Understanding IRS3B, board-stack and mTC operation/calibration

Gary S. Varner 2 JUL 2014

mTC Training Session #3

Roadmap

- mTC Readout
 - Currently at about Phase 1.5
 - You can get us to Phase 2.5
- Specifically
 - Operators need to understand Hardware/Firmware/Software
 - Develop real-time Data Quality Monitoring
- What I hope to convey:
 - 1. Details of the hardware: ASIC + boardstack
 - 2. Firmware and Configuration/Operating parameters
 - 3. Understand how to read and comprehend documentation and ask meaningful questions ("it doesn't work" notably not amongst them)

http://www.phys.hawaii.edu/~mza/ASIC/IRS2-BLAB3A/index.html

"PCLK #"	Register/Value	Default value	# bits	
1	Threshold Ch. 1	TBD (0x000)	1	2
2	Threshold Ch. 2	TBD (0x000)	1	2 0
3	Threshold Ch. 3	TBD (0x000)	1	2 .
4	Threshold Ch. 4	TBD (0x000)	1	2 b
5	Threshold Ch. 5	TBD (0x000)	1	2 u
6	Threshold Ch. 6	TBD (0x000)	1	2 G
7	Threshold Ch. 7	TBD (0x000)	1	2 0
8	Threshold Ch. 8	TBD (0x000)	1	2
9	VBDbias	0x400	1	2 DAC buff bias for Vbias, Vbias2
10	Vbias	0x380	1	.2 Buff amp bias initial sample
11	Vbias2	0x370	1	.2 Buff amp bias transfer samples
12	Misc Reg (incl. SGN)	0x000	1	8
13	WBDbias	0x400	1	2 DAC buff bias for Wbias
14	Wbias	0x3D7	1	.2 Trigger Width adjust (Wbias)
15	TCBbias	0x400	1	.2 DAC buff bias for Trigger Comparator
16	TRGbias	0x350	1	.2 Trigger Comparator bias
17	THDbias	0x400	1	.2 DAC buff bias for Trigger Thresholds
18	Tbbias	0x400	1	.2 Internal Trigger Threshold buffer bias (disable for external drive)
1 9	TRGDbias	0x400	1	.2 DAC buff bias for TRGbias2, TRGthref
20	TRGbias2	0x350	1	2 TRGbias for reference channel
21	TRGthref	0x800	1	2 Trigger threshold for reference channel
22	Leading Edge SSPin	0x060	1	8 Timing Gen: SSPin
23	Trailing Edge SSPin	0x010	1	8
24	Leading Edge S1	0x028	1	8 Timing Gen: S1
25	Trailing Edge S1	0x058		8
26	Leading Edge S2	0x068		8 Timing Gen: \$2
27	Trailing Edge S2	0x018	1	8
28	Leading Edge PHASE	0x018	1	8 Timing Gen: PHASE
29	Trailing Edge PHASE	0x030	1	8
30	Leading Edge WR_STRB	0x040	1	8 NOTE: WR_ADDR phase CRITICAL
31	Trailing Edge WR_STRB	0x070		8
32	Timing Generator Reg	0x***		8 Select Timing signals viewed, Phase clear, RCO running decode for
33	PDDbias	0x400	1	2 DAC buff bias for CMPbias
34	CMPbias	0x500	1	.2 Storage Cell Comparators (Pull-Down) bias
35	PUDbias	0x400	1	2 DAC buff bias for CMPbias
36	PUbias	0xBF0	1	.2 Storage Column Comparators (Pull-Up) bias
37	SBDbias	0x400	1	.2 DAC buff bias for Super Buffer bias
38	Sbbias	0x400	1	.2 Super Buffer bias
39	ISDbias	0x400	1	2 DAC buff bias for ISEL
40	ISEL	0x900	1	2 Voltage Ramp Current Initial config required
41	VDDbias	0x400	1	2 DAC buff bias for Vdly
42	Vdly	0xB54	1	2 Wilkinson counter adj voltage Servo-lock target value
43	VAPDbias	0x600	1	2 DAC buff bias for VadjP
44	VadjP	0x5E8	1	.2 Timing Generator delay adjust PMOS Initial config required
45	VANDbias	0x600	1	2 DAC butt bias for VadjN
46	VadjN	0xAD0	1	.2 Timing Generator delay adjust NMOS Servo-lock target value
60	DatOut_ctr_CLR	AddrMode	ADDR_M	Clear Data Output Address Registers
61	RD_ctr_CLR	AddrMode	ADDR_M	Clear Read Address Registers
62	Start_WilkMon	AddrMode	ADDR_M	Start Wilkinson Reference counter
63	Boin_CLR	AddrMode	ADDR_M	Stop/Clear Wilkinson Reference counter
64	Trig_In	AddrMode	ADDR_M	Pulse Trigger test circuit

Hopefully, these will start to make sense in terms of how these settings map onto operational parameters of the IRS3B ASIC

```
irs3dControl_writeDefaultDacRegs.cpp
```

```
// Wilkinson comparator biases
control->writeDACReg(board_id, 169, 737); // CMPbias2
control->writeDACReg(board id, 170, 3112); // PUbias
control->writeDACReg(board id, 171, 1000); // CMPbias
11
// Vramp Related Controls PCLK 173-176
control->writeDACReg(board id, 172, 1300); // SBbias
control->writeDACReg(board id, 173, 0); // Vdischarge
control->writeDACReg(board id, 174, 2900); // ISEL
control->writeDACReg(board id, 175, 1300); // DBbias
11
// PLL-related DACs
control->writeDACReg(board id, 176, 4095); // VtrimT
control->writeDACReg(board id, 177, 1500); // Qbias
control->writeDACReg(board id, 178, 1300); // Vgbuff
11
//Misc. Timing Select Register (8-bit) -- PCLK 180
// 1 = Sel0
// 2 = Sel1
// 4 = Sel2
// 32 = SSTSEL
// 64 = Time1Time2
// 128 = CLR PHASE
11
// value currently = 0 + 0 + 0 + 0 + 0 + 0
control->writeDACReg(board id, 179, 0);
11
// Timebase Control -- analog PCLK 181 - 184
control->writeDACReg(board id, 180, 2800); // VadjP
control->writeDACReg(board id, 181, 1300); // VAPbuff
control->writeDACReg(board id, 182, 120); // VadjN
control->writeDACReg(board id, 183, 0); // VANbuff -- disable for PLL operation
11
// Timebase Control -- Digital PCLK 185 - 197
control->writeDACReg(board id, 184, 0); // WR SYNC LE -- IRSX only?
control->writeDACReg(board id, 185, 0); // WR SYNC TE -- IRSX only?
control->writeDACReg(board_id, 186, 96); // SSPin LE 0x60
control->writeDACReg(board id, 187, 16); // SSPin TE 0x10
control->writeDACReg(board id, 188, 40); // S1 LE 0x28
control->writeDACReg(board id, 189, 88); // S1 TE 0x58
control->writeDACReg(board id, 190, 104); // S2 LE 0x68
control->writeDACReg(board id, 191, 24); // S2 TE 0x18
```

Simple software

Once have writing template that talks to the picoblaze, tuning operational parameters of the IRS3B ASIC really easy

🔹) 🖀 https://code.google.com/p/idlab-scrod/source/browse/SCROD-boardstack/iTOP/IRS3B_CRT/src/asic_interfaces/wilkinson_monitoring 🤝 🧲 📗

119

```
ЪU
     -- Single feedback loop (1 ASIC) - more complicated version that moves proportionally
 61
 62
 63
    library IEEE;
     use IEEE.STD_LOGIC_1164.ALL;
 64
     use IEEE.NUMERIC_STD.ALL;
 65
 66
     use work.asic_definitions_irs3b_carrier_revB.all;
     use work.IR53B_CarrierRevB_DAC_definitions.all;
 67
 68
     entity wilkinson_feedback is
 69
 70
             port (
 71
                                     : in std_logic:
                     CLOCK
 72
                     CLOCK_ENABLE
                                     : in std_logic;
                                                                                                                     Firmware
 73
                     FEEDBACK_ENABLE : in std_logic;
 74
                     CURRENT_VALUE : in Counter;
 75
                     TARGET_VALUE
                                     : in Counter;
 76
                     DAC VALUE
                                     : out DAC_Setting;
 77
                     STARTING_VALUE : in DAC_Setting
                                                                                                                   Servo-lock
 78
            );
 79
     end wilkinson_feedback;
 80
     architecture Behavioral of wilkinson_feedback is
 81
 82
             signal internal_DAC_VALUE
                                                       : DAC_Setting;
 83
             signal
                    internal_NEXT_DAC_VALUE
                                                       : signed(13 downto 0);
 84
             signal
                      internal_CURRENT_DIFFERENCE
                                                       : signed(16 downto 0);
 85
             signal internal_STEP
                                                       : signed(11 downto 0);
 86
     begin
 87
             --Map the signals to the output
             DAC_VALUE <= internal_DAC_VALUE;</pre>
 88
 89
             --Calculate the difference between what we have and what we want
 90
             process(CLOCK) begin
 91
                     if (rising_edge(CLOCK)) then
 92
                             if (CLOCK_ENABLE = '1') then
 93
                                     internal_CURRENT_DIFFERENCE <= signed('0' & TARGET_VALUE) - signed ('0' & CURRENT_VALUE);</pre>
 94
                             end if;
 95
                     end if;
 96
             end process;
 97
             --The effective proportionality constant is chosen here by truncating the LSBs.
 98
             internal_STEP <= internal_CURRENT_DIFFERENCE(16 downto 5);</pre>
 99
             internal_NEXT_DAC_VALUE <= signed(resize(unsigned(internal_DAC_VALUE),internal_NEXT_DAC_VALUE'length)) +</pre>
     signed(resize(internal_STEP, internal_NEXT_DAC_VALUE'length));
100
             --Apply the correction
101
             process(CLOCK) begin
102
                     if (rising_edge(CLOCK)) then
                             if (CLOCK_ENABLE = '1') then
103
                                     if (FEEDBACK_ENABLE = '0') then
104
                                             internal_DAC_VALUE <= STARTING_VALUE;</pre>
105
                                     else
106
107
                                             if (internal_NEXT_DAC_VALUE < 0) then
108
                                                     internal_DAC_VALUE <= (others => '0');
                                             elsif (internal_NEXT_DAC_VALUE > 4095) then
109
110
                                                     internal_DAC_VALUE <= (others => '1');
                                             else
111
                                                     internal_DAC_VALUE <= std_logic_vector(internal_NEXT_DAC_VALUE(11 downto 0));</pre>
112
113
                                             end if:
                                     end if;
114
115
                             end if;
                     end if:
116
117
             end process;
118
     end Behavioral:
```

📣 🔻 Ask.com

mTC software pointer

A word of caution

Sampling Rate Feedback

We typically operate ~2.7 GSa/s

Slope in this region: ~10GSa/s / V

12-bit DAC can adjust by 0.6 mV per step:

0.6 mV * 10 GSa/s / V = 6 MSa/count

@ 2.7 GSa/s, this is 0.2% per count: 0.2% * 1/2.7 GSa/s = 0.74 ps

 \rightarrow Over the full 128 samples, this is ~95 ps of INL.

Comments/questions:

- 12-bit DAC resolution does not seem sufficient to ever control this effect to $< \sim 50$ ps. 1)
 - Higher resolution DAC could help, but only if noise is reduced to the level where the LSBs actually matter.
- 2) Noise on the two control lines contributes to sampling rate uncertainties. If so, 1 mV of noise would roughly correspond to 150 ps over the full range. 10

What limits timing?

Increased Amplification:

Want >100 ADC counts (>~ 60mV) for smallest pulses: Carrier Rev C 90-100ps \rightarrow 60-70ps

Oscilloscope on a chip? -> Calibration

Init

2.6 ns

Oscilloscope on a chip? -> Calibration

Modified approximation:

Calibration and Sources of Timing Error

Calibration and Sources of Timing Error

Contributions to timing resolution: Voltage uncertainties Timing uncertainties voltage noise Δu signal height U timing uncertainty Δt *Diagram from Stefan Ritt rise time t_r

Of these contributions:

- Random irreducible (without hardware redesign)
- Deterministic **in principle** can be calibrated away.

Let's talk about where the deterministic pieces come from and what has been done about them.

First ASIC Calibration – Pedestals

- Each storage cell has its own "offset" value.
 - Measure with no signal input.
 - These offsets must be removed in order to see a clean(er) signal.
 - We call this "pedestal subtraction."
 - 32k pedestals per channel (quarter million per ASIC!)
- <u>Example</u>:

Comparator Transfer Functions

- Wilkinson comparator.
- Ramp is supplied to all storage cells.
- Comparator output fires when ramp exceeds stored voltage.
- Signals are stored with DC offset to fit into the comparator's dynamic range.
 - Offset varies somewhat for each storage cell. This is what we try to remove with <u>pedestal</u> correction.
- Comparator response is <u>nonlinear</u>.
- Example shown for IRS3B comparator

AC vs. DC Response, Pulse Persistence

- Previous slide transfer functions measured with DC inputs.
- AC response may not be the same!
- Why not? One example... persistence.
 - Voltage has some dependence on previously stored voltage.
 - Example from Eric Oberla, PSEC3 ASIC.
 - This shows a pulse whose "ghost" persists for one or more cycles after the pulse.
 - The inverse is almost certainly true: a pulse does not reach its full height due to

Timing Uncertainties and Timing Calibration

- Time interval between delay line stages has intrinsic variation.
- Not accounting for this properly causes significant timing errors
- Differential (DNL) and Integral (INL) [run-out] Non-Linearity

Nuclear Instruments and Methods in Physics Research A 629 (2011) 123-132

One calibration scheme

- Inject fixed amplitude pulses at a constant time relative to system trigger.
- Measure times using a simple fixed threshold analysis.
 - Simple gain correction applied sample-by-sample.
 - Two point linear fit at threshold crossing.
 - Trying to add information from other samples complicates the procedure, since it includes contributions from many
- Measured time should be a constant value regardless of where the pulse was captured in the sampling array, but we see significant structure.

Have tried many, and they each have their merits and drawbacks 17

A word of caution (anon)

Sampling Rate Feedback

We typically operate ~2.7 GSa/s

Slope in this region: ~10GSa/s / V

12-bit DAC can adjust by 0.6 mV per step:

0.6 mV * 10 GSa/s / V = 6 MSa/count

@ 2.7 GSa/s, this is 0.2% per count: 0.2% * 1/2.7 GSa/s = 0.74 ps

 \rightarrow Over the full 128 samples, this is ~95 ps of INL.

Comments/questions:

- 12-bit DAC resolution does not seem sufficient to ever control this effect to $< \sim 50$ ps.
 - Higher resolution DAC could help, but only if noise is reduced to the level where the LSBs actually matter.
- 2) Noise on the two control lines contributes to sampling rate uncertainties. If so, 1 mV of noise would roughly correspond to 150 ps over the full range. 21

Timing Resolution as a Function of Sample Number

- Timing resolution as a function of sample number of the threshold crossing (pulser data).
- Indicative of noise contributions.

IRS3D Improvements over IRS3B

- **1. Improved Trigger Sensitivity**
- 2. Timebase Servo-locking
- 3. dT hardware adjust
- 4. Improved linearity/dynamic range
- 5. Improved Wilkinson ADC
- 6. No high current at power-on
 - = originally reported for TARGET7/X
 - = demonstrated initially (TARGET7/X), detailed timing confirmed
 - = LABRADOR4 independent confirmation
 - = All ASICs since IRS3C

Trigger Threshold Improvement

• A significant improvement for smaller pulses where "first strike" initiation of the MCP charge development is retarded

• 16x doesn't improve further, as already at the signal-to-noise limit $_{24}$

Timebase servo-locking (DLL)

Sampling tracks target delay

Target sampling rate: 2.8 GSa/s Feedback tap = 121

(indirect "RCO" feedback mechanism injects asynchronous noise into timebase generator, degrading timing performance – so this is a <u>significant improvement</u>)

Time base non-uniformity...

If can correct, reduces processing time dramatically, as this is the most computationallyintensive aspect of "fast feature extraction"

Roughly Adjusted dT Sampling

Observed IRSX noise

Non-gaussian distributions expected for small noise amplitude due to non-linearity in Gray-code least count

Take away message: noise is comparable, or better than IRS3B, and acquired while sampling continues to run

Improved Residuals, repeatability

Note: IRS3D -- no comparator bias tuning yet done

~1% Integral deviation from 3rd-order over key sensitivity range

Shape repeatable samplesample (common lookup table, with only pedestal offset)

2500

Useful Diagnostic tool

Plot correlations between pairs of samples:
 – To determine ∆t_{ii}, plot V_i – V_i versus V_i + V_i

i and j can be adjacent (or not), but cycle ambiguities exist if > 1 period apart.

Quite sensitive to yuckiness in the data

Improved Wilkinson "cross-feed"

fWaveform[2][5]:fWaveform[2][9]

Result: visually nicer waveforms

IRS3D timing

(no detailed timebase calibration)

For stretch goal of <= 50ps single p.e. timing, the electronics contribution should be <= 36ps for 35ps MCP-PMT TTS (best case) [<= 30ps for 40ps MCP-PMT TTS (worst case)]

IRS3D looks capable of achieving this goal.

Summary – Day 3

Final batch of detailed information presented

- Hopefully useful
- •All of these concepts are straightforward, though much, much, much to be assimilated all at once
- Typically 3+ times through needed to 'get it'
- Essential issues to be addressed for quality mTC data-taking:
 - Are register configurations/feedbacks being set properly ?
 - > Can we tell ? (meaningful DQM tools ?)
 - > Understanding what is being done ?
 - > <u>Calibration!</u> (and diagnostics)

Back-up slides

Resources (where to find more)

• Hardware:

- IRS3B webpage:

http://www.phys.hawaii.edu/~idlab/taskAndSchedule/ASIC/IRS3B/IRS3B_homepage.html

– Board stack schematics:

http://www.phys.hawaii.edu/~mza/PCB/iTOP/carriers/index.html http://www.phys.hawaii.edu/~mza/PCB/iTOP/index.html (Interconnect) http://www.phys.hawaii.edu/~mza/PCB/SCROD/index.html

• Firmware:

– References link:

http://www.phys.hawaii.edu/~idlab/taskAndSchedule/ASIC/Firmware/Firmware_homepage.html

- Repositories: http://idlab-scrod.googlecode.com/svn/SCROD-boardstack/iTOP/IRS3B_CRT/ https://code.google.com/p/idlab-general/source/browse/#svn%2Funiversal_eval%2FIRS3B_DC-stand-alone-firmware%2Fsrc

• Software:

 Will talk about next time: https://www.phys.hawaii.edu/elog/ https://www.phys.hawaii.edu/elog/mtc/152

Simplified IRS3B Block Diagram

- Per channel:
 - Single input line
 - 128 sampling cells/capacitors
 - 256 transfer cells/capacitors
 - 32,768 storage cells/capacitors
 - 64 counters used to digitize 64-samples in parallel

- Common to all channels:
 - Timing generator
 - Ramp generator

Example window buffer mgmt

- Laser fired randomly with respect to FTSW clock...
 - ...but at a fixed time relative to the global trigger.

Understanding Expectations: IRS3B "toy" Monte Carlo

Vpeak	100 ADC
Risetime	2.7 ns
Sampling rate	2.72 Gsa/s
nom dT	0.368 ns
nom dV	13.617 ADC/sample

40% CFD ratio:

Applied between 2 points on leading edge that bracket this transition

