Understanding IRS3B, board-stack and mTC operation/calibration

Gary S. Varner 10 JUL 2014

mTC Training Session #5

Roadmap

- mTC Readout
 - Currently at about Phase 1.5
 - You can get us to Phase 2.5
- Specifically
 - Operators need to understand Hardware/Firmware/Software
 - Develop real-time Data Quality Monitoring
- What I hope to convey:
 - 1. Details of the hardware: ASIC + boardstack
 - 2. Firmware and Configuration/Operating parameters
 - 3. Understand how to read and comprehend documentation and ask meaningful questions ("it doesn't work" notably not amongst them)

Reminder: IRS3B not so bad

Belle II iTOP Counter

2) Micro-Channel Plate PMT (HPK SL-10)

Works in 1.5T B-field

Peak Q.E. ~28% (24% min)

7

COPPER

FINESSE

3) Integrated Readout Electronics

- Operate within Belle-II Trigger/DAQ
 environment
 Giga-bit Fiber
 Transceiver Links
- >= 30 kHz L1 trigSubdetector Readout Module ASICs FPGA Gbps fiber Tx/Rx COPPER backend Global Decision Logic • Timing trigger or ADCs On or in Detector FPGA firmware consists of 3 parts: • iTOP: 8k channels 1) ASIC/ADC driver (common) 2) Trigger/feature extract (subdet. specific) Clock/Event Timing Distribution 3) Unified DAQ transport protocol • 16 iTOP modules SuperKEKB RF clock
- 4x 128-channel SRM/iTOP module (64x total)

SPring-8 2013 Run Schedule

~140

Beam test w/ LEPS detector: Full detector (final optics)

Typical LEPS Event

About 80% efficient, but running at very high gain!

Trigger Efficiency estimate

This is why I am very concerned – same electronics

For each event

• Test most probable distribution

Beamtest Experiment 2 Run 568 Event 1

Temporal broadening

- Limited gain from improved time resolution
- Coarser spatial resolution integrates more of partial ring

- Due to wavelength spread of detected photons
- \rightarrow propagation time dispersion
- Longer propagation length
- → Improves projected ring image difference But broadens time distribution

Measured Narrower Peaks Consistent with MC resolution + 100ps smearing

• For ADC>100 and using the "120ps" width determined from GEANT4

Insufficient time/laser scanning resources before LEPS beamtest – subsequent testing in Hawaii

Picosecond laser

Inside Dark Box

Module under test w/ reference SL-10 MCP

Stage for x-y control of illumination fiber (picosecond laser)

FTSW, COPPER,

CAMAC

Example <u>single photon*</u> timing, no ADC cuts, no modifications from LEPS configuration

cut [recoverable] – FTSW artifact)

* <= 5% occupancy

Board Stack #37 <u>single photon*</u> timing, no ADC cuts, no mods from LEPS configuration**

93 +/- 16 ps [a couple bad ASICs dominate high-end outliers]

* <= 5% occupancy

** most channels reworkable, didn't have time

Test system @ LEPS had 4 modules

91 +/- 12 ps [bad ASICs only get to vote once, Ch. 6 not worst]

What limits resolution? Why large scatter?

- Amplitude dependence similar
- Channels on same ASIC have similar limiting resolution 19

Understanding Expectations: IRS3B "toy" Monte Carlo

Vpeak	100 ADC
Risetime	2.7 ns
Sampling rate	2.72 Gsa/s
nom dT	0.368 ns
nom dV	13.617 ADC/sample

40% CFD ratio:

Applied between 2 points on leading edge that bracket this transition

In general, noise is constant: SNR ~ S*C

Adding in realistic degradations

Adding in realistic degradations (II)

What remains to get to $\leq 50 \text{ps}$?

1. Increased Amplification

Want >100 ADC counts (>~ 60mV) for smallest pulses

2. Improved Risetime

Improved Amplifier Choice

Simulation indicates -- prior to changing layout radically (2x stage design), can already improve amplitude/risetime by switching to LHM6629 (single stage)

4x gain, >2 faster risetime

3. Improve Timebase Stability

A combination of jitter (noise on VadjN) and coarseness of DAC are the primary contributors

- Plot distribution of intercepts from linear fit to time resolution vs. sampling array bin # plot
- Represents time resolution if there was no degradation along sampling array

Improved amp, calibration

Measure time resolution in core distribution

- Trailing tail expected from photoelectron backscatter within PMT
- Also leading non-Gaussian tail due to small pulses

Requirement: <100ps Goal: 50ps with higher gain

LEPS beam test: ~100ps timing, 77-86% trigger efficiency

• Brian will talk about calibration specifics tomorrow

Summary – Day 5

Some additional information provided

- Go through list of items from last time (next slide)
- •All of these concepts are straightforward, though much, much, much to be assimilated all at once
- Brian Kirby will take you through calibration process tomorrow
- Essential issues to be addressed for quality mTC data-taking:
 - Are register configurations/feedbacks being set properly ?
 - > Can we tell ? (meaningful DQM tools ?)
 - > Understanding what is being done ?
 - Calibration! (and diagnostics)

Specific DQM Needs

- As data being accumulated:
 - > What are best estimates of:
 - ✓ Pedestal residual (flag bad windows)
 - ✓ Sampling rate
 - Average (normalized) pulse width versus sample number [and across window seam]
 - ✓ Window dT
 - ✓ Channel hit occupancy
 - Pulse height spectra by channel, by PMT and by event
 - ✓ Event "time zero" mean and moment
 - ✓ Time offsets between modules and between clock fanout branches

Back-up slides

Final Board Stack Mechanics

Timing Widths – All Peaks in Ring Images

Impact of Propagation

Time in quartz bar vs wavelength for photons hitting PMT 24 ch 1

Narrowest leading edge peaks in MC of beamtest data (~120ps)

Photon detection time for PMT 24 ch 1

35

Timing for Mirror Reflected Peaks

36

Data/MC Ring Images Normal Incidence

Data ring image for $\cos\theta = 0.00$

Data ring image (with LEPS TOF cut) for cos0 = 0.00

Data/MC Ring Images Inclined Angle

Data ring image for $\cos\theta = 0.43$

Simulated ring image for $\cos\theta = 0.43$

Data ring image (with LEPS TOF cut) for cost = 0.43

Data/MC Ring Images Near Detector Edge

Data ring image for $\cos\theta = 0.43$

Simulated ring image for $\cos\theta = 0.43$

Data ring image (with LEPS TOF cut) for $\cos\theta = 0.43$

Improvements to carrier02

- $\sqrt{\text{Will populate with improved amplifiers}}$
- $\sqrt{\text{add series resistor and capacitors to VadjN/VadjP} (10 Ohm+200pF+47nF+2uF})$
- $\sqrt{\text{exchange SMA connectors for MMCX}}$
- $\sqrt{\text{exchange 12 bit external DAC for 16 bit one in same series}}$
- $\sqrt{\text{re-visit c02 wiring to allow powering entire boardstack}}$ with just one cable
- $\sqrt{\text{extend width of boards and add holes for new thermal wall structure concept}}$
- $\sqrt{\text{swap ASIC regulator for one with a shutdown feature}}$ full list at http://www.phys.hawaii.edu/~mza/PCB/iTOP/boardstack-v3.html

Layout of carrier02 revC

design posted at:

http://www.phys.hawaii.edu/~mza/PCB/iTOP/carriers/index.html

http://www.phys.hawaii.edu/~mza/ASIC/IRS2-BLAB3A/index.html

Expectations – matched to measurements

- Noise/amplitude
- Non-linearity
- **Timebase non-uniformity**

1GHz analog bandwidth, 5GSa/s

Time Difference Dependence on Signal-Noise Ratio (SNR)

Time Difference Resolution [ps] Signal Noise Ratio

G. Varner and L. Ruckman NIM A602 (2009) 438-445.

nale Threshold ultiple Threshold Constant Fraction aveform Sampling Sampling 40 GS/s Analog bandwidth: 1.5 GHz Time resolution (ps)

Simulation includes MCP response