Understanding IRS3B, board-stack and mTC operation/calibration

Gary S. Varner 1 JUL 2014

mTC Training Session #2

Roadmap

- mTC Readout
 - Currently at about Phase 1.5
 - You can get us to Phase 2.5
- Specifically
 - Operators need to understand Hardware/Firmware/Software
 - Develop real-time Data Quality Monitoring
- What I hope to convey:
 - 1. Details of the hardware: ASIC + boardstack
 - 2. Firmware and Configuration/Operating parameters
 - 3. Understand how to read and comprehend documentation and ask meaningful questions ("it doesn't work" notably not amongst them)

Servo-controls (3 parameters)

This is the Wilkinson clock adjustment

Discharge Current [uA]

http://www.phys.hawaii.edu/~mza/ASIC/IRS2-BLAB3A/index.html

"PCLK #"	Register/Value	Default value	# bits		
1	Threshold Ch. 1	TBD (0x000)	12		
2	Threshold Ch. 2	TBD (0x000)	12	p	
3	Threshold Ch. 3	TBD (0x000)	12		
4	Threshold Ch. 4	TBD (0x000)	12	d	
5	Threshold Ch. 5	TBD (0x000)	12	e	
6	Threshold Ch. 6	TBD (0x000)	12	ц.	
7	Threshold Ch. 7	TBD (0x000)	12	203	
8	Threshold Ch. 8	TBD (0x000)	12	•,	
9	VBDbias	0x400	12	DAC buff bias for Vbias, Vbias2	
10	Vbias	0x380	12	Buff amp bias initial sample	
11	Vbias2	0x370	12	Buff amp bias transfer samples	
12	Misc Reg (incl. SGN)	0x000	8		
13	WBDbias	0x400	12	DAC buff bias for Wbias	
14	Wbias	0x3D7	12	Trigger Width adjust (Wbias)	
15	TCBbias	0x400	12	DAC buff bias for Trigger Comparator	
16	TRGbias	0x350	12	Trigger Comparator bias	
17	THDbias	0x400	12	DAC buff bias for Trigger Thresholds	
18	Tbbias	0x400	12	Internal Trigger Threshold buffer bias	(disable for external drive)
19	TRGDbias	0x400	12	DAC buff bias for TRGbias2, TRGthref	
20	TRGbias2	0x350	12	TRGbias for reference channel	
21	TRGthref	0x800	12	Trigger threshold for reference channel	
22	Leading Edge SSPin	0x060	8	Timing Con: SSDin	
23	Trailing Edge SSPin	0x010	8	Titting Gen. 33-III	
24	Leading Edge S1	0x028	8	Timing Conv S1	
25	Trailing Edge S1	0x058	8	Tilling Gen. 51	
26	Leading Edge S2	0x068	8	Timing Conv. 52	
27	Trailing Edge S2	0x018	8	Titting Gen. 32	
28	Leading Edge PHASE	0x018	8	Tirring Con: DUASE	
29	Trailing Edge PHASE	0x030	8	Inning Gen. PHASE	
30	Leading Edge WR_STRB	0x040	8	Tirring Con: WR STRR NOTE: WR	R_ADDR phase CRITICAL
31	Trailing Edge WR_STRB	0x070	8	Inning Gen. WK_STRB	
32	Timing Generator Reg	0x***	8	Select Timing signals viewed, Phase clear, RO	O running decode for
33	PDDbias	0x400	12	DAC buff bias for CMPbias	
34	CMPbias	0x500	12	Storage Cell Comparators (Pull-Down) bias	
35	PUDbias	0x400	12	DAC buff bias for CMPbias	
36	PUbias	0xBF0	12	Storage Column Comparators (Pull-Up) bias	
37	SBDbias	0x400	12	DAC buff bias for Super Buffer bias	
38	Sbbias	0x400	12	Super Buffer bias	
39	ISDbias	0x400	12	DAC buff bias for ISEL	
40	ISEL	0x900	12	Voltage Ramp Current	Initial config required
41	VDDbias	0x400	12	DAC buff bias for Vdly	
42	Vdly	0xB54	12	Wilkinson counter adj voltage	Servo-lock target value
43	VAPDbias	0x600	12	DAC buff bias for VadjP	
44	VadjP	0x5E8	12	Timing Generator delay adjust PMOS	Initial config required
45	VANDbias	0x600	12	DAC buff bias for VadjN	
46	VadjN	0xAD0	12	Timing Generator delay adjust NMOS	Servo-lock target value
60	DatOut_ctr_CLR	AddrMode	ADDR_M	Clear Data Output Address Registers	
61	RD_ctr_CLR	AddrMode	ADDR_M	Clear Read Address Registers	
62	Start_WilkMon	AddrMode	ADDR_M	Start Wilkinson Reference counter	
63	Boin_CLR	AddrMode	ADDR_M	Stop/Clear Wilkinson Reference counter	
64	Trig_In	AddrMode	ADDR_M	Pulse Trigger test circuit	

Hopefully, these will start to make sense in terms of how these settings map onto operational parameters of the IRS3B ASIC

mTC electronics system

Carrier cards

Carrier 0 or 2 (c02)

Carrier 1 or 3 (c13)

SCROD

RJ45 connectors

DSP_cPCI

Front-end Firmware Block Diagram

Reality

Block Diagram

Resources (where to find more)

• Hardware:

- IRS3B webpage:

http://www.phys.hawaii.edu/~idlab/taskAndSchedule/ASIC/IRS3B/IRS3B_homepage.html

– Board stack schematics:

http://www.phys.hawaii.edu/~mza/PCB/iTOP/carriers/index.html http://www.phys.hawaii.edu/~mza/PCB/iTOP/index.html (Interconnect) http://www.phys.hawaii.edu/~mza/PCB/SCROD/index.html

• Firmware:

- References link:

 $http://www.phys.hawaii.edu/~idlab/taskAndSchedule/ASIC/Firmware/Firmware_homepage.html \\$

- Repositories: http://idlab-scrod.googlecode.com/svn/SCROD-boardstack/iTOP/IRS3B_CRT/ https://code.google.com/p/idlab-general/source/browse/#svn%2Funiversal_eval%2FIRS3B_DC-stand-alone-firmware%2Fsrc

• Software:

 Will talk about next time: https://www.phys.hawaii.edu/elog/ https://www.phys.hawaii.edu/elog/mtc/152

Summary – Day 2

A lot more detailed information presented

- Please review and return with questions next time (if you don't, I will quiz you)
- Primary issues to be addressed for quality mTC data-taking:
 - Are register configurations/feedbacks being set properly ?
 - > Diagnostic/meaningful DQM tools ?
 - > Understanding what is being done ?
- All of these concepts are straightforward, though many to be assimilated all at once (rounds 2 & 3)
- Typically 3+ times through needed to 'get it'

Thoughts on Day 3

Software, Calibration and Advanced Topics

•Key control issues:

- Acquisition and Readout State Machines
- Wilkinson counter and timebase feedback loops
- > Digitization and readout
- Key operational issues:
 - Parameter initialization
 - Trigger threshold and coincidence level setting
 - > Buffer window management

Back-up slides

Simplified IRS3B Block Diagram

- Per channel:
 - Single input line
 - 128 sampling cells/capacitors
 - 256 transfer cells/capacitors
 - 32,768 storage cells/capacitors
 - 64 counters used to digitize 64-samples in parallel

- Common to all channels:
 - Timing generator
 - Ramp generator

Example window buffer mgmt

• Laser fired randomly with respect to FTSW clock...

– ... but at a fixed time relative to the global trigger.

