XRM Readout Design Review

G. Varner August 27, 2015

SuperKEKB and BelleII

- Major upgrade of accelerator and detector for searches for physics "beyond the standard model"
- KEKB luminosity NOT limited by ability to squeeze beams, but by beam-beam interactions
- Real-time beam diagnostics are vital:
 - > Nanometer size beams drives x-ray monitoring
 - Infrared and optical synchrotron light not able to resolve true bunch size
 - Use technique developed for x-ray astronomy
 - Flexible operating modes [4x BX all the time, through full orbit logging (at ~200 Hz)]

Super

[Beam Channel]

constructed

Introduction: Measurement principles

- Coded Aperture Imaging:
 - Technique developed by x-ray astronomers using a mask to modulate incoming light. Resulting image must be deconvolved through mask response (including diffraction and spectral width) to reconstruct object.
 - Open aperture of 50% gives high flux throughput for bunch-bybunch measurements. Heat-sensitive and flux-limiting monochromator not needed.
 - We need such a wide aperture, wide spectrum technique for shot-byshot (single bunch, single turn) measurements.
- URA (Uniformly Redundant Array) mask
 - Pseudo-random pattern gives relatively flat spatial frequency response.
 - In noiseless, geometric limit, detector image can in principle be inverted directly to give source profile
 - Unfortunately, we don't operate in that limit.
 - Need something like recursive or template fitting.

E.E. Fenimore and T.M. Cannon, Appl. Optics, V17, No. 3, p. 337 (1978).

R.H. Dicke, Astrophys. Journ., 153, L101, (1968)

What the detector sees

intensitu

Normal ized

Source SR wavefront amplitudes:

K.J. Kim, AIP Conf. Proc. 184 (1989). J.D. Jackson, "Classical Electrodynamics," (Second Edition), John Wiley & Sons, New York (1975).

 $\eta = \frac{1}{2} \frac{\omega}{\omega_c} \left(1 + X^2 \right)^{3/2},$ •Kirchhoff integral over mask (+ detector response) \rightarrow Detected pattern: $A_{\sigma,\pi}(Detector) = \frac{iA_{\sigma,\pi}(Source)}{2} \times$ $\int_{mask} \frac{t(y_m)}{r_1 r_2} e^{i\frac{2\pi}{\lambda}(r_1+r_2)} \left(\frac{\cos\theta_1 + \cos\theta_2}{2}\right) dy_m$

where

Measured slow-scan detector image (red) at CesrTA, used to validate simulation (blue)

- $t(y_m)$ is complex transmission of mask element at y_m . Sum intensities of each polarization and wavelength component.
- Sum weighted set of detector images from point sources.
 - The source beam is considered to be a vertical distribution of point sources.

 $X = \gamma \psi$

- Can also be applied to sources with non-zero angular dispersion and longitudinal extent, for more ٠ accurate simulation of emittance and source-depth effects.
- For machines under consideration here these effects are small, so for computational speed we ٠ restrict ourselves to 1-D vertical distributions.

Single-shot resolution estimation

- Want to know, what is chance that a beam of a certain size is misfit as one of a different size?
- Tend to be photon statistics limited. (Thus coded aperture.)
- So:
 - Calculate simulated detector images for beams of different sizes
 - "Fit" images pairwise against each other:
 - One image represents true beam size, one the measured beam size
 - Calculate χ^2/ν residuals differences between images:
 - N = # pixels/channels n = # fit parameters (=1, normalization)
 - S_i = expected number of photons in channel i
 - Weighting function for channel i:

$$\frac{\chi^2}{\upsilon} = \frac{1}{N - n - 1} \sum_{i=1}^{N} \frac{[s'_i - s_i]^2}{\sigma_i^2},$$

$$\sigma_i = \sqrt{s_i}$$

– Value of χ^2/ν that corresponds to a confidence interval of 68% is chosen to represent the 1-s confidence interval

Resolution estimates at ATF2

Source of SR: BH3X

T. Mitsuhashi

ATF2 Beamline

- Extract x-rays from BH3X bend
 - Energy 1.3 Gev, bending radius 4.3 m
 - Critical energy: 1.12 keV
 - 1.5 m from source to CA mask, 9 m from mask to detector
 - Mask:
 - 10 μm 31-element (same as CesrTA)
 - 5 μ m 47-element (4 um Ta on ~2 um Ru/SiN/SiC membrane (NTT-AT))
 - Detector: 64-pixel Fermionics InGaAs array
 - Predicted flux at detector: ~250 photons/nC/bunch/50-um pixel

AIF2 x-ray beamline

47-element, 5 µm/element URA mask @ ATF2

Generate detector images for various beam sizes:

Resolution estimates: SuperKEKB

LER X-ray beam line

SuperKEKB HER X-ray beam

Design Idea

Xray Source Bend Par.	S-LER	S-HER (BS2E.82)	Units
ε _x	3.20E-09	4.60E-09	m
κ	0.27%	0.24%	
ε _v	8.64E-12	1.10E-11	m
β	50.0	11.5	m
σ,	20.8	11.3	μm
Beam Energy	4	7	GeV
Effective length	0.89	5.9	m
Bend angle	28.0	55.7	mrad
ρ	31.7	105.9	m
Critical Energy	4.4	7.1	keV

Coded Aperture Mask:

- In-hand :
 - High-power, 59-element, 10 μm/element URA
 - 10 μm Au mask on 625 μm Si substrate
- Under development:
 - 20 μm Au mask on 500 μm CVD diamond (monocrystalline) substrate
 - Substrates manufactured.
 - New pattern being designed for improved resolution (E. Mulyani)

Detector:

- 64-pixel (Phase 1), later 128-pixel, 50 μm pitch linear array
- InGaAs detectors in hand (same type as used at CesrTA)
- Deep Si detectors in development for better detection efficiency at high energy (SLAC)

59-element Uniformly Redundant Array mask pattern

Simulated detector response for various beam sizes at SuperKEKB LER

SuperKEKB Estimated single-shot resolutions (SuperKEKB full current)

Energy (keV)

Readout basis IRSX ASIC (PSEC upgrade?) • Baseline Belle II iTOP ASIC for production

- High-speed, lower power/EMI LVDS outputs for fast, asynchronous signals
- Extended dynamic range comparator
- Lower-power Gray Code Counter and internal DLL
- High-speed serial readout (many ASICs in parallel)

Interleaved Operation

Fig. 23. Example of 20GSa/s interleaved, single-shot waveform recording of a 400MHz sine wave signal on 8 LAB3 input channels, each plotted with a different color.

The large analog bandwidth recorder and digitizer with ordered readout (LABRADOR) ASIC G.S. Varner, L.L. Ruckman, (*et al.*), Nucl.Instrum.Meth. **A583** (2007) 447-460.

XRM Readout Action Items (besides mechanics)

- Amplifiers [Vihtori, Peter assist]
 - > Are existing, modular 20dB units adequate (noise, stability)
 - > Need to verify all channels, or design alternate

• Carrier/IRSX DC [Bronson, Gary, Luca]

- > Basic IRSX initialization, configuration
- > Fixed orbit sampling configuration
- > Selectable register data select

• SCROD Commissioning [Matt, Luca, James]

- SCROD Carrier gigabit communication
- > Variant of the iTOP boardstack control
- > PS data monitoring/distillation

• Timing control (XTD) [Khanh, Gary/Peter]

- > From RF 508.8MHz, Revolution, provide timing references
- Configurable to allow flexible offset (use for other detectors)

Back-up slides

Calibration and Sources of Timing Error

*Diagram, formulas from Stefan Ritt

Calibration and Sources of Timing Error

Time Difference Dependence on Signal-Noise Ratio (SNR)

$$\frac{\Delta u}{J} \cdot \frac{1}{\sqrt{3f_s \cdot f_{3dB}}} \sim 200 \text{ fs}$$

Aperture stability is key

Timing Uncertainties and Timing Calibration

- Time interval between delay line stages has intrinsic variation.
- Not accounting for this properly causes significant timing error

Nuclear Instruments and Methods in Physics Research A 629 (2011) 123–132

SLAC

Result: visually nicer waveforms

Time base non-uniformity...

If can correct, reduces processing time dramatically, as this is the most computationallyintensive aspect of "fast feature extraction"

