Exploring the Space-Time limits in Next Generation X-ray Imager Readout

(basis of slides)

Mānoa

Overview

- Basis is Switched Capacitor Array acquisition
 - Low-cost, commodity CMOS processes
 - Excellent timing, frame-rate, dynamic range
 - − 100's \rightarrow 10's of kSamples \rightarrow MSamples
- Active research
 - Technology in its infancy
 - Space-Time limits? (micron spatial resolution with fs timing?)
- Key Elements going forward

• Pipelined storage = array of T/H elements, with output buffering

Switched Capacitor Array Sampling

An Initial Selling Point

Basic Functional components

Design Choices

- Input coupling
 - Differential versus single-ended input
 - Needed analog bandwidth
 - Gain needed?
- Sampling Options
 - On-chip PLL/DLL
 - External DLL
 - Analog transfer vs. interrogate in situ
- ADC and readout options
 - Sequential output select vs. random access
 - On-chip vs. off-chip ADC
 - Serial, parallel, massively parallel

Many variants have been explored...

Toward increased timing precision

ASIC	# chan	Depth/chan	Time Resolution [ps]	Vendor	Size [nm]	Year
LABRADOR 3	8	260	16	TSMC	250	2005
BLAB	1	65536	1-4	TSMC	250	2009
STURM2	8	4x8	<10 (3GHz ABW)	TSMC	250	2010
DRS4	8	1024	~1 (short baseline)	IBM	250	2014
PSEC4	6	256	~1 (short baseline)	IBM	130	2014
RITC3	3	Continuous	TBD	IBM	130	
PSEC5	4	32768	TBD	TSMC	130	
DRS5	8/16?	128x32	TBD	UMC	110	
SamPic	16	64	~3 [pic 0]	AMS	180	[2014]
RFpix	128?	TBD	<= 100fs (target)	TSMC	45 ?	

- 10 real bits (1.3V/1.3mV noise)
- Excellent linearity, noise
- Sampling rates already meet Type I and Type II specifications

Starting point: Predictions

1GHz analog bandwidth, 5GSa/s

Time Difference Dependence on Signal-Noise Ratio (SNR)

G. Varner and L. Ruckman NIM A602 (2009) 438-445.

Simulation includes detector response

J-F Genat, G. Varner, F. Tang, H. Frisch NIM A**607 (2009) 387-393**.

And now: high space-time Resolution

In a number of communities (future particle/astroparticle detectors, PET medical imaging, etc.) a growing interest in detectors capable of operating at the pico-second resolution and μ m spatial resolution limit (for light 1 ps = 300 μ m) signal electrodes

Front-End Electronics

Fast signal collection x-ray detectors

constructed

What the detector sees

intensitu

Normalized

 $\begin{bmatrix} A_{\sigma} \\ A_{\pi} \end{bmatrix} = \frac{\sqrt{3}}{2\pi} \gamma \frac{\omega}{\omega_{c}} \left(1 + X^{2} \right) \left(-i \right) \begin{bmatrix} K_{2/3}(\eta) \\ \frac{iX}{\sqrt{1+X^{2}}} K_{1/3}(\eta) \end{bmatrix},$

 $X = \gamma \psi$

•Source SR wavefront amplitudes:

K.J. Kim, AIP Conf. Proc. 184 (1989). J.D. Jackson, "Classical Electrodynamics," (Second Edition), John Wiley & Sons, New York (1975).

•Kirchhoff integral over mask (+ detector response) \rightarrow Detected pattern: $A_{\sigma,\pi} (Detector) = \frac{iA_{\sigma,\pi} (Source)}{\lambda} \times \int_{mask} \frac{t(y_m)}{r_1 r_2} e^{i\frac{2\pi}{\lambda}(r_1+r_2)} \left(\frac{\cos\theta_1 + \cos\theta_2}{2}\right) dy_m$

where

Measured slow-scan detector image (red) at CesrTA, used to validate simulation (blue)

- t(y_m) is complex transmission of mask element at y_m. val
 Sum intensities of each polarization and wavelength component.
- Sum weighted set of detector images from point sources.
 - The source beam is considered to be a vertical distribution of point sources.
 - Can also be applied to sources with non-zero angular dispersion and longitudinal extent, for more accurate simulation of emittance and source-depth effects.
 - For machines under consideration here these effects are small, so for computational speed we restrict ourselves to 1-D vertical distributions.

Overview

Xray Source Bend Par.	S-LER	S-HER (BS2E.82)	Units
E,	3.20E-09	4.60E-09	m
к	0.27%	0.24%	
ε,	8.64E-12	1.10E-11	m
β	50.0	11.5	m
σ,	20.8	11.3	μm
Beam Energy	4	7	GeV
Effective length	0.89	5.9	m
Bend angle	28.0	55.7	mrad
ρ	31.7	105.9	m
Critical Energy	4.4	7.1	keV

59-element Uniformly Redundant Array mask pattern

Simulated detector response for various beam sizes at SuperKEKB LER

Coded Aperture Mask:

- In-hand :
 - High-power, 59-element, 10 μm/element URA
 - 10 μm Au mask on 625 μm Si substrate
- Under development:
 - 20 μm Au mask on 500 μm CVD diamond (monocrystalline) substrate
 - Substrates manufactured.
 - New pattern being designed for improved resolution (E. Mulyani)

Detector:

- 64-pixel (Phase 1), later 128-pixel, 50 μm pitch linear array
- InGaAs detectors in hand (same type as used at CesrTA)
- Deep Si detectors in development for better detection efficiency at high energy (SLAC)

First Light (accelerator started Feb.)

🛚 <u>F</u>ile <u>E</u>dit <u>W</u>indow

06/01/2016 19:31:13 Help -

Bunches down to RF bucket spacing [508.9MHz]

First generation readout

TOP Electronics - HW

 Front-end modules consist of 5 PCBs, each with a Zynq (FPGA + Processor):

SCROD

Firmware ("Production") – Data Path

Carrier ASIC Control

- Continuous sampling during digitization.
- Global synchronization scheme.
- 32-sample readout per trigger.
- Multi-hit capable.

SCROD data collection

- FPGA monitors ASICs, can mask if trouble.
- FPGA builds complete event packets.
- 1x DMA x-fer/event w/standard Xilinx blocks.
- Processor does pedestal correction, feature

Key Remaining Items

- Complete thero-mechanics
- RF signal chain
 - Amplifier gain, bandwidth, noise
 - Stability and dynamic range
 - EMI Immunity
- Carrier modifications
 - Wiring modifications
 - Simplified sampling FW, mini-packets
- SCROD FW modifications
 - Streamlined mini-packets ped subtraction
 - Feature extraction
 - 100kHz * 128 channels * 2 Bytes (~30MBytes/s)

Back-up slides

Constraint 1: Analog Bandwidth

Difficult to couple in Large BW (C is deadly)

21

Constraint 2: kTC Noise

Want small storage C, but...

Constraint 3: Leakage Current

Increase C or reduce conversion time << 1mV

Sample channel-channel variation ~ $fA \rightarrow nA$ leakage (250nm \rightarrow 130nm)

Timing optimization: ABW, SNR, sampling rate

Outcome: Target Specifications (separate design study)

Parameter	Minimum desired value
Sampling frequency (ASIC)	20 GHz
Bandwidth (Detector and ASIC)	3 GHz
Signal to Noise Ratio (Detector and ASIC)	58dB (V _{pp} =1 volts)
Velocity of Propagation (Transmission Line/ strip line)	0.35c
Number of Bits of Resolution	9.4 bit

This is an ongoing study – evolving quickly

Take the PSEC4 design as a reference

Single Sampling Cell Coupling

- Driver circuit
- Switch with n-p FET pair
- Sampling capacitor
- Comparator as load

- Check Csampling capacitance
- Identify Ron and Roff

Pass Transistor (Switch) Resistance

• Ron=2.4k @665mVdc

Roff is in GΩ

• The PFET and NFET are not matched and Ron varies considerably

Small signal frequency response

Bandwidth 20 LowZ ideal 18 LowZ par LowZ load&par 16 50Z ideal 50Z par 14 50Z load&par 12 **Bandwidth** [GHz] 10 8 6 4 X: 0.65 Y: 1.688 2 0 0.2 0.6 0.8 1.2 0 0.4 1 Vdc [V]

- BWworst≈2.3GHz @665mVdc @LowZ drive
- BWworst≈1.7GHz @665mVdc
 @50Ω drive

• Isolation is over 60dB over all parameter space

Snapshot

Parameter	Measured (worst cases)	Requirement
Bandwidth (Single cell)	1.7GHz @665Vdc @50Ω	3GHz
Bandwidth (Multi cell)	1.0GHz @665Vdc @50Ω	3GHz
SNR	61.7 dB	58dB
ENOB	9.8 bits (small region)	9.4 bits

Things to improve:

- Reduce Ron variance over the dynamic range to reduce distortion and increase the ENOB
- Bandwidth dominated by Cin:
 - Reduce Cin or reshape the channel to increase the bandwidth (first pole)
 - Reduce Ron overall value to increase the bandwidth (second pole)
- Use differential configuration to reduce pedestal error and increase noise coupling and crosstalk immunity

IRS/TARGET family Single Channel

• Sampling: 128 (2x 64) separate transfer lanes

Recording in one set 64, transferring other ("ping-pong")

• Storage: 64 x 512 (512 = 8 * 64)

• Wilkinson (32x2): 64 conv/channel

First order packing density

Compact storage/comparator (Wilkinson ADC)

888 - **88**8 -

3μm x 24μm (13.9k Cells/mm)

10 samples (30um x 24um) 20 samples (60um x 24um)

Commensurate with TSV planar packing, OR

Knife-edge, thinned die [reticle limited width] stacking/bundling of readout (orthogonal to Detector array)

Future Plans

- R&D Program toward needed readout
- PSEC5 ASIC
 - $-256 \rightarrow 32k$ sample storage
 - Work to optimize bandwidth, ENOB
 - Persistence effects
- RFpix ASIC
 - Push limits of ABW, timing
 - Below 100-200fs, direct spatial measurement becomes interesting
 - Many practical issues, but none fundamental (CF 1ps)
- Dedicated pixellated sampler
 - Prototype design rather straightforward how to connect to detector (& detector), funding limited

Founding WFS ASIC References

- PSI activities (DRS)
 - IEEE/NSS 2008, TIPP09
 - http://midas.psi.ch/drs
- DAPNIA activities
 - MATDAQ: IEEE TNS 52-6:2853-2860,2005 / Patent WO022315
 - SAM; NIM A567 (2006) 21-26.
- Hawaii activities
 - STRAW: Proc. SPIE 4858-31, 2003.
 - PRO: JINST, Vol. 3, P12003 (2008).
 - LABRADOR: NIM A583 (2007) 447-460.
 - BLAB: NIM A591 (2008) 534-545; NIM A602 (2009) 438-445.
 - STURM: EPAC08-TUOCM02, June, 2008.

SuperKEKB Estimated single-shot resolutions (SuperKEKB full current)

Beam to mask: 12 m

Energy (keV)

Exploration of the space-time limit

-Sampling at high sampling rate and high bandwidth -Resolve small distances

Current Goals: Spatial resolution of 10µm in z and 20µm in rφ In Silicon 10µm in z corresponds to timing resolution of about 100fs 20µm in rφ will depend on the SNR

Pixel detector (PDX) at SuperKEKB

Simulated Performance vs. SNR

300MHz ABW, 5.9GSa/s

IRS Input Coupling

- Input bandwidth depends on 2x terms

 f3dB[input] = [2*π*Z*C_{tot}]⁻¹
 - $f3dB[storage] = [2^*\pi^*R_{on}^*C_{store}]^{-1}$

Calibration and Sources of Timing Error

Contributions to timing resolution:

Voltage uncertainties

*Diagram, formulas from Stefan Ritt

Calibration and Sources of Timing Error

Time Difference Dependence on Signal-Noise Ratio (SNR)

$$\Delta u = 2mV$$
$$U = 1V$$
$$f_s = 26 \text{ GSPS}$$
$$f_{3dB} = 1.2\text{ GHz}$$

$$\frac{\Delta u}{U} \cdot \frac{1}{\sqrt{3f_s \cdot f_{3dB}}} \sim 200 \text{ fs}$$

Aperture stability is key

Space-Time relations

1ps = 300um (200um in stripline)

Space-Time correlation

Below 10um resolution, competetive & Prompt!

PSEC4: Sampling Analysis

Utilizing PSEC4's SCA as starting place -Adjustable Sampling rate between 4-15 GSPS -1.6 GHz bandwidth

Equivalent Circuit

Simulation Results: Bandwidth for worst case operating bias point

Whether the 1st switch is on or the last, Gain is the

Simulation Results: Group Delay

Group Delay does vary depending which switch is on by ~25ps which puts a constraint on sampling time window

Simulation Results: Phase

• At higher frequencies Phase vs freq behavior is also different and depends on which switch is on

Simulation Results: Capacitance

Capacitance is 2.2 pF and does not dependent on which switch is on

PSEC4 Analysis: Single Sampling Cell

PSEC4 Analysis: Single Sampling Cell

Structure & Layout

Top view

Side view

Sampling Capacitor Spread

 Num. of Samp.
 MEAN
 STD
 MIN
 MAX

 1000
 20.27 fF
 1.89 fF
 14.86 fF
 26.24 fF

Monte Carlo with process variation and mismatches shows a discrepancy between Csampling Schematic (13.5 fF) and Measured mean (20.27 fF).

The Spread is about 1.9fF which makes the Capacitor tolerance at about 9.3%

Frequency Analysis

Performance: S(Z)-parameter

The input impedance is high and it is capacitive.

Input coupling analysis

The transfer function parts:

- input parasitic capacitance of the transistor plus capacitance of the transmission line section.
- Series resistance of the transistor channel (Rds)
- Output capacitance which is formed of the parasitic capacitance of the transistor, sampling capacitor and load capacitance

Capacitance	Value [fF]
Cin_open	8fF
Csw_out	10fF
Csamp	20.3fF
Cload	13fF

Small signal phase analysis

Group Delay with the load

Large group delay variation points to large distortion

Large signal response (I)

 Full dynamic range at low frequency, compression appears when reaching the voltage threshold of the PN junctions at the drain/substrate barrier.

• Gain compression at lower and higher amplitudes

Large signal analysis (II)

High frequency gain compression & distortion

Three region of operation:

- Low distortion & High compression
- Moderate distortion & Moderate
- **High distortion & High**

Understanding signal response

Understanding signal response

Moderate distortion & Moderate compression

Resistance of the channel is varying

 The bandwidth at instantaneous values
 of the incident voltage waveform is
 different

-> In frequency domain this gives rise to higher harmonics, which interfere constructively hence increasing the overall signal amplitude but also increases distortion

Harmonic decomposition

- Constructive interference of odd harmonics and destructive interference of even harmonics at the peaks
- Constructive interference of second and third harmonics at zero crossing

Frequency domain decomposition

Noise and Distortion

• Noise dominated by the ON resistance of the channel

 Total noise is around 0.29mV ± 0.01 mV

Noise, distortion and dynamic range

Signal to Noise Ratio at full scale input (1Vpp)

• SNR is around 61.7dB ± 0.3 dB

Distortion analysis

• Most of the distortion comes from the Ron variation over the input voltage range

Transient Response

it vac voltage	Acquisition time	Setting time
)mV	0.14ns	0.11ns
)mV	0.68ns	0.11ns
)mV	0.52ns	0.11ns

- Worst case window time is 0.8ns or 1.25GHz -> due to low bandwidth
- Best case is 0.25ns or 4GHz

30

60

90

15% backlash at 30mV forward transient

18.6

18.8

19

Pedestal error due to charge ۰ injection and transistor mismatch dominate