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Increased Speed:  3D silicon sensors; fast electronics – 1  
 

Abstract—Techniques to make fast, sub-nanosecond time resolution solid-state 
detector systems using sensors with 3D electrodes, current amplifiers, constant-fraction 
comparators or fast wave-form recorders, and some of the next steps to reach still faster 
results  are described.   

Index terms—solid-state detectors, silicon detectors, 3D sensors, short time 
resolution, fast pulses, speed. 

 

I  INTRODUCTION:  A BRIEF HISTORY OF SHORT TIMES 
Although reasonably fast readout electronics was available [1], in actual use, silicon 
radiation sensors, when originally introduced, were not particularly fast compared with 
contemporaneous detectors.  For example, for the silicon detectors used in the pioneering 
UA2 experiment at CERN, “the width of the shaped signal is 2 µs at half amplitude 
and 4 µs at the base” [2].  Individual sensor elements were generally relatively large, 
and so had high capacitance while the charge from them, about 15,000 – 25,000 electrons 
and with no amplifying elements in the sensors, meant the voltage signals were small.  So 
slow amplifiers, which integrated out a large part of the white noise generated at the 
input, were used. 

The development of microstrip sensors [3] greatly reduced the capacitance between the 
top and bottom electrodes, adding a smaller, but significant one between adjacent strips.  
The custom, 128-channel, VLSI readout chip [4, 5], developed for those microstrip 
detectors and which made their use practical for collider vertex detectors, had amplifiers 
with 20 – 25 ns rise times, set by the need to roll off amplification below the frequency 
where one half cycle was equal to the round trip time for the signal to go through the 
inverter and be fed back to the input.  (Otherwise the positive feedback would have 
produced a chip with 128 oscillators and no amplifiers.) 

The planned use of microstrip detector arrays at colliders with short inter-collision times 
required a further increase in speed.  Reference [6] describes a current amplifier with a 
rise-time of 4 ns and a pulse width at the base of 30 ns.  All of these early amplifiers were 
developed to read out planar sensors. 

Two developments now allow higher speeds in timing using silicon detector systems: 

• Silicon sensors with 3D electrodes penetrating through the silicon bulk [7 – 27] 
allow charge from long tracks to be collected in a rapid, high-current burst.  
Figure 1 shows a simplified view of such a sensor. 

• Continued developments in integrated circuit technology fabrication permit the 
design and fabrication of even higher speed current amplifiers [28, 29, 30].  They 
can produce large voltage signals from those high speed input currents.  Up to the 
sensor speed, such signals grow more rapidly than white noise with frequency. 

But first, we examine some sources of timing errors. 
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II. TIMING ERRORS 
Neglecting effects of radiation damage which 
will add additional items to the list below, the 
difference between the arrival time of an 
incoming particle and the value measured for 
that time can come from a number of sources. 

1. Variations in track location 

2. Variations in track direction – 1 and 
2 can affect the shape and timing of 
the detected pulse. 

3. Variations in total ionization signal 
– Depending on the electronics, this can affect the trigger time. 

4. Variations in ionization location along the track – Delta rays – high energy, 
but still generally non-relativistic, ionization (“knock-on”) electrons.  These tend 
to give an ever-larger signal when the Ramo weighting function [31 – 33] 
increases as they approach a planar detector electrode, with their current signal 
dropping to zero as they are collected. This produces a pulse with a leading edge 
that has changes of slope which vary from event to event, limiting the accuracy of 
getting a unique time from a specific signal amplitude for the track. 

5. Diffusion of charge carriers – This causes spreading in space and time of a 
signal charge.  

6. Magnetic field effects affecting charge collection – E × B forces may shift the 
collection paths. 

7. Measurement errors due to noise – This is currently the major error source. 
8. Incomplete use of, or gathering of, available information – This is a challenge 

mainly for the data acquisition electronics which, for high speed, will often have 
to face power and heat removal limitations.  This topic is not covered in this 
paper. 

9. In addition, long collection paths for thick planar sensors increase the time needed 
for readout and decrease the rate capabilities of the system. 

A sensor with parallel 3D electrodes made from trenches filled with doped 
polycrystalline silicon separated by 0.1 mm, and described in section VI, can be made to 
be insensitive to the errors 1 – 7 above.  In addition, one possible initial use would be 
timing of normally-incident particles with known locations and not in a magnetic field, 
making 1, 2 and 6 unimportant.  In the barrel layers of detectors with solenoidal magnetic 
fields 3D sensors will have parallel E and B fields or with E × B in the direction of the 
track, producing no change in the collection path, so again 6 is unimportant. 

However, additional discussion and calculations must be made for 3, 4, 5, and 7 –   
Landau fluctuations and the related delta rays, diffusion, and noise – to evaluate their 
effects. 

Figure 1.  Schematic diagram 
of a  3D active-edge sensor.
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III  DELTA RAYS 

To calculate the typical lateral delta range, we first calculate their production rate as a 
function of energy and initial angle [34], and then use Casino V2.42, a Monte Carlo 
program originally written for scanning electron microscopy, to see how the delta rays 
propagate [35]. 

1. Production rate.  Charge z = 1 incident particles of mass M and momentum Mβγc 
will produce delta rays of kinetic energy T, where T is both much larger than the target 
ionization energy and much less than the maximum value of 
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NA is Avogadro’s number, re is the classical radius of the electron, Z/A for silicon is 
0.498,  z and β refer to the incident particle and usually equal 1, while the spin-dependent 
term F(T) is also close to 1 for most cases we will encounter.  Integrating this from T=T1 
to T2 (with mec2 set at 511 KeV so all energies are in KeV) gives, for a silicon sensor 
thickness of s gm/cm2,  
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The sensors used to collect the data of section VII were 170 μm thick, so we will use that 
as an example, and given ρSi = 2.329, we have 

s = 0.0396 gm / cm2                                        (4) 

and the number of delta rays with T between T1 and T2 is 
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For either incident multi-GeV pions or for 5 TeV protons (β≈1, 15 < γ < 5000), Tmax can 
range from several hundred MeV to close to 5 TeV.  The total number of delta rays, is 
found by setting T2 = Tmax, a value far larger than the energies of the typical delta rays 
found in normal traversals, so the second term can be neglected.  This gives a 10% 
probability for making a delta ray of 30 KeV or above.   
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The delta ray energy deposition will also depend on the location and thickness of material 
ahead of the sensor and of escape from the back side, but as will be seen, most delta rays 
have ranges small compared to the sensor thickness and so this will not be a large effect. 

2. dE/dx  It may be useful to compare these energies with 

dE/dxmin = 1664 KeV per gm / cm2 for silicon, 

which will give a mean total energy loss of  

ΔT = 2.329 x 0.017 x 1664 = 65.88 KeV, 

using the thickness of the sensors that gave the data shown in the last part of this paper. 

3. Production angle, θ:  The production angle can be found for an electron of kinetic 
energy T, and corresponding momentum p, maximum momentum pmax and maximum 
kinetic energy Tmax  from: 
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Cos θ is close to 1 (forward) for relativistic (large γ) delta rays since both T/pc terms are 
close to 1: 

( ) ( )
( ) ( ) 1

1
1

1
1

1
/11

11

2
1

2
122/12

2

2

max

max ≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

=
−
−

=
−

−
=

−
=

−
=

γ
γ

γ
γ

γ
γγ

γ
βγ

γ
βγ

mc
mc

T
cp

   (7) 

However, for low kinetic energy ( γ « 1 ), 

 T/pc = (½ mv2) / mvc = v / 2c ≈ 0    (8) 

The cos θ term is the product of a term near one and another near zero, so the production 
angle is large.  Specifically, starting with the very probable T = 3 KeV, and continuing 
with the increasingly less probable T = 10, 30, and 60 KeV, the angles are 86°, 84°, 80°, 
and 76°. 
4. Range:  At the energies common in silicon sensors, virtually all the delta ray tracks 
scatter to large angles.  Typical paths and energy deposition for them given by Casino are 
shown in Figures 2 – 7.  As can be seen in Figure 2, the common 3 KeV delta rays, with 
typical ranges of 0.1 µm leave their ionization so close to the track that they do not 
influence the timing for tracks parallel to the electrodes of 3D sensors. 

10 KeV delta rays (see Figure 3) have typical ranges of 0.5 μm, and will be oriented to 
lead the rest of the track about ¼ of the 30% of the time they or higher energy delta rays 
are present.  With typical electron drift velocities of about 5 x 106 cm / sec, the leading 
edge of the delta ray could reach an n electrode up to 10 ps ahead of the main track, and 
could slightly affect the timing.  But with typical deposition energies for the entire track 
of 60 – 80 KeV (see section 2 above) and typical signal-to-noise ratios of 15 to 1 or 
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better, 10 KeV is at the start of the range where the presence of such delta rays should be 
identifiable.   

A multiple-plane detector then would not only provide improved statistical accuracy, but 
could alter the weighting of the 5 – 10% of events with high-energy delta rays.  The most 
accurate detectors – ones using fast waveform recorders – could discard data from tracks 
made near collecting electrodes.  The other delta ray events, with extra ionization, and so 
increased signal to noise ratio will give the most accurate results as noise is, at the present 
time, the most important source of error.  This will be covered in section VIII. 

Continuing up the energy scale, 30 KeV delta rays (see Figure 4) have typical ranges of 
several microns and would affect timing, but can be identified by the large increase in 
pulse height, which will place them in the Landau tail. 

 

 

Figure 2.  200 3-KeV delta rays.  Red lines
trace paths of backscattered tracks.  The
arrow is 0.1 µm long. 

Figure 3.  200 10-KeV delta rays.  Red lines
trace paths of backscattered tracks.  The
arrow is 1 µm long. 

Figure 4.  200 30-KeV delta rays.  Red lines
trace paths of backscattered tracks.  The
arrow is 5 µm long. 

Figure 5.  200 60-KeV delta rays.  Red 
lines trace paths of backscattered tracks. 
The arrow is 15 µm long. 
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IV  DIFFUSION 

As any charge travels to an electrode, it diffuses around the point on the path it would 
otherwise follow having a Gaussian distribution with 

v
sDDt 22 ==σ                                             (9) 

where D is the diffusion constant, often given as 35 cm2/s for electrons and 12 cm2/s for 
holes, and s is the drift distance and v the velocity.  This will cause a spread in arrival 
times of  

32
v
sDt =σ                                                      (10) 

However, D can vary, depending on the value of the electric field, E, the temperature, the 
direction – parallel or perpendicular – to E, and to a small extent, neglected here, to the 
direction of the crystal axis  [36, 37].   

 

V.  SPEED AND TRIGGERS FROM RANDOM NOISE  
It is often assumed that limiting the band width will reduce noise, and so reduce false 
triggers from noise.  However, the fast intrinsic pulse times, τdet, can, with well-designed 
current amplifiers, produce high signal-to-noise ratios, as the signal current is 
proportional to the detector speed while, for instance, noise across a resistance such as a 
transistor channel only grows as the square root of the frequency spread.  So increasing 
the speed of an amplifier up to the highest predominant speeds of the sensor can 
then improve the performance of a current-amplifier based circuit. 

Figure 6.  200 30-KeV delta rays, energy
deposition. The 50% containment contour
goes to a depth of 2.0 μm with a maximum
full width of 0.8 μm.  The 75% contour
goes to a depth of 4.3 μm with a maximum
full width of 2.7 μm.  The arrow is 5 μm
long. 

Figure 7.  200 60-KeV delta rays, energy
deposition.  The 50% containment contour
goes to a depth of 8.0 μm with a maximum
full width of 2.0 μm.  The 75% contour goes
to a depth of 13.5 μm with a maximum full
width of 7.3 μm.  The arrow is 15 μm long. 
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One example, useful for studying the rate of false noise triggers, is the number of 
traversals per second, n, of a Gaussian noise current In with a positive slope past a 
threshold level [38] as sketched in Figure 8. 
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For a filter, p(ν) dν , that is flat 
from ν1 to ν2, and with 
(typically) ν2 >> ν1, we have: 
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It can be set equal to a fraction a1 of detI , the average value of the signal pulse current. 
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detν  

Here q is the total charge, τ det is the pulse duration, and ν det is 1 / τ det.  The constants a1 
and a2 are independent, to first order, of ν.  White noise currents in electronics capable of 
matching detector speeds will have νh ≈ νdet and 
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(For a resistor, a3 would equal 4KT/R.)  The threshold level squared can be increased in 
proportion to the detector speed squared, giving a near-exponential drop in noise counts 
that is proportional to the detector speed. 
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A simple integrator will not benefit from this speed.  The circuit must respond only 
to rapid changes in voltage on an integrating capacitor or to high instantaneous 
currents in a resistive circuit. 

VI  REDUCING TIMING ERRORS 
At some level, systems can be chosen that will permit corrections to the effects listed 
above.  Multiple layers can provide the track information for 1, 2, 3 and 7 in Section II 

time 

It
In

trigger points 
0

Figure 8.  Sketch of a pulse and its trigger points
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and increased statistics to make 6 less important.  Low temperatures will decrease noise 
and increase circuit speeds. 

For several reasons, 3D sensor signals can be intrinsically faster than planar ones: 

• The 3D electrode spacing can be less than the wafer thickness, so carrier drift 
distances are shorter. 

• Depletion voltages are low so the use of over-voltage means that collection fields can 
be more uniform and uniformly high. 

• In addition, in 3D, the field lines end on surfaces which normally have more area than 
corresponding planar electrodes, so the ratio of the average drift fields to the peak 
field can be larger for 3D sensors.  (There is a price for this:  increased electrode 
capacitance.) 

• Delta-ray ionization along the track arrives sequentially in planar sensors, adding 
slope changes to the pulse, while for tracks parallel to 3D electrodes, arrives nearly 
simultaneously, modified mainly by the delta ray ranges and by diffusion of the 
ionization (about 1 μm in the first ns and growing as the square root of time). 

• These delta rays arrive late. Normally this part of the pulse would not be used in 
timing as the shape varies when either the electron or hole collection ends. 

• Common, low energy delta rays, with a range short compared to the gap, are collected 
within a few picoseconds.  Higher energy ones are rare and recognizable. 

• Both types of 3D electrodes can be contacted on a single surface, so if capacitative 
readout for at least one type of electrode can be used, recording pulses from both the 
n+ and p+ electrodes may improve both time and spatial resolution.  The same charge 
signal goes to spatially separated electrodes, providing additional track information 
and can improve the signal to noise ratio, giving better timing. 

• Solenoidal magnetic fields in 3D barrel-layer (but not end-cap) sensors at most just 
shift the ionization column along its own length and to first order, have no effect on 
timing.   

Trench (or “wall”) electrodes (See Figures 9 and 10) provide additional advantages, 
particularly for tracks that are not close to electrodes or their subdivisions.  A section 
having two facing 100 μm gaps with a common electrode and a 250 μm thickness (in the 
track direction) will have a capacitance of 0.527 Pf per mm of width. 

• There are no repeating null-field points.  

• They have a particularly high average field / peak field ratio.  

• Far enough away from pixel boundaries, the Ramo weighting field will be constant.  

• Larger gaps will lower the capacitance, improving the signal-to-noise ratio, and 
reduce the fraction of tracks crossing close to an electrode where analysis is more 
difficult.  But they will require higher bias voltages and will have a longer clearing 
time. 
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• If the bias electrodes are also instrumented, they will have the same magnitude, but 
opposite sense, current signal.  The bias electrodes can then have pixel boundaries at 
the mid-points of the signal electrodes, roughly doubling the spatial resolution in the 
vertical direction in Figure 9, and always providing a constant Ramo field on at least 
one electrode plane. 

• For moderate to high bias voltage levels (~ 50 V) and low dopant levels (~ 5 ｘ1011 / 
cm3) the depletion voltage of ~ 2 V will introduce only a small change in the constant 
charge-carrier drift velocity.  After irradiation, the electric field will not be uniform, 
but the velocity will be faster as the bias voltage can normally be raised, and at high-
field values and velocity saturation, will again be nearly constant. 

• The wall-to-wall pitch will normally be large compared to most all delta ray lateral 
ranges, so the ionization columns will move without shape changes, other than those 
due to diffusion, for all but a small subset of tracks crossing close to an electrode. 

• There will be a varying delay, normally under a picosecond, given that the index of 
refraction of silicon is only 3.95, for the electromagnetic pulse from the separating 
holes and electrons to travel to the electrodes.   

• Beyond that delay, the time, shape, and magnitude of the leading edge of the 
pulse will depend mainly on the time of the track traversal, on the local drift 
velocity, and on the track location for tracks near pixel boundaries.  Figure 11 
shows an idealized diagram of this expected induced current shape. 

• With a known sensor signal input shape for tracks that are distant from pixel 
boundaries, use of a waveform recorder as an electronics input device – if they 

Figure 10.  3D trench-electrode sensor.

next section 
offset so signal 
electrodes do 

not line up 

signal electrodes with 
contact pads to readout 

beam in 

200 – 
300 µm 

active 
edge 

Figure 9.  Schematic diagram of part of
one section of two of the planes in an 
active-edge 3D trench-electrode detector.
Other offsets (⅓, ⅔, 0, ⅓, ⅔ ..etc.) may
also be used. 
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can be made to fit in the area of one pixel – would provide a powerful tool.  The 
time delay so this most closely matches the experimental waveform would 
provide a time measurement with reduced sensitivity to small-scale noise 
fluctuations. 

• The dominant remaining source of error is noise.  The next section describes 
example of the improvement from the use of a waveform tracer and sample 
measurements of the size of this source of error.  

 
Table 1 gives the maximum electron and hole drift times for the 0.1 mm gap for tracks 
near one or the other trench electrode.  It also gives the room temperature arrival time 
spread caused by diffusion – about 2% to 5% of the corresponding drift times.  Even this 

 electrons holes units 

temperature 293.15 245 293.15 245 °K 

vm 10.92 12.85 8.446 9.308 106 cm/s 

Ec 6734.6 5040.0 17303 12638 V/cm 

β 1.9197 0.9652 1.2083 1.1705  

Vd (E = 0.2 V / µm) 2.6143 4.0  0.92035 1.41 106 cm/s 

Vd (E = 0.5 V / µm) 4.9286 7.0  2.0657 2.22 106 cm/s 

Vd (E = 1.0 V / µm) 6.9072 8.8  3.4598 4.62 106 cm/s 

Dparallel, 0.2 V / µm) 32  12.3  cm2 / s 

Dparallel, 0.5 V / µm) 21  10.7  cm2 / s 

Dparallel, 1.0 V / µm) 13.5  7.36  cm2 / s 

t (E = 0.2 V / µm) 3.83 2.83 10.9 7.57 ns 

σt, parallel diffusion 0.19  0.56  ns 

t (E = 0.5 V / µm) 2.03 1.61 4.84 3.53 ns 

σt, parallel diffusion 0.059  0.16  ns 

t (E = 1.0 V / µm) 1.45 1.21 2.89 2.22 ns 

σt, parallel diffusion 0.029  0.06  ns 

max δ-ray collection times      

3 KeV   (1 V / µm) 1.9 1.5 3.8 2.8 ps 

10 KeV   (1 V / µm) 14 11 29 22 ps 

30 KeV   (1 V / µm) 101 80 202 152 ps 

60 KeV   (1 V / µm) 362 284 723 541 ps 

Table 1.  Velocities, diffusion, and collection times for a 0.1 mm parallel-plate trench 
electrode gap. 
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small value should not significantly increase timing errors, as unlike delta rays, which 
may or may not be present, the particle statistics shaping this leading edge are high. 

 

 

 

time 

Induced 
Current 

electrons 

holes 

100 μm 

n electrode 

p electrode 

Figure 11.  Schematic diagram of induced
currents from a track in a parallel-plate
trench-electrode sensor.  It is assumed the
track is parallel to the plates, and the
electron and hole drift velocities are
constant with a 3 to 1 ratio.  The plane of
the bottom diagram is perpendicular to the
track and ion columns. 

Figure 12.  3D hexagon-cell active edge 
sensor tiled with 16 columns, each with 
20 hexagons with sides of 50 µm
connected to the 16 pads at the bottom.

Figure 13.  Magnified view of the top 
corner of the hexagon sensor. 

43

Figure 14.  Output pad end of 3D 
active-edge hexagon sensor. 
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VII  NOISE AND TIME RESOLUTION 

We did not have a large enough trench-electrode sensor for use with our 90Sr beta source, 
so have started with a 170-micron thick 3D active-edge sensor having: 

• hexagonal cells with each hexagon side 50 μm in length, 

• with 20V bias at room temperature, 

• arranged with 16 sets of 20 hexagons with ganged central electrodes, 

• with each of the 16 columns going to one channel of a fast 0.13μm-technology VLSI 
current-amplifier chip developed by M. Despiesse, G. Anelli, P. Jarron, et al. 

• exposed to un-collimated 90Sr betas.  Three adjacent channels were sent to 

• an Agilent 54832B 1 GHz oscilloscope which displayed each at 16 x 109 8-bit 
samples per second, with 

• the oscilloscope triggered by the signal on the central channel. 

Figure 12 shows a view of the entire sensor.  Figure 13 shows a corner and end of one 
sensor away from the wire bond end, and Figure 14 shows some of the wire bond pads 
along the bottom.  One hundred events were taken, with one being inadvertently stored 
twice, providing 99 for study.  Each event stored 3 x 800 3-digit pulse heights separated 
by 62.5 ps, so covering a time-span of 50ns. 

For several reasons, this sensor will not provide the fastest available speeds: 

• With 20 ganged cells, the capacitance is on the high side by pixel standards. 

• The bias voltage used was well below the maximum possible. 

• The operating temperature, 20°C, is higher than the expected -20°C or lower for 
operation at the LHC, resulting in lower drift velocities and a slower readout circuit. 

In addition, angled tracks that stayed in one channel’s electrodes and did not deposit 
ionization in the two adjacent channels may have a different collection-time behavior 
from that of normally-incident beam particles. 

Figures 15 and 16 show typical events with pulses in more than one channel.  67 events 
had a pulse in only one channel.  One of them, the 50th to trigger, with a normal shape, 
had a second pulse in a neighboring channel, but delayed by 4 ns and with a shape that 
differs from that of the other events.  It may have been a combination of noise and the 
induced signal seen on the green trace in Figure 17.  The first, middle, and last of the 67 
events are shown in Figures 17, 18, and 19. 

Figure 20 shows the event with the lowest pulse height of the 67.   

The noise was measured from the differences between each of the leading 270 points and 
the 270-point base line average for the time before each of the 67 pulses.  Figures 21 
(linear scale for best view of the peak) and 22 (logarithmic, with doubled bin size to 
improve statistics, for the tails) show the distribution which is Gaussian with no visible 
tails.  The σnoise for the linear plot is 0.332 mV, for the log plot is 0.333 mV, and for the 
67 x 270 = 18,090 points directly, is 0.322 mV.  Changing the bin size to 0.05 mV in the 
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log plot (not shown) changes the σ from 0.333 mV to 0.322 mV.  The differences 
between these values are small and within the expected statistical errors.  The distribution 
of these base line averages is shown in Figure 23.     

While Gaussian, the noise is not white, due to frequency limitations of the amplifier.  The 
Fourier transform of the noise is shown in Figure 24.  The distribution peaks at 62.5 
MHz, drops to 30% of the peak at 200 MHz and to nearly to zero at 600 MHz, 
corresponding to cycle times of 16 ns, 5 ns, and 1.6 ns.  These are comparable to time 
durations for base line full-widths of the 3D sensors: 5 – 9 ns. Both are limited by the 
frequency response of the amplifier although the noise does have some low-amplitude 
pulses of somewhat higher frequency. 
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Figure 16.  A second event with tracks
in two adjacent columns of pixels.
The data for all figures were taken at
20° C.  The underlying points in all
traces were separated by 62.5 ps. 

Figure 15.  A track in the trigger (red
trace) column and one neighboring
column (blue trace) of sensors and an 
induced pulse (green) in the other
adjacent neighbor. 
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Figure 18.  The middle event. 
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We can now calculate the expected noise-induced error: 

1. remove events with pulses in either of the neighboring channels 

2. average the first 270 points to find the base line level 

3. find the peak height (with our negative pulses, the lowest value) 

4. find the points closest to 50%, where the slope is greatest, and from them 
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Figure 19.  Event 99, the last event.
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Figure 20.  The single-column event 
with the lowest peak amplitude. 
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5. calculate the slope, s = {V(t+) – V(t - )}/ (t+ - t-) 

6. calculate the noise-induced expected timing error dt = σnoise / s.  

Figure 25 shows a scatter plot of σnoise vs. pulse height and on the top and right-side axes, 
the projected distributions of each.  The median and average dt values are 129 and 155 ps 
and, as expected, there is a clear pulse-height dependence. 

 

VIII  THE WORST PULSE AND WHAT TO DO ABOUT IT 
Figure 26 shows the pulse with the largest expected timing error.  The pulse is small, and 
the phase of the noise has reduced the slope at the 50% point used here to simulate a 
constant fraction discriminator set for what is normally the steepest part of the rise.  In 
addition, the limited frequency ranges of both the noise and signal suggest the possibility 
of a correlated effect where the noise, for example, increases the peak pulse height and 
also partially increases the pulse amplitude at the 50% point, decreasing the error.  A 
different phase could increase the error beyond the value calculated in 1-6 above.   

To investigate these possibilities and test a method less sensitive to such effects, two 
additional methods were tried, both of which used data to provide almost pure noise and 
almost pure noise-free pulses.  Steps 1 – 5 are the same for both. 

1. An approximately noise-free signal pulse shape was found by adding the six 
pulses above 10 mV, which are already relatively noise-free.  To allow for the 
slight trigger-time variations, the individual curves were shifted by amounts of up 
to ± 0.25 ns to align the peaks.  The noise, being random, tended to cancel as can 
be seen in Figure 27, showing the entire sum pulse and Figure 28, showing with 
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an expanded scale, the leading edge.  This cancellation can also be seen in Figure 
29, which shows a pulse from a pulse generator set to have a rise time of 800 ps, 
and also the sum of 5 such pulses.   

2. A set of noise sequences was prepared by subtracting the average of each 270-
point pre-pulse base line from the 270 points to remove common-mode signals 
from each of the 67 traces. 

3. The 67 baselines were subdivided into 67 x 3 = 201 sets of 90 points each, 
covering (90 / 16) ns, a time longer than the pulse-sections used (the rise once 
above the noise-level, the top, and the first part of the trailing edge.) 

4. The stored signal pulse amplitudes were multiplied by a fraction to reduce them to 
the average height of groups of the 67 signals, from the 6 in the smallest pulse 
height group (2.7483 mV for 2.58 to 2.99 mV), …(3.8517 mV for the 6 from 3.64 
to 4.03 mV) and with smaller-sized groups in the Landau tail up to the largest 
signal, 14.9 mV. 

5. The first noise sequence was added, point-by-point, to each signal. 

6. Interpolating, the time of the 50% level-crossing was found for each. 

7. This was repeated for the rest of the 67 x 3 noise sets for all signal heights. 

8. The dtnoise for each signal size was found from the rms variation about the mean of 
the 201 50% crossing times and is given in Figure 30. 

This method will be sensitive to the sort of random noise fluctuations seen in Figure 26.  
Finally a pulse fitting method was used.  This avoided use of low-level parts of the 
signals where noise was most important, and of signals toward the end where the hole-
collection bulge could cause variation.  So the digital pulse shape that was added to the 
repeated noise sequences ran from data point 10 (0.5625 ns) to 76 (4.6875 ns) and the 
fitted function, which was going to be shifted back and forth in steps of 62.5 ps to find 
the best fit ran from points 20 to 61.  In detail: 

6. The peak of the digital pulse plus noise in step 5 above was used to adjust the 
peak height of the pulse to be fitted, and proportionately, all of the other points.  
So all of these points will be off by a common but realistic error factor.  Since the 
same function is used for both pulses, errors from track angle variations will not 
be present, but they will also not be present in the first likely use which will 
employ high-energy, normal tracks. 

7. The fitted track amplitudes were subtracted, point-by-point from the signal plus 
noise. 

8. The standard deviation of these differences was calculated. 

9. Steps 7 and 8 were repeated with the fitted set shifted one point (62.5 ps) later. 

10. Steps 7–9 were repeated with the 20-61 fit range shifted from one end of the 
underlying signal plus noise range 10-76 to the other, for a total of 26 trial fits.. 

11. The minimum standard deviation of the 26 was found. 
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12. A parabola was fit to that minimum value and the two values on each side.  The 
minimum location will be used to interpolate between the steps.  A parabola with 
(x,y) points -x, 0, x and y1, y2, y3  ( x = 62.5 ps ) has a minimum at: 

; x0 = (x / 2)(y1 - y3) / (y1 – 2 y2 + y3) 

14. The standard deviation of these 201 interpolated parabola minima was found and 
is plotted in Figure 30. 
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We can learn a bit more comparing Figures 27 and Figure 29, which shows a pulse from 
a pulse generator set to have a rise time of 800 ps, and also shows the sum of 5 such 
pulses.  The pulse generator output shown on the oscilloscope has a rise time of 1.5 ns, 
only slightly faster than the 1.6 ns of the Sr-90 pulses.  This suggests that the Sr-90 pulses 
output from the 3D sensors may have rise times significantly faster than the observed 1.6 
ns.   

Figure 27.  The sum of the
6 largest pulses giving an
approximately noise-free
shape, as the noise starts
relatively small compared
to each pulse and is then
partially cancelled.  The
full width at half max is
3.0 ns, and is 8.3 ns at the
base. 
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Figure 26.  The single-column
event with the largest expected
timing error in the central scatter
plot of Figure 25. 

Figure 28.  The leading edge of 
the pulse in Figure 27. 
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The several ns wide bulge starting at 20% to 40% of the peak height on the trailing edges 
of the pulses in Figures 17, 18, and 19 shows up quite clearly in Figure 27, is 
presumably due to the slower hole collection, and is not present in Figure 29, which 
shows pulse-generator pulses.  The decrease of noise in Figure 27 also shows up in 
Figure 29 and the capacitative coupling of the pulse to the neighboring channels, which 
is visible in some of the earlier figures, is quite clear here. 

The variation of the timing error with pulse height and signal-to-noise ratio in Figure 30 
is striking.  The least-squares fit to a power-law of the time resolution, dt, vs. V, the pulse 
height, for the constant 50%-fraction method gives: 

dt cf = 581.4 / V 0.9971 , R = 0.9993  

where dt is in ps, V is in mV, and R is the Pearson correlation coefficient.  

For the fitting method: 

dt fit = 485.3 / V 1.0171 , R = 0.99995 

The mean value of the 201 values at each pulse height is 

dt mean = 115.2 / V 0.98655 , R = 0.99999. 

The dt from the constant fraction-50% method is about 20% - 23% larger than from the 
fitting method, reflecting the fact that the fitting method is not thrown off by a noise 
fluctuation at just one specific region (the pulse half-height in this case.)  However, the 
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trailing edge, indicating again the tail on the sensor pulses is not electronic in origin,
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fitting method, using a more central 52, rather than the 67 signal points above, had errors 
that were several percent greater than the 50% constant fraction method. 

The exponents are within 2% of a 45º slope, giving dt ≈ const. / V.  This could be used 
when signals from multiple, sequential sensors are available, to give more weight to the 
low-noise-error, large pulses (from delta rays), so long as (1) the track is not one of the 
few that are very close to an electrode and (2) the last part of the pulse is not used for the 
fit – places where delta rays could cause pulse-shape errors.  (These requirements are 
generally never satisfied by planar sensors.) 

 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mean of the 201 standard deviations at each pulse height, while very small, in 
general would be expected to fluctuate above and below zero, rather that be consistently 
skewed toward later times as in Figure 30.  This is due, in the parabolic interpolation of 
step 12 above, to (1) the use of more points ahead of the peak than after (to avoid the 
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point on the leading edge (Δ) and from the time variation
of the best fit time of the combined signal pulse shape to
the same shape plus noise (●).  The mean value of the
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need to simulate the fitting of hole tails such as the one seen in Figure 27), and (2) the 
more gentle slope after the peak.  This combination causes a shift of the fitting pulse from 
the optimum time to one step early to tend to produce a larger error than from one step 
late, and the parabola responds by generally picking later times.  Figure 31 shows 
examples of such skewed distributions, one for a small pulse and one for a larger one. 

  

While the fitting method could be adjusted for this effect, it would be an artificial one.  
After all, this data is just for a preliminary trial, to examine the effects of noise.  The 
measurements used  

• a large-capacitance sensor 

• a beta source with the only collimation being the absence of a pulse in adjacent 
channels  

• and employed no real knowledge of the track location.  

It would be best to combine timing with tracking, predict the expected pulse shape, 
including the hole tail and fit the entire pulse.  And this brings us to: 

IX.  NEXT 

Before examining improvements to silicon technology we should examine the possibility 
of using diamond sensors.  They could provide a modest improvement in performance. 

One figure of merit is the charge generated per unit track length times the saturation 
velocity which gives the input current.  Silicon, with more charge but a lower saturation 
velocity provides a net 35% more current for equal track lengths.   
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If noise is a limiting factor, and the signal size is proportional to q times vsat divided by 
the sensor capacitance, C, for equal sizes, diamond becomes better by 57%.  This would 
be reduced by the contribution of connection and circuit input capacitance.  The net result 
could be a useful but limited advantage given the smaller industrial base for diamond, the 
greater cost, and other possible difficulties such as ones that might arise from the more 
than factor of two difference in coefficients of thermal expansion with a diamond pixel 
sensor and its readout chip.  The improvements below apply the both silicon and to 
diamond. 

There are many potential sources of major gains which are partially listed below.  None 
of them have been used in this paper other than the intrinsic speed of 3D sensors, the fast 
current amplifier, and use of a waveform recorder (the oscilloscope).  One item below, 
lowering capacitance by increasing the electrode separation of adjacent channels, will 
decrease the ratio of drift over peak electric fields and the constancy of the Ramo 
weighting field.  Most of the others can be used simultaneously, given the conditions 
listed for each:  

• reducing as far as practicable, the sensor capacitance, 

• operation at reduced temperatures, with less noise and doubled speeds [29], 

• use of an amplifier with the lowest possible noise, given the available space, heat 
removal capabilities, and speed requirements, 

• use of higher electric fields giving drift velocities close to saturation values, 

• use of trench-electrode sensors such as shown in Figures 9 and 10, 

• use of waveform recorders if a channel can fit within the area of a pixel.  Only the 
above-noise part of the signal is needed.  One possibility is to determine the 
baseline by keeping track of its average as a single, updated number in storage. 

• use of multiple timing layers of detectors, if allowed by Coulomb scattering, 
space, and cost considerations – some possibly rotated to help with tracking,  

• use of a weighting factor, as suggested in section VIII, to favor layers having high 
signal-to-noise ratios,  

• and, with similar limitations, use of high-resolution position-tracking layers  (The 
most accurate timing will be done by a system, not by one sensor – readout 
unit.). 

 
 

References 
 
[1] Heijne, Erik, “Muon flux measurement with silicon detectors in the CERN 

neutrino beams” CERN-83-06, p. 18, 1983. 
(2]  K. Borer, A.G. Clark, R. Engelmann, 0. Gildemeister, C. Gössling, E. H. M. Heijne, 

P. Jarron, B. Lisowski, T. Pal, M. A. Parker and N. Redaelli, ”Construction and 
performance of a 1m2 silicon detector in UA2”, Nucl.Instr.and Meth. A 253 (1987) 
548-557. 



 23

[3] J. England, B. Hyams, L. Hubbeling, J. Vermeulen, P. Weilhammer,  “Capacitative 
charge division read-out with a silicon strip detector”, Nucl. Instr. Meth. 185 (1981) 
43-47. 

[4] J. Walker, S. I. Parker, B. Hyams, S. Shapiro, “Development of high density readout 
for silicon strip detectors”, Nucl. Instr. and Meth. 226 (1984) 200-203. 

[5] 13. C. Adolphsen, A. Litke, A. Schwarz, M. Turala, G. Anzivino, R. Horisberger, L. 
Hubbeling, B. Hyams, A. Breakstone, R. Cence, S. I. Parker, J. Walker, “Initial beam 
test results from a silicon-strip detector with VLSI readout”,  IEEE Trans. on Nucl. 
Sci., 33 (1986) 57-59. 

[6] R. Sonnenblick, et al., “Electrostatic simulations for the design of silicon strip 
detectors and front-end electronics”, Nucl. Instr. and Meth. A 310 (1991) 189. 

[7] S. I. Parker, C. J. Kenney, and J. Segal, “3D--A proposed new architecture for solid-
state radiation detectors”, Nucl. Instr. Meth, A395 (1997) 328-343. 

[8] C. Kenney, S. Parker, J. Segal, and C. Storment, "Comparison of 3D and planar 
silicon detectors", Proceedings of the 9th meeting of the Division of Particles and 
Fields of the American Physical Society, Minneapolis, MN, 11-15 Aug 1996, World 
Scientific, 1998, V2, p1342-1345. 

[9] C. Kenney, S. Parker, J. Segal, and C. Storment, “Silicon detectors with 3-D electrode 
arrays:  fabrication and initial test results”, IEEE Trans. Nucl. Sci. 46 (1999) 1224 – 
1236. 

[10] C. Kenney, S. Parker, B. Krieger, B. Ludewigt, T. Dubbs, and H. Sadrozinski, 
“Observation of Beta and X Rays with 3D-Architecture, Silicon Micro-Strip 
Sensors”, IEEE Trans. Nucl. Sci, 48 (2001) 189 – 193. 

[11] Sherwood I. Parker and Christopher J. Kenney, “Performance of 3-D architecture, 
silicon sensors after intense proton irradiation”, IEEE Trans. Nucl. Sci., 48 (Oct. 
2001) 1629 - 1638. 

[12] C. J. Kenney, S. I. Parker, and E. Walckiers, “Results from 3D sensors with wall 
electrodes:  near-cell-edge sensitivity measurements as a preview of active-edge 
sensors”, IEEE Trans. Nucl. Sci, 48 (2001) 2405 – 2410. 

[13] J. Morse, C. Kenney, E. Westbrook, I. Naday, Sherwood Parker, “3dx: 
micromachined silicon crystallographic x-ray detector”, Proc. SPIE 4784 (2002) 
365-374. 

[14] C. Da Via, “Radiation hard silicon detectors lead the way”, CERN Courier, 43 (Jan. 
2003) 23 – 26. 

[15] C. Da Via, G. Anelli, J. Hasi, P. Jarron, C. Kenney, A. Kok, Sherwood Parker, E. 
Perozziello, S. J. Watts, “Advances in silicon detectors for particle tracking in 
extreme radiation environments”, Nucl. Instr. Meth. A 509 (2003) 86-91. 

[16] J. Morse, C. Kenney, E. Westbrook, I. Naday, S. Parker, “The spatial and energy 
response of a 3d architecture silicon detector measured with a synchrotron X-ray 
microbeam”, Nucl. Instr. Meth., A 524 (2004) 236-244.  



 24

[17] C. Da Via, J. Hasi, C. Kenney, A. Kok and S. Parker, “3D silicon detectors - status 
and applications”, Nucl. Instr. Meth, A549 (2005) 122-125. 

[18] A. Kok, G. Anelli, C. Da Via, J. Hasi, P. Jarron, C. Kenney, J. Morse, Sherwood 
Parker, J. Segal, S. Watts and E. Westbrook, “3D detectors - state of the art”, Nucl. 
Instr. Meth. A560 (2006) 127-130. 

[19] C. J. Kenney, J. D. Segal, E. Westbrook, Sherwood. Parker, J. Hasi, C. Da Via, S. 
Watts, J. Morse, “Active-edge planar radiation sensors”, Nucl. Instr. Meth, A565 
(2006) 272-277. 

[20] S. Parker, C. J. Kenney, D. Gnani, A. C. Thompson, E. Mandelli, G. Meddeler, J. 
Hasi, J. Morse, E. M. Westbrook, “3DX: an X-ray pixel array detector with active 
edges”, IEEE Trans. Nucl. Sci., 53 (2006) 1676-1688. 

[21] C.J. Kenney, J. Hasi, Sherwood Parker, A. C. Thompson, E. Westbrook, “Use of 
active-edge silicon detectors as X-ray beam monitors”, Nucl. Instr. Meth, A582 
(2007) 178-181. 

[22] C. Da Via, J. Hasi, C. Kenney, V. Linhart, S. Parker, T. Slavicek, S.J. Watts, P. 
Bem, T. Horazdovsk, S. Pospisil, “Radiation hardness properties of full-3D active 
edge silicon sensors”, Nucl. Instr. Meth, A587 (2008) 243-249. 

[23] Cinzia Da Via, Sherwood Parker, Mario Deile, Thor-Erik Hansen, Jasmine Hasi, 
Christopher Kenney, Angela Kok, Stephen Watts, “Dual Readout – Strip / Pixel 
Systems”, Nucl. Instr. Meth A594 (2008) 7.  

[24] Sherwood Parker, Cinzia Da Via, Mario Deile, Thor-Erik Hansen, Jasmine Hasi, 
Christopher Kenney, Angela Kok, Stephen Watts, Dual Readout, “3D Direct / 
Induced-Signals Pixel Systems”, Nucl. Instr. Meth A594 (2008) 332.  

[25] M. Mathes, M. Cristinziani, C. Da Via’, M. Garcia-Sciveres, K. Einsweiler, J. Hasi, 
C. Kenney, Sherwood Parker, L. Reuen, M. Ruspa, J. Velthuis, S. Watts, N. 
Wermes, “Test Beam Characterization of 3-D Silicon Pixel Detectors”, IEEE Trans. 
Nucl. Sci., 55 (2008) 3731. 

[26] Cinzia Da Vià*, Mario Deile*, Jasmine Hasi, Christopher Kenney, Angela Kok, 
Sherwood Parker*, Stephen Watts, et al., “3D Active Edge Silicon Detector Tests 
with 120 GeV Muons”, IEEE Trans. Nucl. Sci. 56 (2009) 505. 

[27] C. Da Viá, E. Bolle, K. Einsweiler, M. Garcia-Sciveres, J. Hasi, C. Kenney, V. 
Linhart, Sherwood Parker, S. Pospisil, O. Rohne, T. Slavicek, S. Watts, N. Wermes, 
“3D Active Edge Silicon Sensors with Different Electrode Configurations: Radiation 
Hardness and Noise Performance”, Nucl. Instr. Meth  A604 (2009) 505–511. 

[28] P. Jarron, et al., “A transimpedance amplifier using a novel current mode feedback 
loop”, Nucl. Instr. Meth  A 377 (1996) 435. 

[29} G. Anelli, et al., “Noise characterization of a 0.25 µm CMOS technology for the 
LHC experiments”, Nucl. Instr. Meth A 457 (2001) 361. 

[30] G. Anelli, et al., “A high-speed low-noise transimpedance amplifier in a 0.25 µm 
CMOS technology”, Nucl. Instr. Meth A 512 (2003) 117.  



 25

[31] Simon Ramo, “Currents Induced by Electron Motion”, Proceedings of the I.R.E., 27 
(1939) 584. 

[32] W. Shockley, “Currents to Conductors Induced by a Moving Point Charge”, Journal 
of Applied Physics, 9 (1938) 635. 

[33] G. Cavalleri, E. Gatti, G. Fabri, and V. Svelto, ” Extension Of Ramo's Theorem As 
Applied To Induced Charge In Semiconductor Detectors”, Nuclear Instruments and 
Methods 92 (I97I) I37 

[34] Particle Data Group, “Particle physics  booklet”, pp 217 – 221, July 2008, or C. 
Amsler, et al., “Review of Particle Physics”, Physics Letters B 667 (2008) 1.  Delta 
ray production rate formulas are given in many references, but some older ones are 
both difficult to find and may assume the velocity of the incident particle is not close 
to c.  This reference is also available at http://pdg.lbl.gov/.  

[35] Alexandre Real Couture, Dominique Drouin, Raynauld Gauvin, “CASINO V2.42 - 
A Fast and Easy-to-use Modeling Tool for Scanning Electron Microscopy and 
Microanalysis Users”.  (A user’s manual of the version of CASINO used here is 
published in the journal Scanning, Volume 29, Issue 3 , 2007, Pages 92 – 101.) 

[36] C. Jacoboni, C. Canali, G. Otiaviani and A. Alberigi Quaranta, “A review of some 
charge transport properties of silicon”, Solid-State Electronics, 20 (1977) 77-89. 

[37] F. Nava, C. Canali, and L. Reggiani, “On the diffusivity of holes in silicon”, J. Appl. 
Phys. 50 (1979) 922. 

[38] S. O. Rice, “Mathematical analysis of random noise, Part III:  Statistical properties 
of random noise currents”, Bell System Technical Journal 24 (1945) 55, equation 
(3.3 – 13). 

 

 

Figure 9.  Schematic diagram of part of one
section of two of the planes in an active-edge
3D trench-electrode detector.  Other offsets
(⅓, ⅔, 0, ⅓, ⅔ ..etc.) may also be used. 
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