrumentation development that is necessary to sustain the current and planned projects. Identification of developments that would increase the science reach or reduce the cost and the

³² facilities needed to support this development. Description of alternative developments

33 2.1.3 Beyond The Next Decade

³⁴ Description of the instrumentation development for next generation experiments around 2025.

35 2.1.4 Key Issues and Next Steps

³⁶ Identification of the areas of investment for the US to take a leadership role in these next generation ³⁷ projects.

38 2.2 Rare Decays

39 2.2.1 Current And Planned Projects

Succinct description of science goal(s), methodology, reach and limitation. Preferably captured in a table
 that also lists projects elsewhere, esecially Japan.

42 2.2.2 Key Issues and Next Steps

43 Description of the instrumentation development that is necessary to sustain the current and planned

- 44 projects. Identification of developments that would increase the science reach or reduce the cost and the
- 45 facilities needed to support this development. Description of alternative developments

46 **2.2.3 Beyond The Next Decade**

⁴⁷ Description of the instrumentation development for next generation experiments around 2025 if applica ⁴⁸ ble.

49 **2.2.4** Key Issues and Next Steps

⁵⁰ Identification of the areas of investment for the US to take a leadership role in these next generation ⁵¹ projects.

52 2.3 LHCb

53 2.3.1 Current And Planned Projects

⁵⁴ Succinct description of science goal(s), methodology, reach and limitation. Preferably captured in a ⁵⁵ table.

56 2.3.2 Key Issues and Next Steps

57 Description of the instrumentation development that is necessary to sustain the current and planned

⁵⁸ projects. Identification of developments that would increase the science reach or reduce the cost and the

⁵⁹ facilities needed to support this development. Description of alternative developments

60 2.3.3 Beyond The Next Decade

⁶¹ Description of the science goals beyond the LHCb 2018 upgrade.

62 2.3.4 Key Issues and Next Steps

⁶³ Identification of the areas of investment for the US to take a leadership role in these next generation ⁶⁴ projects.

65 2.4 Heavy Flavor Factories

66 2.4.1 Current And Planned Projects

⁶⁷ Succinct description of science goal(s), methodology, reach and limitation. Preferably captured in a ⁶⁸ table.

69 2.4.2 Key Issues and Next Steps

70 Description of the instrumentation development that is necessary to sustain the current and planned

⁷¹ projects. Identification of developments that would increase the science reach or reduce the cost and the

⁷² facilities needed to support this development. Description of alternative developments

73 2.4.3 Beyond The Next Decade

⁷⁴ Not clear if there is anything beyond (multiple) upgrades.

75 **3** The Energy Frontier

76 **3.1 ATLAS And CMS**

77 3.1.1 Current And Planned Projects

⁷⁸ Succinct description of science goal(s), methodology, reach and limitation. Preferably captured in a
 ⁷⁹ table.

80 3.1.2 Beyond The Next Decade

⁸¹ Description of the science goals beyond LHC Phase II and instrumentation development needed.

82 3.1.3 Key Issues and Next Steps

⁸³ Identification of the areas of investment for the US to take a leadership role in these next generation ⁸⁴ projects.

3.2 Lepton Colliders

86 **3.2.1** Current And Planned Projects

Succinct description of science goal(s), methodology, reach and limitation. Preferably captured in a
 table. Expect overview of different stages of an ILC, CLIC and muon collider

89 3.2.2 Key Issues and Next Steps

⁹⁰ Description of the instrumentation development that is necessary to sustain the current and planned ⁹¹ projects. Identification of developments that would increase the science reach or reduce the cost and the ⁹² facilities needed to support this development. Description of alternative developments

93 4 The Cosmic Frontier

94 4.1 Ultra High Energy Cosmic Rays

95 See sample table

96 4.2 Ultra High Energy Neutrinos

97 See sample table

98 4.3 Dark Energy

99 4.3.1 Current And Planned Projects

Succinct description of science goal(s), methodology, reach and limitation. Preferably captured in a
 table.

102 4.3.2 Key Issues and Next Steps

Description of the instrumentation development that is necessary to sustain the current and planned projects. Identification of developments that would increase the science reach or reduce the cost and the facilities needed to support this development. Description of alternative developments

106 4.3.3 Beyond The Next Decade

¹⁰⁷ Description of the instrumentation development for

108 4.3.4 Key Issues and Next Steps

Identification of the areas of investment for the US to take a leadership role in these next generationprojects.

111 **4.4** *γ* Rays

112 **4.5 Directional Dark Matter**

113 4.5.1 Current And Planned Projects

Succinct description of science goal(s), methodology, reach and limitation. Preferably captured in a table.

116 4.5.2 Key Issues and Next Steps

¹¹⁷ Description of the instrumentation development that is necessary to sustain the current and planned

projects. Identification of developments that would increase the science reach or reduce the cost and the

119 facilities needed to support this development. Description of alternative developments

120 4.6 Light Dark Matter

121 **4.6.1 Current And Planned Projects**

Succinct description of science goal(s), methodology, reach and limitation. Preferably captured in a table.

124 4.6.2 Key Issues and Next Steps

Description of the instrumentation development that is necessary to sustain the current and planned projects. Identification of developments that would increase the science reach or reduce the cost and the facilities needed to support this development. Description of alternative developments

128 **4.7 A Dark Matter Observatory**

129 Description of the instrumentation needs to measure dark matter properties if discovered.

130 4.7.1 Key Issues and Next Steps

¹³¹ Identification of the areas of investment for the US to take a leadership role in these next generation ¹³² projects.

4.8 Cosmic Microwave Background Radiation

134 4.8.1 Current And Planned Projects

Succinct description of science goal(s), methodology, reach and limitation. Table with current experi-ments and reach for all experiments world-wide. Note US leadership.

137 4.8.2 Key Issues and Next Steps

Description of the instrumentation development that is necessary to sustain the current and planned projects. Identification of developments that would increase the science reach or reduce the cost and the facilities needed to support this development. Description of alternative developments

141 4.8.3 Beyond The Next Decade

142 Description of the instrumentation development needs for the next decade.

143 4.8.4 Key Issues and Next Steps

Identification of the areas of investment for the US to take a leadership role in these next generationprojects.

146 **4.9** Axions

- 147 4.9.1 Current And Planned Projects
- 148 4.9.2 Key Issues and Next Steps
- 149 4.10 Tests of Space-Time
- 150 4.10.1 Current And Planned Projects
- ¹⁵¹ Holographic experiments. See sample table.
- 152 4.10.2 Key Issues and Next Steps

153 5 Beam Test And Underground Facilities

154 6 Emerging Technologies

7 Cross-cutting Technologies

This section addresses technologies that cut across all frontiers, such as ASIC design, optical sensors,
 low-mass materials,

158 8 Infrastructure for Instrumentation Development

9 Partnerships

This section will address relations with industry, lab-university collaboration and relations with non-HEP
 science disciplines

162 10 Leadership Opportunities

163 11 Holy Grails

A list of breakthrough technologies considered holy grails. Below are exmples to get the discussion going.

166 Long Term:

Development of a CCD camera for cosmic frontier experiments capable of doing pixel by pixel spectro scopic analysis of incident light.

169

170 Development of wireless DAQ systems for HEP experiments. Satellite based Cosmic Frontier exper-

iments have already developed wireless DAQ systems by necessity. Very large area experiments such as

Auger have also developed wireless DAQ and control systems based on cell phone technology. How-

ever, there is no standard and about 20% of the cost of a large detector consists of making data readout

¹⁷⁴ connections and fixing mistakes in these readout connections and maintaining them.

175

Development of optical tracking chambers using large area photodetectors with mm spatial resolution and picoseconds or subpicosecond time resolutions and water based liquid scintillator.

- 178
- 179 Medium Term (?)
- 180 Development of a 10-5 pixel detector, that is, factor 10 improvement in five performance parameters such
- as radiation hardness, power consuption, material budget, data throughput, impact parameter resolution.

Sample Tables

Experiment	Location	Methodology	Target Mass	Reach	Limitation
CDMS	SNOLAB	non-therm. phonons +	1.5 kg Si; 10 kg Ge		Cost target mass
		ionization (\leq 50 mK)			
COUPP	SNOLAB	superheated liquid	60 kg Freon		
MAJORANA	Sanford	ionization	40 kg HPGe		
XENON100	Gran Sasso	Scint. + ionization	100 kg LXe		

Table 1: Dark Matter Experiments

Area	Physics Goal	Methodology	Limitation	New Technology
UHECR	Identify sources and com- position of UHECR study strong interactions at 100 TeV CM energies	H ₂ O Čerenkov tanks Fluorecence telescopes	Aperture <i>e</i> /μ separation	Radio detection
UHEV	Neutrinos are the only UHE messenger beyond local universe; study weak interactions at 100 TeV CM energies	optical Cherenkov	Limit in rate not scalable	Detection of coherent RF pulses (Askaryan)
Dark Energy	obtain spectroscopic infor- mation for LSST galaxies	multifiber spec- trograph with CCDs	Not easily scalable to cover 50,000 galaxies per square.deg	multiplexed supercon- ducting cryogenic de- tections (MKIDs)
γ Rays	Indirect DM detection Axion like particle searches Lorentz invanriance	H ₂ O tanks for air showers Cherenkov telescopes	Limited energy reach and sensitivity Limited energy reach and sensitivity	Large area, fast, low noise + cheap photo- sensors H_2O based scintillators Distributed DAQ with radio communication Relative timing \leq 1ns. Large array of tele- scopes (CTA) Fast ADCs High resolution with

 Table 2: Cosmic Frontier Experiments

Area	Physics Goal	Methodology	Limitation	New Technology
Directional DM	Measure sidereal anisotropy in nuclear recoils	Nuclear emul- sions Low pressure TPC	Tension between in- creased mass and track range Not scalable	Columnar recombina- tion detector
Light DM	Detection of low mass DM from 1 GeV to 10GeV mass	Low noise Ge detectors	Energy threshold electronic noise nuclear recoil calibra- tion	Low noise CCD Si De- tectors Cryogenic detectors with Luke gain
	Detection of low mass DM from 1 MeV to 1GeV mass		energy threshold	Single e-h Noble gas TPC detectors Single e-h semiconduc- tor detector Single photon detection in cryogenic detector
DM observatory	Wimp spectroscopy after discovery	Assume G3 de- tectors	Mass vs. cross sec- tion degeneracy hard to overcome astrophysical uncer- tainties irreducible neutrino background	Develop program with multiple nuclear targets
СМВ	Dawn of Universe	Satellites Balloon Ground	Small size telescope High cost Telescope size limited focal plane size limited Sensitivity limited by atmosphere	multimode detectors; Engineered radiation coupling Microcalorimeter read- out techniques
Axions				
Spacetime	Study macroscopic quan- tum properties of geometry. Beyond quantum field the- ory.			Holometer

'	Table 3	Cosmic	Frontier	Experiments
	14010 01	coomic	rionerer	Enpermiento