PSEC-3 Calibration Report

Kurtis Nishimura University of Hawaii September 14, 2011 LAPPD Electronics Meeting

Calbration datasets

- Eric provided the following, all at 10 GSa/s:
 - 4x 1000 events 80 MHz input for channel 3
 - 4x 1000 events 80 MHz input for channel 4
 - 2x 1000 events 320 MHz input for channel 3
 - 2x 1000 events 320 MHz input for channel 3
 - Voltage lookup table
 - Pedestal table
 - (Are these calculated before or after lookup...?)

Uncalibrated Data

• Assuming nominal timing (100 ps per sample):

➔ Agreement is already quite good. A few features worth noting...

Uncalibrated Data

• Assuming nominal timing (100 ps per sample):

Correlation-Based Calibration

- I've tried two versions of the correlationbased calibration:
 - New version with gain variation.
 - Old version with no gain variation.

- And two other versions:
 - Zero crossings
 - Amplitude near zero crossings

Fitting w/ gain

• Sample fits, 1000 data points, 80 MHz, ch 3:

Red points – data Blue line – fitted contour Black line – nominal 10 GSa/s contour

→ Some fit failures... can sometimes be recovered with different initial guesses.

Fitter w/ gain: Δt distribution

- Mean of distribution indicates a sampling rate close to 11 GSa/s.
 - But original sine-fit doesn't seem to support that.
- Data is rather poor quality passing the 255 → 0 boundary.
- A few outliers, maybe due to poor fit quality
 - Visually inspected plots, reasonably good fit behavior between samples 95-245, so focused on that region....

Sine wave w/ "calibrated" Δ t values

Sample 80 MHz event Red points: "uncalibrated" data Blue points: "calibrated" data Lines: sine fit w/ floated amplitude, phase, DC offset.

Residuals for event shown on left

Cross checks w/ old fitter

 Check against ∆t obtained from old fitter (without gain).

vs. zero crossing methods

°0

0.05

0.1

0.15

0.2

0.25

0.3

Summary

- Immediate term:
 - What would be best for the sine wave plot for PSEC-3 TIPP paper?
 - Maybe "uncalibrated" and refer that studies of timing are ongoing?
- Longer term:
 - Toy MC for new fitter version to check bias/pull.
 - I have a slight concern that the gain is actually partially degenerate with the timing...
 - More detailed cross checking against other methods.