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1. Introduction 

Analyzing the results of a high energy physics experiment is a lot like investigating a crime 
scene. A physicist must reconstruct the events that took place by analyzing the by-products of the 
experiment. Common by-products are elementary particles that travel at very high speeds, 
packed with a lot of energy. Like a crime scene investigator, it is the job of the particle detector 
to collect data on certain aspects of these particles and send this data back to the physicist. 
Hawaii Muon Beamline (HMB) and the Modular RICH (mRICH) are two systems of multiple 
particle detectors that used to reconstruct events. They are similar in design, but serve two 
different projects. The HMB serves as a testbed for other particle detectors being developed at 
the UH Instrumentation Development Lab. The mRICH is a proton detector that will be used in 
an experiment at Fermi Lab.  

Both systems have a particle detector that is responsible for triggering the readout of all other 
subsystems. This triggering sub-system is focus of this document. On the HMB the sub-system is 
called the Scintillating Tracker Planes, and on the mRICH it is called the Hodoscope. It uses 
scintillating planes to detect passing particles and monitor their trajectories. The planes emit light 
as a particle passes through them. This light is picked up by photo-diodes, which convert it into 
electrical signals. Each plane has an array of 16 photo-diode channels. These channels serve to as 
a grid to mark the position of the particle. Both systems capture the entrance and exit position of 
the particle, which is used by a PC to calculate the particle’s trajectory. The data acquisition 
electronics for both systems are essentially the same. Each plane is assigned a daughtercard (DC) 
that monitor the photo-diodes. On the DC is a TargetX ADC digitizes and stores diode signals 
and produces a 5-bit trigger signal whenever a particle is detected. Encoded in the signal are the 
channels that saw the particle. The TargetX is driven by a Spartan6 FPGA. The FPGA, collects 
data from the TargetX and programs its settings. The DCs are controlled by one Standard 
Controls and Read Out, and Data (SCROD) master board, which has its own FPGA that reads 
out data from the DCs and passes it to the user’s PC.  

The main difference between the HMB Tracker Planes and the Hodoscope, is that the Hodoscope 
only captures trigger data. The HMB collects digitized waveforms of the diode signals in 
addition to trigger data. Another difference is the number of planes. The Hodoscope has four 
planes altogether grouped in pairs. One pair measures the x-y coordinates of the entrance 
position, and the other measures the coordinates of the exit position. The HMB Tracker Planes 
has 8 planes grouped into four pairs. Two pairs measure the entrance position, while another two 
pairs measure the entrance position. The extra two pairs are used to verify the presence of a 
particle.  

This report documents the firmware (FW) on the SCROD and DC FPGAs. Section 2 describes 
the firmware design and the basic hardware components for each board. Section 3 delves into the 
experiments used to test the firmware, as well as testbench simulations that can be used to better 
understand the behavior of firmware modules. This project is still a work in progress. Section 4 
goes into the functionalities that still need to be developed. Section 5 provides instructions on 
how to get started in using the project.  



2. Firmware Design 

The SCROD Rev A5 master board receives commands from the PC, relays commands to the 
DCs, and collects data from the DCs for the PC. Communication between PC and SCROD is 
maintained through a fiber optic Ethernet interface, while communication between the SCROD 
and DCs are maintained through CAT-6 cables terminated with RJ45 connectors. The main 
components of the SCROD board include [2]: 

1. PCI express optical gigabit transceiver: interfaces with PC, sends and receive packets of 
information to and from PC. 

2. Xilinx Spartan-6 FPGA(lx150T package): parses commands, communicates with 
Daughtercards, processes data, and sends data to and receives data from the optical 
transceiver. 

The SCROD is mounted to an interconnect board, called the SCROD to RJ45 Board. The 
interconnect board contains a Molex power connector for the SCROD and 8 RJ45 ports for 
connection to 8 tracking plane Daughtercards [3]. The SCROD Rev A5 was designed by 
Xiaowen Shi and the SCROD to RJ45 Board was designed by Khanh Le.  

The HMB/Hodoscope DC monitors the photo-diode channels for particle events. The TargetX 
contains comparators for each channel [4]. If one the channel voltages exceed the comparator 
threshold, the TargetX will send out the trigger signal with the channel number encoded into a 5-
bit word [4].  The HMB DC also can readout waveform data, though this feature is still under 
development. The main hardware components of the HMB are [5]:  

1. Ultravolt High Voltage: Provides bias for the MPPCs  
2. Trim Digital to analog converter (DAC):  Sets Ultravolt bias 
3. Amplifier stages: Convert MPPC current signals to amplified voltage signals 
4. TARGETX: Advanced analog to digital converter used to collect, store and digitize 

MPPC signals 
5. Xilinx Spartan-6 FPGA (lx4 for Hodoscope, lx9 for HMB, package 3tqg144): TargetX 

control, data collection, data readout, and communication with SCROD 

The Daughtercard board was designed initially by Khanh Le and later revised by Tommy Lam. 
The block diagram in figure 1 depicts the major data paths between the SCROD and DC. 



 

2.1 SCROD Firmware 

Figure 2. shows the top level block diagram of the SCROD Firmware.  



 
Figure 1. SCROD Top file block diagram. The blue arrows show the paths of the input data from 

the PC. The red arrows show the paths of the output data going to the PC. 

Currently, the SCROD firmware for HMB is identical to that of Hodoscope, as there is no 
waveform data handling. The Waveform Data arrow is just a placeholder. There are four major 
functional blocks in the SCROD. First is the S6 Ethernet Module. This module was developed by 
Kurtis Nishimura for the iTOP project. The previous version of the FW used a Xilinx generated 
IP core ethernet module, which timed out after a period of time. The S6 has the advantage of not 
timing out, and is a more reliable ethernet module. 32-bit words are transmitted serially over the 
PCI express gigabit transceiver between the SCROD and PC. The S6 runs on a 125 MHz clock 
supplied by the transceiver. It then feeds this clock into the Clock Fanout (Clock Divider on the 
Diagram) to generate the 25 MHz Data clock. Table 1 lists the signals included PC DATA OUT 
and PC DATA IN groups.  

 



Table 1. Signals between SCROD and Gigabit Transceiver (PC Interface) 
PC DATA IN 

Signal Description 
gtRx  Serial PC data in (differential) 
gtClk GTP Clock (differential) 

fabClk Alternative Clock, used in fabric (differential) 
PC DATA OUT 

Signal Description 
gtTx Serial PC Data Out 

txDisable Disable Transciever Output 
 

The next major block is the Command Interpreter. It is the central block of the SCROD that 
parses PC commands, programs control registers, and sends Trigger Data or Responses to PC 
commands. Table 2 shows the signals that move between the Ethernet Module and the Command 
Interpreter.  

Table 2. Signals between S6 Ethernet and Command Interpreter 
From Ethernet (RX) 

Signal Description 
userRxData (2 32 bit channels) Two 32-bit channels of incoming PC data 

useRxDataValid(2 bits)  valid incoming word flag 
userRxDataLast (2 bits)  last word in incoming packet flag 

userRxdataReady (2 bits) Interpreter ready to receive data flag 
To Ethernet (TX) 

Signal Description 
userTxData(2 32 bit channels) Two 32-bit channels of outgoing PC Data 

useTxDataValid (2 bits) 2-bit flag: Valid outgoing word 
userTxDataLast (2 bits)  2-bit flag: last word in outgoing packet  

userTxdataReady (2 bits) 2-bit flag: Ethernet  ready to transmit data 
 

The SCROD has an array of 16-bit control registers that are programmed by a process, 
SCROD_Ctrl_Reg. This process is represented by the SCROD Control Registers Block. The 
process reads and writes to the registers. The Command Interpreter starts the process by raising 
the Start Operation flag (regReq). The process acknowledges the Interpreter by raising the 
Acknowledgement flag (regAck). The Rd/Wr flag (regOp) sets the operation type. If it is ‘1’ the 
addressed register will be written to. If it is ‘0’ the addressed register will be read. A description 
of all signals involved in the process is found in Table 3. A list of all control registers on the 
SCROD along with their function can be found in Table 4. Most of the registers come from an 
earlier version of the FW and need to be reimplemented. 

 



Table 3. Command Interpreter-Control Register Interface 
SCROD Register Address and Write Data 

Signal Description 
regAddr (16 bits) register address (acceptable values: 0 to 15) 

regWrData(16 bits)  register value 
SCROD Register Read Data 

Signal Description 
regRdData(16 bits) current register value 

Register Command Flags 
regReq begin a register operation 
regOp Read or Read mode 

reset reset command from Ethernet Module 
regAck Register handshake 

 

Table 4. SCROD FPGA Control Registers 
Reg 

# bits Value 
0 0 Resets state machines 
1 0 SCROD ID 

2 8, 7* downto 0 
Sync Daughtercards, reset QBLink (bit i resets QBLink module i, *7 

downto 0 for HMB, 3 downto 0 for HODOSCOPE). 
3   not used 
4   not used 
5 0 software Trigger (not implemented) 
6 3 downto 0 Trigger Mode (not implemented) 
7 3 downto 0 dc_mask (not implemented) 
8 3 downto 0 output mode (not implemented) 
9   not used 

10   not used 
11   not used 
12 15, 8 downto 0 enable use of fixed window, fixed start window 

13   not used 

14   not used 
15   not used 
16   not used 
17   not used 
18 4 downto 0 maximum trigger count (not implemented) 
19 11 downto 0 trigger count enable(not implemented) 



20 15 downto 0 1/2 trigger scalar count (not implemented) 
21 0 2/2 trigger scalar count (not implemented) 

 

The fourth major block is the Daughtercard Communication block, which provides 
communication links between the SCROD and DCs using a custom protocol called QBLink. It 
passes commands from the Command Interpreter to selected DCs and passes data from the DCs 
to the Command Interpreter. It also monitors all incoming DC data for particle detection events. 
If all DCs see a particle a global event flag will be raised to trigger readout of the trigger data and 
all other detectors. Table 5 lists the signals between the Command Interpreter and DC 
Communication modules. Table 6 list signals going between the Daughtercard Communication 
block and the DCs. 

Table 6. Signals between SCROD and Daughtercards 
To DC 

Signal Description 
tx_dc(8 bits) QBLink serial output to DCs 

Sync (8 bits) 
Synchronize all DCs, resets their timestamp counters and QBLink 

modules. 
From DC 

Signal Description 
rx_dc( 8 bits) serial input from DCs 

 

The following sections will go through the 4 blocks in more detail. 

2.1.1 Command Interpreter 

There are four kinds of commands that the Command Interpreter parses: SCROD 
Register commands, DC register commands, device pinging, and data readout. Both the SCROD 
and DC FPGAs have internal registers that store control settings for the peripheral devices, such 
as the trim DACs. These registers can be written to and read by the user’s PC through register 
commands. The user can check if all communication links are established between the PC, 
SCROD, and DCs with ping commands. Register and ping commands are sent by the PC through 
Ethernet packets. The packets consist of 32-bit words that must be sent in a certain order so that 
the Command Interpreter can parse the command. These words include a header, packet type, 
device address, command type, and the actual commands themselves. There are scripts included 
in the project files that handle the construction and sending of command packets.  

Table 7 and 8 shows the packet format for a register and ping command. The Interpreter 
will send a response packet to the PC for each command that it receives. The second and third 
word in the response packet indicates if the command was parsed successfully or if there was an 
error. The scripts used to send commands to SCROD will display the response packet to the user. 
If the register command was successfully parsed, the second word will say x00000006 and the 
third word will display the constant WORD_ACK_C, x6F6B6179. If there was an error in 



parsing the command (i.e. the packet was not correctly ordered), the second word will display 
x00000005 and the third word will display the constant WORD_ERR_C, x7768613f. The sixth 
word will be the error flag indicating what went wrong. Table 8 and 9 shows the response 
packets for successful write and read register commands. Table 10 shows the response to a ping 
command. Table 11 shows the response packet in the event of an error. Table 12 describes the 
error flags. 

 

 
Table 7. Register Command Packets 

 
Word 

High Bytes Low Bytes 
Description  

31:25  24:16 15:8 7:0  
0 0x00BE11E2 Header word 

1 packet size 
Number of remaining words 
except packet checksum: 6 

2 0x646f6974 
Labels packet as a Register 

Command 

3 0x00 Device label Device # 

Device labels: (SCROD) 0x00A5,            
(DC) 0x00DC | Device  #: 0x00 

(SCROD), 0x01 through 0x08 (DC 
#)  

4 

verbosity 
(31:24) 

Command ID(23:0) 
Verb(7): suppresses command 

response. Command ID: unique 
ID to each command 

5 command type  
Ping: 0x70696e67, read: 

0x72656164, write: 0x72697465  

6 
Register Value                                     

(0x0000 for read operations) 
register address Command data  

7 command checksum sum words 4 through 6 
8 packet checksum sum of entire words 0 to 7 

 

 
Table 8. Ping Command packets 

 
Word 

High Bytes Low Bytes 
Description  

31:25  24:16 15:8 7:0  

0 0x00BE11E2 Header word 

1 packet size 
Number of remaining words 
except packet checksum: 6 

2 0x646f6974 packet type: device configuration 

3 0x00 Device label Device # 

Device labels: (SCROD) 0x00A5,            
(DC) 0x00DC | Device  #: 0x00 

(SCROD), 0x01 through 0x08 (DC 
#)  

4 
verbosity (31:24) Command ID(23:0) 

Verb(7): suppresses command 
response. Command ID: unique ID 

to each command 



5  0x70696e67 Command Type: Ping 
6 command checksum sum words 4 through 6 
7 packet checksum sum of entire words 0 to 7 

 

Table 9. Register Write Response 
Word Bytes 

0 x"00BE11E2" 
1 x"00000006" 
2 WORD_ERR_C = 0x7768613f. 
3 wordScrodRevC = x"0000A500" 
4 00 & commandID 
5 WORD_WRITE_C = 
6 r.regWrData & r.regAddr 
7 Checksum 

 

Table 10. Register Read Response 
Word Bytes 

0 x"00BE11E2" 
1 x"00000006" 
2 WORD_ERR_C = 0x7768613f. 
3 wordScrodRevC = x"0000A500" 
4 00 & commandID 
5 WORD_READ_C = x"72656164" 
6 r.regWrData & r.regAddr 
7 Checksum 

 

Table 11. Error Response Packet 
Word Bytes 

0 x"00BE11E2" 
1 x"00000005" 
2 WORD_ERR_C = x"7768613f" 
3 wordScrodRevC = x"0000A500" 
4 00 & commandId 
5 errFlags 
6 Checksum 

 

 



Table 12. Error Flags 
Error Constants (errFlags) 

Packet size error: ERR_BIT_SIZE_C = x"00000001" 
Packet type error: ERR_BIT_TYPE_C = x"00000002" 

Invalid command target: ERR_BIT_DEST_C = x"00000004" 
Invalid command type: ERR_BIT_COMM_TY_C = x"00000008" 

Command checksum error: ERR_BIT_COMM_CS_C = x"00000010" 
Packet checksum error: ERR_BIT_CS_C = x"00000020" 
Timeout Error: ERR_BIT_TIMEOUT_C = x"00000040" 

connection to DC failed: QBLINK_FAILURE_C: x"00000500" 
 

This module contains several attributes, which can be tweaked in the top file. These are listed in 
Table 13.   

Table 13. Command Interpreter Attributes 
Attribute Description 

REG_ADDR_BITS_G length of register address, integer 

REG_DATA_BITS_G length of register data, integer 

TIMEOUT_G number of clock cycles to wait for register response, integer 
GATE_DELAY_G time (ns) 

num_DC number of DCs 
 

A structural view of the Command Interpreter can be seen in Figure 3. There are two 
combinatorial processes, the SCROD Combinatorial Process (SCRODRegComb) and the 
SendTrigger Process (SendTrigger). The former listens to the Ethernet module for PC register 
command packets, which parses. If the command is intended for the SCROD, it will interact with 
the Control Registers through the regOut and regIn signals, which include all signals listed in 
Table 3. If the command is intended for one or more DCs it will pass the command type and 
command data out to the target device(s) through DC_CMD. The SendTrigger process listens to 
the global event flag (EVNT_FLAG). If it is ‘1’ it will collect and send trigger packets from all 
devices to the PC. The processes output a RegType record (rin and tin, color coded brown) that 
holds data collected in the process (see Table 14.). This information is latched by the Sequential 
Process by the positive 125 MHz clock edge. The latched data is stored in record signals r (for 
register process) and t (for trigger process). 

In the event of a global trigger, all register commands are dropped and SendTrigger process 
gains control over the TxData channel to the Ethernet Module. This is ensured through the GTP 
Tx MUX (gtp_MUX).  

 

 



Table 14. Signals Included in RegType record 
Signal Description 
state State machine states 

regAddr FPGA register addresslogic vector(REG_ADDR_BITS_G-1 downto 0) 

regWrData Register data to writelogic vector(REG_BIT_DATA_G-1 downto 0) 

regRdData Read register value logic vector(REG_BIT_DATA_G-1 downto 0) 

regReq standard logic bit 
regOp standard logic bit 

sendResp standard logic bit 
rxDataReady standard logic bit 

txData standard logic bit 
txDataValid standard logic bit 
txDataLast standard logic bit 
wordsLeft words left in packet, logic vector(31 downto 0) 

wordOutCnt # of words sent to PC, logic vector(7 downto 0) 
checksum logic vector(31 downto 0) 
deviceID logic vector(31 downto 0) 

commandType logic vector(31 downto 0) 
command logic vector(31 downto 0) 

commandID logic vector(31 downto 0) 
noResponse setting to disable SCROD response to PC, standard logic bit 

errFlags logic vector(31 downto 0) 
timeoutCnt Timer for timeout error, logic vector(31 downto 0) 

 



 
Figure 3. 

The state machine for the SCROD Register Combinatorial Process is complicated and long, so it 
can be referenced in figure 1 in the appendix of this document. Two conditions can reset the state 
machine back to the IDLE_S state: when usrRst = ‘1’ or when EVNT_FLAG = ‘1’.  

The state machine of the SendTrigger Process is depicted in Figure 4. While there is no event 
(EVNT_FLAG = ‘0’), the process is in the IDLE mode and the SCROD Register process has 
control over the TxData channel. When there is an event it will send the trigger packet of each 
DC over the Tx channel to the PC.  

 



 
Figure 4. 

2.1.2 Daughtercard Communication 

This module has one attribute, numDC, that denotes the number of DCs. The module creates a 
QBLink module for each DC. Each QBLink module has a partner on the DC side. On startup, the 
partners go through a training phase. It has been found that the modules should be reset before 
beginning the training phase. Otherwise, they do not pass the training phase (Refer to Control 
Register 2).  

The TriggerLogic process listens to the output word of each QBLink module. It searches for the 
trigger event marker, “111” in the output word, dc_data. If dc_data[i][7 downto 5] has this 
marker, then DC i had a trigger event and the process raises TrigFlag[i] ]to ‘1’. The 
EVNT_FLAG (internally known as evnt_trig) ANDs together all the bits in the TrigFlag logic 
vector. When the EVNT_FLAG is raised the trigger packets received from the QBLink output 
words is sent one by one to the Command Interpreter for it to send to the PC on the rising clock 
edge of the 25 MHz Data_Clk.  

2.2. Daughtercard Firmware 

The top-level block diagram of the DC FW is shown in Figure 5. Many of the signals shared 
between the DC and SCROD have a different name on the DC side. Signal mapping between the 
SCROD and DC can be found in Documentation folder in the project repository (see section 5). 
The DC has a differential clock input SYSCLK_P/N sourced by the SCROD. The Clock Fanout 
Module uses the clock input to generate the single ended sysclk (25 MHz) and asic_clk (62.5 
MHz). The asic_clk frequency is divided to generate SSTIN (31.25 MHz). The sysclk runs most 
of the FPGA’s internal processes and modules; most notably, those that interact with the SCROD 
Communication Module, which contains the QBLink partner. The asic_clk runs processes and 
modules that interact with the TargetX ASIC, such as the TargetX DAC Controller and DAC 
Update Process.  



 

 

Figure 5. 



There are two main signal groups that connect to the QBLink module: Trigger Data signals and 
the Register Command signals. The QBLink MUX (QBMux) ensures only one of these signal 
groups have access to the QBLink module at any given time. By default, the Register Command 
Signals are active on QBLink until there is a trigger event, in which case the Trigger Data has 
control over QBLink.  

2.2.1 Daughtercard Registers 

The DC has internal registers, whose functions are described in Table 15. The Daughtercard 
Register Programmer process writes and reads the registers. The process receives register 
command type (either read or write) and register data (such as the target register number) from 
the SCROD Communication Block.  

Table 15. Daughtercard FPGA Control Registers 
Reg 

# bits Value 
0 0, 4 TargetX control reset, enables calibration 
1 6 downto 0  tx_dac_reg_data 

2 11 downto 0 tx_dac_reg_data 
3 15 downto 0 tx_dac_load_period 
4 15 downto 0 tx_dac_latch_period 
5 0 software Trigger (not implemented) 
6 3 downto 0 Trigger Mode (not implemented) 
7 3 downto 0 dc_mask (not implemented) 
8 15 downto 0  SCROD acknowledgement wait 
9 15, 8 downto 0 offset window direcion, number of windows to offset 

10 8 downto 0 number of windows to readout 
11 15 downto 0 not used 
12 15, 8 downt 0 enable use of fixed window, fixed start window 

13 15, 3 downto 0 enable pedestal subtraction, number of averages for calculating peds (1-7) 

14 15, 1 downto 0 
resets window number during sampling, sets timing for sstin and current 

window count in targetX 
15 4 downto 0 Trim DAC address 
16 11 downto 0 Trim DAC voltage  
17   mppc dac voltage 
18 4 downto 0 maximum trigger count (not implemented) 
19 11 downto 0 trigger count enable(not implemented) 
20 15 downto 0 1/2 trigger scalar count (not implemented) 
21 0 2/2 trigger scalar count (not implemented) 

 

After each register command, the DC sends a response (DCresp) to the SCROD that 
acknowledges the command and sends back any requested data.  



2.2.2 TargetX Control and Triggering 

In order for the DC to collect event data and trigger reliably, a couple settings must be 
configured. First, the photodiode biases must be set. A High voltage module can quickly, but 
roughly tune the biases. In addition, there are trim DACs that more finely tune the biases of the 
diodes. These 12-bit DACs are programmed by the mppc_DAC module and the DC Registers 15 
and 16. This module was designed by Khnah Le in the original HMB/Hodoscope FW. The 
implementation of this module was not included Figure 5, as it was just recently added, and no 
testing has been conducted on it. The other setting that must be configured is the comparator 
threshold on the TargetX. The TargetX has 16 comparators that monitor the 16 photodiode 
channels on the DC [4]. When one or more of the channel voltages exceed their thresholds, the 
TargetX will output an encoded 5-bit trigger signal that indicates which channels were triggered. 
The thresholds are set by the TargetX DACs, which are programmed by the TARGETX DAC 
Controller. The Controller interacts with the TargetX through a serial protocol described in [4].  

The 5-bit trigger output from the TargetX (TX_trig) is monitored by the Trigger Logic unit. 
When TX_trig takes on any value besides zero, the unit will pack the value along with a 
timestamp from the Timestamper module into a 32-bit word that will be sent to the SCROD over 
QBLink. This word is known as TriggerData. Bits 7 through 5 are set to “111”, which is the 
trigger event marker.  

3. Simulation/Testing 

The project contains testbenches that simulate the FW. Each testbench file contains 
documentation of what modules are being simulated as well as the functionalities that have been 
simulated successfully. The testbenches can be accessed in the appropriate project directory (see 
section 5.) 

After the FW simulates successfully, it was hardware tested. The following functionalities have 
been successfully hardware tested: 

1. PC to SCROD communication 
a. Fiber optic cable link established.  
b. Able to read and write to registers without errors 

2. PC to DC communication 
a. QBLink modules pass training state after reset 
b. Able to read and write registers on DC without errors 

3. Simultaneous reset of QBLink modules on SCROD and DC 
4. SCROD and DC ping commands.  

a. When target is DC, get error packet when QBLink training phase is not passed 
(trg_link_synced = ‘0’).  

b. Successful ping packet when QBLink passes training phase or when PC and 
SCROD are connected. 

 
 



4. Future Work 

The next steps are to complete the trigger readout hardware test. The whole system has been 
simulated. Given that all DCs trigger, each DC can successfully construct the Trigger Data word, 
send it to the SCROD, trigger a global event and read out all Trigger Data words to the Ethernet 
Module. In order to test this in hardware, we need to force trigger all DCs. This can be done by 
replacing a diode with a pulse from a function generator, but first we must correctly configure all 
the DCs as discussed in section 2.2.2. The values of the diode biases, the addressing scheme of 
the diode bias DACs, and the optimal values of DC registers 2 through 4.  

Once the trigger readout hardware test is successful, the Hodoscope FW is nearly complete. 
Some functionalities that were in the old FW need to be added, such as the DAC threshold scan, 
and software triggering [6]. I recommend comparing the new FW with the old and see how much 
of the code can be recycled. A few of the processes are temporary stand ins for more complete 
FW. These include the DAC update process and the MPPC (diode) DAC update process. These 
processes functionality may be sufficiently, but I will leave that up to future users. The last 
Hodoscope function that needs to be added is sending SiREAD readout triggers to the other 
SiREAD SCRODs.   

To complete the HMB FW, waveform data readout functionality needs to be added in addition to 
finalizing the trigger readout. This functionality never worked properly in the original FW, but it 
is still worth checking out the old project’s approach.  

5. Using the Project 

Below is an outline of steps to acquire the project and setup the git repository. This document 
assumes some familiarity with Git. If there are any questions or issues, please feel free to contact 
me. 

1. Fork all repositories, including submodules 
a. mRICH-FW: https://github.com/nathankp/mRICH-FW 
b. HMB-FW: https://github.com/nathankp/HMB-FW 
c. Ethernet and Command Interpreter Submodule: 

https://github.com/nathankp/SCROD_ETHERNET_V3 
i. Submodule: https://github.com/nathankp/firmware-ethernet 
ii. Submodule: https://github.com/nathankp/firmware-general 

d. QBLink submodule: https://github.com/nathankp/QBLink  
2. Clone the main repository into your desktop 
3. Run to initialize the submodules: git submodule update --init --recursive  

a. Ensure that all submodules in the main repository are properly referenced in 
.gitmodules 

b. Follow README instructions in SCROD_Ethernet_V3 to ensure proper setup of 
the SCROD_Ethernet_V3 project 

c. Add your forked copy of the repository to this list of remotes. I would suggest 
pushing all changes to your fork, otherwise you will have to submit a pull request 
to the original author. 

https://github.com/nathankp/mRICH-FW
https://github.com/nathankp/HMB-FW
https://github.com/nathankp/SCROD_ETHERNET_V3
https://github.com/nathankp/firmware-ethernet
https://github.com/nathankp/firmware-general
https://github.com/nathankp/QBLink


A copy of this document and all figures therein can be found in EIC-Beamtest-
FW/Documentation and EIC-Beamtest-FW/Documentation/ Current_diagrams, respectively. To 
conduct hardware test, you can construct and send packets with UDP_Client_NP.py in EIC-
Beamtest-FW/scripts. To listen for trigger packets, a script must be written that receives data 
from the Gigabit Transciever continuously in a while loop. This script was written on the 
mRICH bench computer at the IDLab, and should be included in repository soon.  

The latest SCROD FW can be found in EIC-Beamtest-FW/SCROD_A5_RJ45/SCROD_Rev1. 
The older version is EIC-Beamtest-FW/SCROD_A5_RJ45/ SCROD_A5_RJ45. The latest DC 
FW can be found in EIC-Beamtest-FW/mRICH_hodo_DC_V1/HMB_QBLink_proto. The older 
version of the DC FW can be found in EIC-Beamtest-FW/mRICH_hodo_DC_V/ EIC-Beamtest-
FW/mRICH_hodo_DC_V. 
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