PSEC3 Ongoing Timing Calibration

Kurtis Nishimura March 30, 2011

Data samples

- Old PSEC3 data from Eric:
 - 10 GSa/s
 - CH3 (256 sample cells)
 - 100 events each of:
 - 40 MHz
 - 120 MHz

New PSEC3 data from Eric:

- 5 GSa/s
- CH3 (256 sample cells)
- 1200 events of:
 - 100 MHz

Qualitative Features of New Data

• Sampling rate slipped in events ~400-600:

sample

Qualitative Features of New Data

Some gain variation between cells?
Manifests as rotation of ellipse.

Example Fit

Data and fit

→ Improved first guess procedure, relatively robust.

Still some fit failures due to outliers... need to implement outlier removal.

Distributions of $\Delta t_{i,i+10}$ and $\Delta t_{i,i+9}$

- Number of entries \neq 256, (still) due to some failed / bad fits.
- Width of distributions (~5% of mean, compared to ~15% last time):

→ Previous calibration was definitely statistics limited.

$\Delta t_{i,i+10}$ vs. Sample Cell

samples 63 and 73

- Some structure overall with respect to sample cell.
- Corresponding fit shown at right.
 - Appears to have multiple sampling rates.

Derived Distribution of $\Delta t_{i,i+1}$

→ Mean is reasonable for 5 GSa/s, no more negative time intervals.

Still lots of potential improvements...

- Better combinations of $\Delta t_{i,i}$ values to get $\Delta t_{i,i+1}$.
 - Can utilize significant overconstraints of system by fitting for many (or all) feasible i,j pairs.
- Increase fit robustness:
 - Add outlier rejection.
- Apply ∆t values from one dataset to another dataset (or compare from independent datasets).
 - Ellipse fits with Δt values fixed, fit for f_{input} .
 - Sine wave fits to 40 MHz data.
- Modify fitter to get meaningful errors.
- More next week...

BACKUP

Timing Calibration w/ Correlations

- Plot correlations between pairs of samples:
 - To determine Δt_{ij} , plot $V_i V_j$ versus $V_i + V_j$

i and j can be adjacent (or not), but should not be > 1 period apart.

*Method and results from Andres-Romero Wolf and myself, with data from LAB3. Planning as TIPP submission(?)

Timing Calibration w/ Correlations

• Plot correlations between pairs of samples:

- To determine Δt_{ij} , plot $V_i - V_j$ versus $V_i + V_j$

i and j can be adjacent (or not), but should not be > 1 period apart.

*Method and results from Andres-Romero Wolf and myself, with data from LAB3. Planning as TIPP submission(?)

Timing Calibration w/ Correlations

 1) Different ∆t (for known sampling frequency) give different major/minor radii.
2) Noise makes ellipse "fuzzy"
3) Nonzero pedestals shift origin
4) Difference in gain between two cells causes a rotation.

 → We have written an ellipse fitter to perform this method.
→ Even without fitting, it provides nice qualitative check on results.

 $V_{n+1}^{100} + V_n (arb. units)$ 200 -200 $V_{n+1}^{100} + V_n (arb. units)$ 200 *Method and results from Andres-Romero Wolf and myself, with data from LAB3. Planning as TIPP submission(?)