PSEC3 Ongoing Timing Calibration

Kurtis Nishimura March 16, 2011

Data samples

- PSEC3 data from Eric:
 - 10 GSa/s
 - CH3 (256 sample cells)
 - 100 events each of:
 - 40 MHz
 - 120 MHz
- Fits ellipses to correlated voltage pairs:
 - $\Delta t_{i,i+10}$ fitted from V[i+10] V[i] vs. V[i+10] + V[i]
 - $\Delta t_{i+1,i+10}$ fitted from V[i+10] V[i+1] vs. V[i+10] + V[i+1]
 - First stab at $\Delta t_{i,i+1} = \Delta t_{i,i+10} \Delta t_{i+1,i+10}$
 - The gap of 10 samples is to deal with the high sampling rate. It is, for now, arbitrary... should study what works best.

Distributions of $\Delta t_{i,i+10}$ and $\Delta t_{i,i+9}$

- Number of entries \neq 256 due to some failed / bad fits.
- Width of distributions (~15% of mean) potentially reflects:
 - Natural variation in Δ t values.
 - Resolution (or artifacts) of this procedure.
 - → Not yet clear which dominates... more statistics could help.

$\varDelta t_{i,i+10} \text{ and } \varDelta t_{i,i+9} \text{ vs.}$ Sample Cell

- Definite structure with respect to sample cell.
 - Is this due to a genuine timing difference or an artifact?
 - Maybe due to visible gain difference as a function of sample cell? (Right: all 100 waveforms for 120 MHz data plotted on top of one another)

Derived Distribution of $\Delta t_{i,i+1}$

∆t distribution (difference of sample spacings 10 and 9)

→ Mean is reasonable for 10 GSa/s, but procedure is obviously not perfect... **negative** Δ t is unphysical.

Distribution of $\Delta t_{i,i+1}$ vs. Sample Cell

• No obvious(?) pattern.

Lots left to do / potential improvements...

- Better combinations of $\Delta t_{i,i}$ values to get $\Delta t_{i,i+1}$.
 - Can utilize significant overconstraints of system by fitting for many (or all) feasible i, j pairs.
- Increase fit robustness:
 - Add outlier rejection.
 - Recover failed or bad fits.
- Increase statistics.
- Increase input frequency(?)
 - May be bandwidth limited.
- Apply Δt values from 120 MHz data to 40 MHz data:
 - Ellipse fits with Δt values fixed, fit for f_{input} .
 - Sine wave fits to 40 MHz data.
- Modify fitter to get meaningful errors.
- More next week...

BACKUP

Timing Calibration w/ Correlations

- Plot correlations between pairs of samples:
 - To determine Δt_{ij} , plot $V_i V_j$ versus $V_i + V_j$

i and j can be adjacent (or not), but should not be > 1 period apart.

*Method and results from Andres-Romero Wolf and myself, with data from LAB3. Planning as TIPP submission(?)

LAPPD Electronics Meeting - Kurtis

Timing Calibration w/ Correlations

• Plot correlations between pairs of samples:

- To determine Δt_{ij} , plot $V_i - V_j$ versus $V_i + V_j$

i and j can be adjacent (or not), but should not be > 1 period apart.

*Method and results from Andres-Romero Wolf and myself, with data from LAB3. Planning as TIPP submission(?)

LAPPD Electronics Meeting - Kurtis

Timing Calibration w/ Correlations

2/9/2011

 1) Different ∆t (for known sampling frequency) give different major/minor radii.
 2) Noise makes ellipse "fuzzy"
 3) Nonzero pedestals shift origin
 4) Difference in gain between two cells causes a rotation.

 → We have written an ellipse fitter to perform this method.
 → Even without fitting, it provides nice qualitative check on results.

¹⁰⁰ V_{n+1}+V_n (arb. units)
²⁰⁰⁻²⁰⁰ V_{n+1}+V_n (arb. units)
²⁰⁰ W_{n+1}+V_n (arb. units)
²⁰¹ W_{n+1}+V_n (arb. units)
²⁰² W_{n+1}+V_n (arb. units)
²⁰³ W_{n+1}+V_n (arb. units)
²⁰⁴ W_{n+1}+V_n (arb. units)
²⁰⁵ W_{n+1}+V_n (arb. units)
²⁰⁶ W_{n+1}+V_n (arb. units)
²⁰⁷ W_{n+1}+V_n (arb. units)
²⁰⁸ W_{n+1}+V_n (arb. units)
²⁰⁸ W_{n+1}+V_n (arb. units)
²⁰⁹ W_{n+1}+V_n (arb. units)
²⁰⁹ W_{n+1}+V_n (arb. units)
²⁰⁰ W_{n+1}+V_n (arb. units)
²⁰⁰ W_{n+1}+V_n (arb. units)
²⁰¹ W_{n+1}+V_n (arb. units)
²⁰² W_{n+1}+V_n (arb. units)
²⁰³ W_{n+1}+V_n (arb. units)
²⁰⁴ W_{n+1}+V_n (arb. units)
²⁰⁵ W_{n+1}+V_n (arb. units)
²⁰⁶ W_{n+1}+V_n (arb. units)
²⁰⁷ W_{n+1}+V_n (arb. units)
²⁰⁸ W_{n+1}+V_n (arb. units)
²⁰⁸ W_{n+1}+V_n (arb. units)
²⁰⁸ W_{n+1}+V_n (arb. units)
²⁰⁹ W_{n+1}+V_n (arb. units)
²⁰⁹ W_{n+1}+V_n (arb. units)
²⁰⁰ W_{n+1}+V_n (arb. units)
²⁰⁰ W_{n+1}+V_n (arb. units)
²⁰¹ W_{n+1}+V_n (arb. units)
²⁰¹ W_{n+1}+V_n (arb. u