XRM Readout Upgrade

G. Varner July 2, 2014

Current Issues / Proposal

- Detector packaging, cabling, and configurable amplifier chain seems to be in reasonable shape (if a bit flying-lead)
- Readout Motherboard and clock distribution/triggering need serious restructuring
- Upgrade principles:
 - > New, independent timing input
 - ➢ IRSX ASIC with interleaved operation
 - Modularize readout into 64 channel unit (make 2x for 128 element detector)
 - Flexible operating modes [4x BX all the time, through full orbit logging (at ~200 Hz)]
- Upgraded back-end

Current System Overview

IRSX ASIC

• Baseline Belle II iTOP ASIC for production (~670 were fabricated in pre-production run [March 2014])

- High-speed, lower power/EMI LVDS outputs for fast, asynchronous signals
- Extended dynamic range comparator
- Lower-power Gray Code Counter and internal DLL
- Hardware timebase correction

Calibration and Sources of Timing Error

*Diagram, formulas from Stefan Ritt

Calibration and Sources of Timing Error

Time Difference Dependence on Signal-Noise Ratio (SNR)

$$\frac{\Delta u}{U} \cdot \frac{1}{\sqrt{3f_s \cdot f_{3dB}}} \sim 200 \text{ fs}$$

Aperture stability is key

Timing Uncertainties and Timing Calibration

- Time interval between delay line stages has intrinsic variation.
- Not accounting for this properly causes significant timing error

Nuclear Instruments and Methods in Physics Research A 629 (2011) 123–132

SLAC

Time base non-uniformity...

If can correct, reduces processing time dramatically, as this is the most computationallyintensive aspect of "fast feature extraction"

IRSX Improvements over IRS3C/STURM2

- 1. Improved Trigger Sensitivity*
- 2. Timebase Servo-locking
- 3. dT hardware adjust
- 4. Improved linearity/dynamic range
- 5. Improved Wilkinson ADC
- * (not relevant for XRM)
- = originally reported for TARGET7/X
- = demonstrated initially (TARGET7/X), detailed timing confirmed
- = IRS3D, LABRADOR4 also

Roughly Adjusted dT Sampling

Result: visually nicer waveforms

Interleaved Operation

Fig. 23. Example of 20GSa/s interleaved, single-shot waveform recording of a 400MHz sine wave signal on 8 LAB3 input channels, each plotted with a different color.

The large analog bandwidth recorder and digitizer with ordered readout (LABRADOR) ASIC G.S. Varner, L.L. Ruckman, (*et al.*), Nucl.Instrum.Meth. **A583** (2007) 447-460.

Precision timing distribution

- Belle II FTSW as model for programmable timing module to generate clean copy of SuperKEKB clock
- Bunch ID/revolution marker synchronization
- Use clock jitter cleaner for <1ps jitter

Micro-TCA

- Based upon advanced TeleCom standard, but a light version, preferred by particle physics community
- Designed for intensive signal processing/handling
- Engineered from the start for extremely high reliability and performance

2U height, 19" rack-mount (\$3,750)

mTCA Hub Controller (\$5,341)

CPU (Intex Xeon E3) (\$3,360)

- Final system specifications/configuration
 - > Becoming clearer
 - Leverage ASIC, FPGA/firmware development
 - > Upgrade back-end processing power

• Next actions:

- > Design and prototype Timing Distribution module
- > New IRSX daughtercard prototype
- > Start revised Motherboard design for SCROD Rev. B
- Track progress Jussi back next week
- <u>This is the system we plan to use for first phase of</u> <u>SuperKEKB operation (both Fermionics and new</u> <u>SLAC detector)</u>

Observed IRSX noise

Non-gaussian distributions expected for small noise amplitude due to non-linearity in Gray-code least count

Take away message: noise is comparable, or better than IRS3B/C, and acquired while sampling continues to run

Ongoing Evaluation Program

In a number of communities, a growing interest in detectors capable of operating at the pico-second resolution and μm spatial resolution limit (for light 1 ps = 300 μm)

Front-End Electronics

Detectors and readout with pico-second Timing and μm spatial resolution

