KLM: TARGETX

User-Interface for Testing TARGETX
Testing Overview
Bronson Edralin
04/17/15

TARGETX Test Team

TARGETX Waveform Sampling/Digitizing ASIC

- Designer
 - · Dr. Gary S. Varner
- Features
 - 1 GSa/s
 - 16 Channels
 - NOTE: 16th Channel used to inject sinusoid for testing.
 - 512 Windows
 - 32 Samples per Window
- Used for?
 - KLM Sector of the Belle II Detector system in Japan

• TARGETX Test Team at University of Hawaii

- Software
 - · Bronson Edralin
- Firmware
 - Dr. Seyed "Isar" Mostafanezhad
- Hardware
 - · Xiaowen Shi
- Advisor
 - · Dr. Gary S. Varner
- Special Thanks to...
 - · Peter Orel, Lauri "Vihtori" Virta

User Interface for Testing TARGETX

```
Welcome to Automated KLM Test for TARGETX ASIC
Collaboration between various groups and Universities:
       IDLab from Dept of Physics, University of Hawaii at Manoa
       SOFTWARE: Bronson Edralin <bedralin@hawaii.edu>
       FIRMWARE: (Isar) Seyed Mostafanezhad <seyed@hawaii.edu>
       HARDWARE: Xiaowen Shi <xiaowens@hawaii.edu>
       ADVISOR: Dr. Garv Varner <varner@phys.hawaii.edu>
Please check to see if you have chip powered on withdefault bias parameters loaded...
       >> Vramp: Sbbias (Reg #48) = 1300
       >> Vramp: Vdischarge (Reg #49) = 0
       >> Vramp: ISEL (Reg #50) = 2650
       >> Vramp: Dbbias (Reg #51) = 1100
       >> PLL: Obias (Reg #52) = 1500
       >> PLL: Vqbuff (Reg #53) = 1062
       >> MISC: MiscDigitalReg (Reg #55) = 0
       >> Timebase: VADJ_P (Reg #56) = 1152
       >> Timebase: VANbuff (Reg #57) = 0
       >> Timebase: VADJ_N (Reg #58) = 2235
       >> Timebase: VANbuff (Reg #59) = 0
       >> Trigger: VBIAS (Reg #61) = 1130
       >> Trigger: TRGGbias (Reg #62) = 1100
       >> Trigger: Itbias (Reg #63) = 1100
       >> Timebase: SSPin_LE (Reg #64) = 143
       >> Timebase: SSPin_TE (Reg #65) = 163
       >> Timebase: WR_ADDR_Incr1_LE (Reg #66) = 5
       >> Timebase: WR_ADDR_Incr1_TE (Reg #67) = 25
       >> Timebase: WR_STRB1_LE (Reg #68) = 20
       >> Timebase: WR_STRB1_TE (Reg #69) = 40
       >> Timebase: WR_ADDR_Incr2_LE (Reg #70) = 33
       >> Timebase: WR_ADDR_Incr2_TE (Reg #71) = 53
       >> Timebase: WR_STRB2_TE (Reg #73) = 12
       >> Timebase: Mon_Timing_SEL (Reg #74) = 40
       >> Timebase: SSToutFB (Reg #75) = 58
       >> Wilkinson: CMPbias2 (Reg #76) = 737
       >> Wilkinson: Pubias (Reg #77) = 3112
       >> Wilkinson: CMPbias (Reg #78) = 1152
       >> MISC: TPGreg (Reg #79) = 2730
Enter '(e)xit' at any time to exit.
Available Automated Tests for the ASIC:
       >> [0] OPTIMIZE_BIAS
       >> [1] SINE SCAN
       >> [2] SINEBURST_SCAN
       >> [3] SINERAW_SCAN
       >> [4] LINEARITY_ADC_TO_VOLT
       >> [5] PEDESTAL TEST
       >> [6] PEDESTAL_SCAN
       >> [7] TIMING_RESOLUTION_TEST
       >> [8] TRIG_SCAN
       >> [10] PRODUCTION TEST (Pre-configured Assorted Tests)
       Enter what test [0,1,2,3,4,5,6,7,8,9,10] you would like to perform:
```

Default Registers: BiasRev #1.1

Signal	Register #	Default Value (old)	Run values	Default Value (new)
SSTIN_N				
VADJ_P	56	1152		
VADJ_N	58	2235		
ISEL	50	2650		
Vdischarge	49	0		
WL_CLK_p			63.7 MHz	
CMPbias2	76	737		
Pubias	77	3112		
Qbias	52	1500		
VANbuff	57	0		
Vqbuff	53	1062		
SSToutFB	75	58		
VtrimT	54	1209		
CMPbias	78	1152		

Signal	Register #	Default Value (old)	Run values	Default Value (new)
Mon_Timing_SEL	74	40		
WR_ADDR_Incr1 LE	66	13		
WR_ADDR_Incr1 TE	67	33		
WR_STRB1 LE	68	20		
WR_STRB1 TE	69	40		
WR_ADDR_Incr2 LE	70	33		
WR_ADDR_Incr2 TE	71	53		
WR_STRB2 LE	72	56		
WR_STRB2 TE	73	12		
VBIAS	61	1130		

04/1//15

Projected Implementations to Automate Certain Tests

√OPTIMIZE BIAS

- Using Infinite Sinusoid
- Be able to choose what bias register value to change
- Stitch all windows and plot all waveforms onto one graph
- Fit to Expected Sinusoid and plot it per waveform
- Plot Residuals
- Use Avg Chi-Squared Test to Quantify Best Fit (Multiple events increase accuracy)
- Plot Chi-Squared Test Scores vs Bias Register Value

√SINE SCAN

- Same as above but doesn't prompt to optimize biases.
- Asks how many graphs do you want.

√SINEBURST SCAN

- Using Burst Sinusoid
- Be able to set parameter of the Delay and Cycles of the Sinusoidal Burst Pulse
 - Ex. Delay = 1us:1us:4us
 - Ex. Cycles = 3
- Scan all 512 windows and plot onto one graph
- Make individual plots for every series of 4 windows

LINEARITY TEST

- Control Digital DC Power Supply Remotely
- Be able to set parameter for input dc voltage
 - Ex. Input = 0mV:1mV:300mV
- Plot results to show dynamic range
- Regression Analysis to fit a line/curve of best fit to results to extract transfer function so we can convert ADC Count to Voltage

√PEDESTAL TEST

- Total of 16,384 analog storage cells
- Keep input function generator OFF
- Perform Histogram on select cells for 5,000 Events
- Histogram will tell us 2 things:
 - Mean = Should be centered around zero if Pedestals were generated from firmware and subtracted properly
 - Std Deviation = if reasonable or defective storage cell

√TIMING RESOLUTION TEST

- Find Zero Crossings at Rising Edges to calculate Period
- Plot Histogram of Period
- Spatial dependence on starting position time was observed so timing correction was made which displayed even better timing resolution

• TRIG SCAN

- Heatmap of trigger frequency for different thresholds by using a set
 High Voltage DAC value with a High Voltage Reference between 69V
 & 75V
- HV DAC = 10, 100; Threshold=3400:1:3700
- Isar (UH) sorting out details in firmware

• SIPM

- Plot temperature and currents
- <u>FINALLY</u>: Results must be properly logged in a Database or external hard drive. This means data must be organized well in a csv file initially with the proper headers. Folders must be in an appropriate hierarchical order

Estimation of Time to Complete each Test

OPTIMIZE BIAS

- Randomly pick 4 Windows (200 Events, 100 Bias Sweep)
 - 3 Hours, 40 Minutes
- Randomly pick 4 Windows (1 Event, 4000 Bias Sweep)
 - 8 Hours, 45 Minutes
- Generates 1 plot with all windows stitched together
- Generates 2*1 plot (dot or line) per bias value change for each set of 4 Windows (2*128 plots minimum for all 512 Windows)
 - Scales Sinusoid Amplitude to 1 and fits it to Expected Sinusoid with unity amplitude
 - · Generates chi-squared test score for each fit and add to csv file
 - Generate 1 plot for chi-squared test score vs bias value
 - Generates total residual plot and errorbar of residuals for each fit.
- Generates 1 connected scatter plot per 4 windows stitched

SINE SCAN

- Windows 0 512 (1 Event)
 - 16 Minutes ... Now 11 Minutes 36 Seconds
- Same as OPTIMIZE_BIAS just no bias changed

SINEBURST SCAN

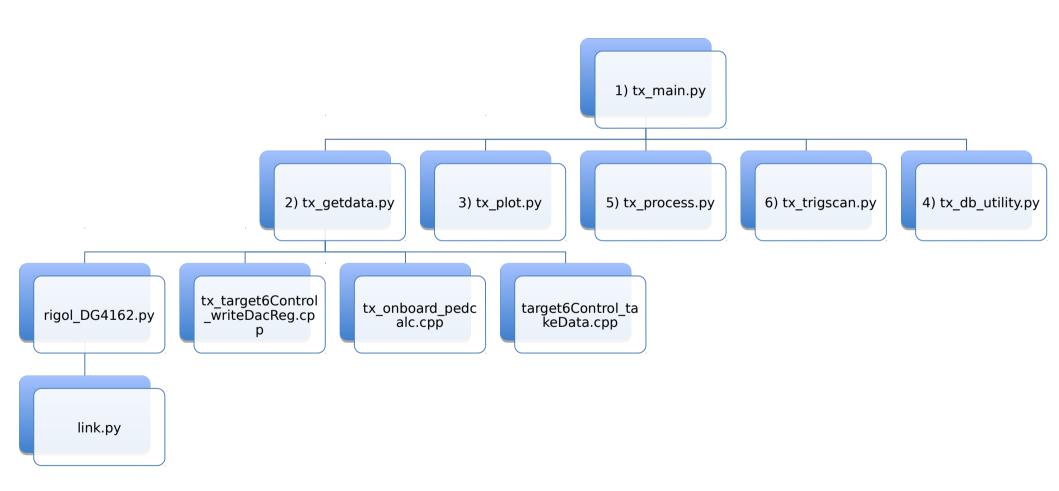
- Windows 0 512 (1 Event)
 - 16 Minutes ... Now 11 Minutes 36 Seconds
- Generates 1 plot with all windows stitched together
- Generates 1 plot for each set of 4 Windows (128 plots minimum for all 512 Windows)
 - · Does not do fit

LINEARITY ADC TO VOLT

- To Be Determined
- PEDESTAL TEST
 - Randomly pick 4 Windows (5000 Events)
 - 50 Minutes
 - Generates 2*128 histograms of ADC Count for analog storage cells
 - 128 histograms including Outliers
 - 128 histograms filtering Outliers
 - Generates 2*1 errorbars for analog storage cells in mean and std
 - 1 errorbar including Outliers
 - · 1 errorbar filtering Outliers
 - Generates 1 plot for percentage of outliers across 128 analog storage cells

TIMING_RESOLUTION_TEST

- Randomly pick 4 Windows (5000 Events)
 - 50 Minutes
- Randomly pick 4 Windows (100000 Events)
 - 16 Hours 52 Minutes


TRIG_SCAN (for RHIC Board)

- HV_DAC = 10, 100; Threshold=3400:1:3700
 - · 6 Hours, 23 Minutes, 48 Seconds

PRODUCTION TEST

- Decide on what tests to actually perform
- With future changes to be made to new motherboard, we will be able to perform a test sweep across all 10 TARGETX ASICs in one go.

Layout of Scripts Written [1/2]

4/14/15

Layout of Scripts Written [2/2]

1. main.py

1. User Interface that help ensure right inputs

2. tx_getdata.py

- 1. Write new bias register values
- 2. Turn function generator on/off remotely in between pedestal generation
 - 1. Leave output off if 'PEDESTAL_TEST'
- Collect data
- 4. Parse data
- 5. Save data

3. tx_plot.py

- 1. Plot all waveforms on one graph
- 2. Histograms, plots for numerous tests

4. tx_db_utility.py

1. Upload test data to PostgreSQL database

tx_process.py

- 1. SINEBURST_SCAN
 - 1. Plot Sinusoids in Appropriate Windows
- 2. PEDESTAL TEST
 - 1. Plot Histogram per Analog Storage Cell
 - 2. Extract Mean, std. Save in csv file

5. tx_process.py (continued)

- 3. OPTIMIZE BIAS or SINE SCAN
 - 1. Fit observed sinusoid with expected sinusoid
 - 1. Scale amplitudes to unity
 - 2. Synchronization w/ Matched Filter
 - 2. Plot fitted sinusoids on multiple plots
 - Chi-Squared Test (Goodness of Fit) quantize results saving scores on csv
 - 1. Plot results from chi-squared test
- 4. LINEARITY ADC TO VOLT
 - 1. Determine Amplitude of Sinusoid
 - 2. Plot Amplitude: Voltage vs ADC Count
 - 3. Extract ADC to Voltage Transfer Function
- 5. TIMING_RESOLUTION_TEST
 - 1. Find zero crossings to determine Period
 - 2. Plot histogram of Period

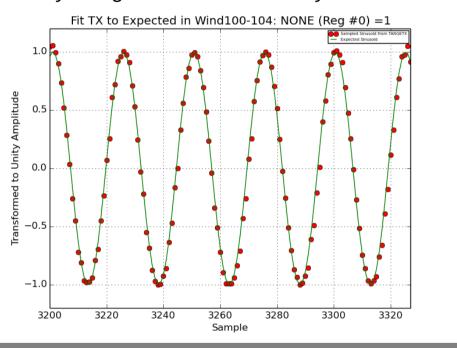
6. tx_trigscan.py

- 1. TRIG_SCAN
 - Plot heatmap of trigger count for different thresholds per HV DAC value

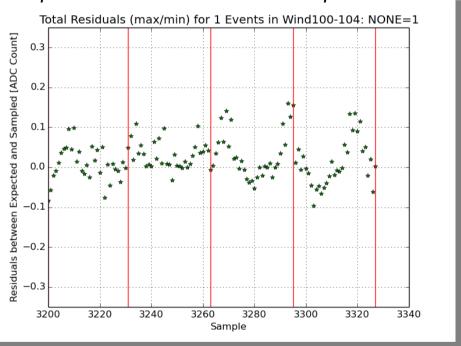
7. tx_production.py or tx_production_parallel.py

- 1. PRODUCTION_TEST
 - 1. Choose ASIC #0-9
 - 2. Bunch of Pre-Configured Tests

NOTE: Red means not implemented yet, Yellow means in development


How Pedestals are done?

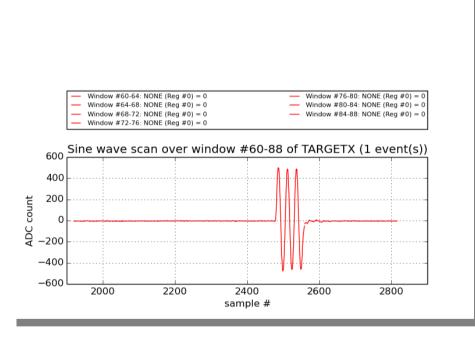
- AC Coupled Input
 - Steps
 - Change Bias Register Value
 - Turn OFF Func Gen
 - Generate Pedestals
 - Turn ON Func Gen
 - Get Data


- DC Coupled Input
 - Steps
 - Change Bias Register Value
 - Turn ON Func Gen
 - Change Amplitude to 1mVPP (smallest)
 - Generate Pedestals
 - Turn ON Func Gen
 - Change Amplitude back to Default Amplitude
 - Get Data

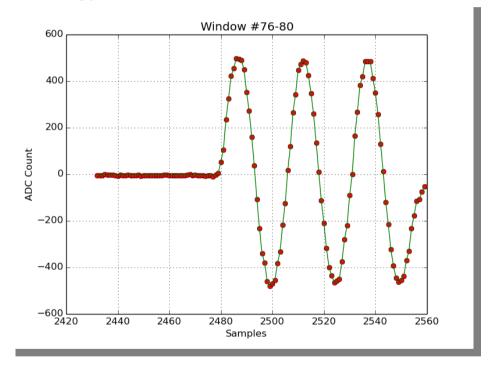
OPTIMIZE_BIAS & SINE_SCAN

Fit Sampled Waveform to Expected Sinusoid by using Matched Filter for Synchronization

Residuals by subtracting sampled by expected value from same data plotted on left

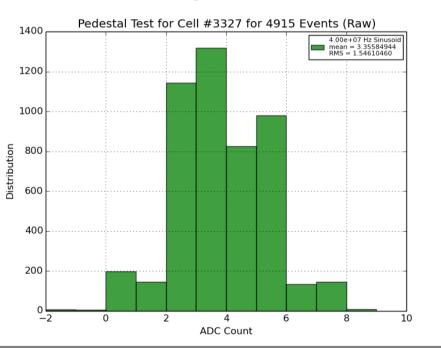


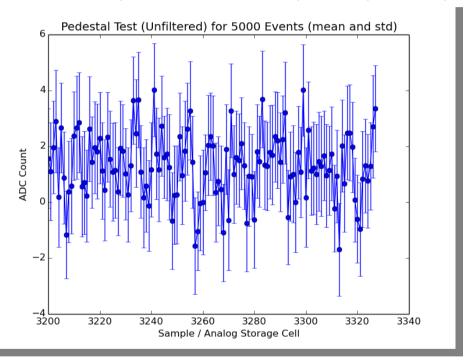
NOTE: Chi-Squared Results used to quantify results and choose optimum bias register value


*** More plots can be seen by performing test ***

SINEBURST_SCAN

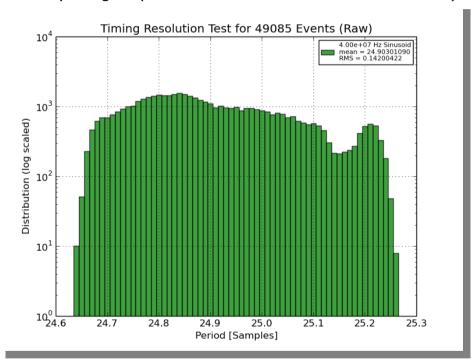
Ability to scan all 512 windows and plot them

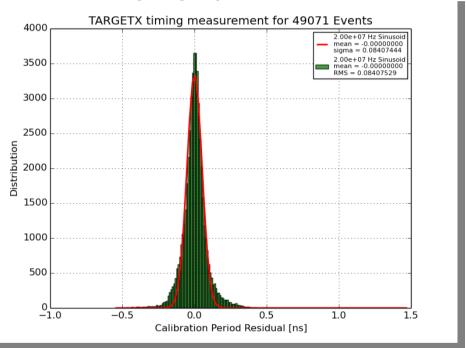

A typical waveform readout is made of 4 windows


*** More plots can be seen by performing test ***

PEDESTAL_TEST

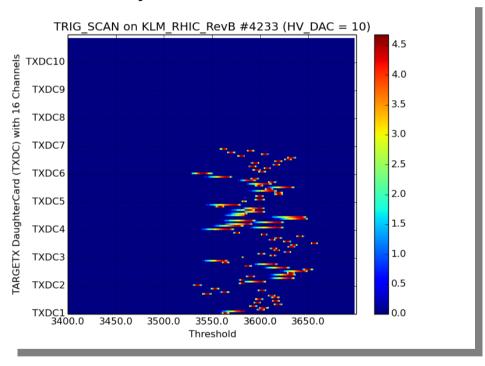
Histogram of one cell

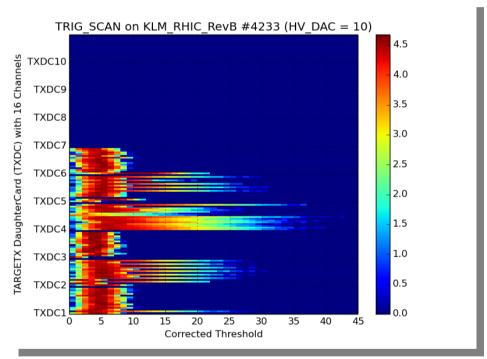

Errorbar plot of mean and std per cell (128 cells)


*** More plots can be seen by performing test ***

TIMING_RESOLUTION_TEST

You can estimate the TARGETX sampling rate by multiplying the mean by the known frequency of the input signal (20MHz*49.94272829 = **0.998855 GSa/s**)


Spatial Dependence was shown on the starting position time. After correcting for this, the histogram below as obtained which displayed that we were getting **84 ps time resolution**.



*** More plots can be seen by performing test ***

TRIG_SCAN

TXDC1-6 connected on MotherBoard, but only TXDC1, TXDC2, TXDC4, TXDC5 & TXDC6 cables connected to RHIC Board

NOTE: This particular test is still in development stage where Isar (UH) is working out details in Firmware.

*** More plots can be seen by performing test ***

PRODUCTION_TEST

List of tasks for production:

OPTIMIZE_BIAS

- Randomly choose 4 Windows for readout
- 5 Events
- Choose all 10 ASICs (ASICno 0-9 or TXDC1-10) on MotherBoard
- 10 Bias Register Value sweep (around 58) on SSTOUTFB (Reg #75)
- <u>Optimize the most sensitive Timebase Bias</u> <u>Register</u>

SINE_SCAN

- Choose all 512 Windows for readout
- 5 Events
- Choose all 10 ASICs (ASICno 0-9 or TXDC1-10) on MotherBoard
- Verify a clean visual of a sinusoid

PEDESTAL_TEST

- Randomly choose 4 Windows for readout
- 5000 Events
- Choose all 10 ASICs (ASICno 0-9 or TXDC1-10) on MotherBoard
- Look for outliers

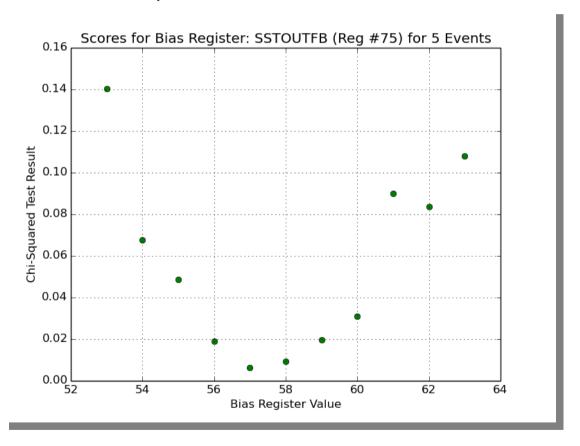
• TRIG SCAN

- $HV_DAC = 10, 100$
- Threshold = 3400:1:3700
- <u>Verify hardware trigger</u>

SIPM

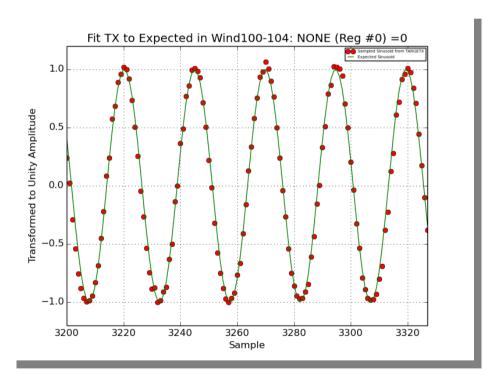
- Read out currents and temperature
- Verify health of board

PRODUCTION TEST: 1) OPTIMIZE_BIAS [1/4]

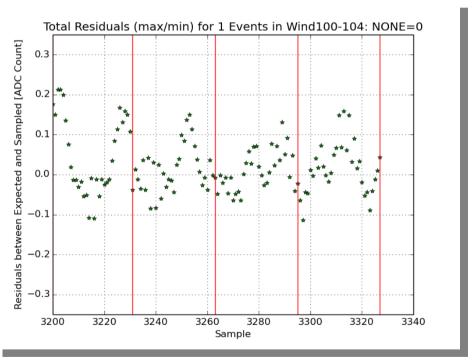

"Fitting and Chi-Squared Test Algorithm" to choose optimum bias register value

- 1. Control a function generator to inject a 40MHz Sinusoid with 900mVPP Amplitude
- 2. Readout and construct waveform "X"
- 3. Scale amplitude of waveform "X" to unity amplitude
- 4. Construct an expected sinusoid "E" by sampling (at 0.997530400 GSa/s which was found by the TIMING_RESOLUTION_TEST) a 40MHz Sinusoid with unity amplitude
- 5. Use matched filter to achieve synchronization for fitting with waveforms "X" and "E"

- 6. Plot synchronized waveforms "X" and "E" onto same plot and call it Fitting#
- 7. Plot residuals for "X" and "E"
- 8. Calculate Chi-Squared Result of "X" and "E" and log these raw values
- Use average of the raw values of the Chi-Squared Results for waveforms with multiple events to determine optimum bias register value

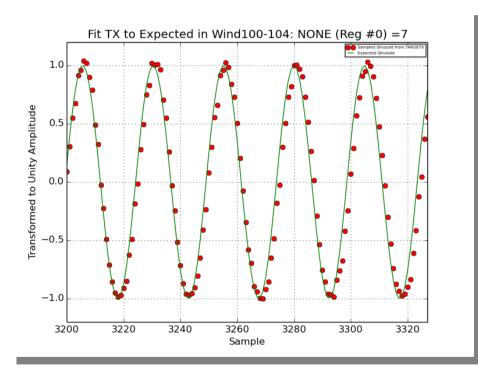

PRODUCTION TEST: 1) OPTIMIZE_BIAS [2/4]

Optimum SSToutFB Value Chosen

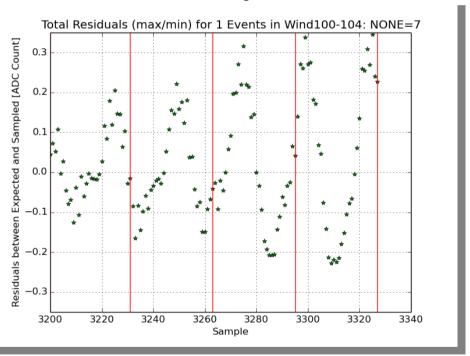


PRODUCTION TEST: 1) OPTIMIZE_BIAS [3/4]

TARGETX Sampling Speed and/or Frequency of Function Generator Changes

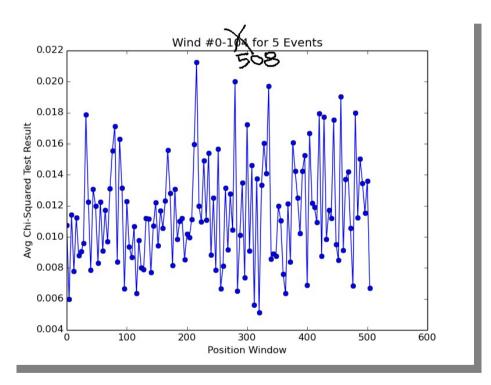


The variance of the sampling speed and/or frequency of the input waveform will affect the fitting which can be seem from looking at the residuals (see next slide)

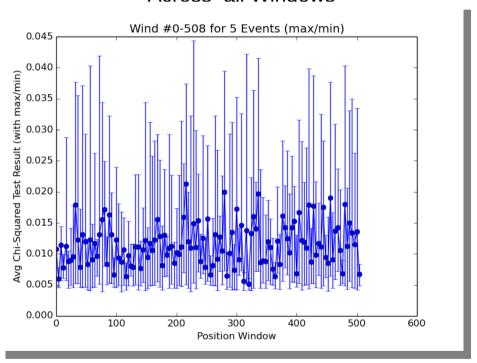


PRODUCTION TEST: 1) OPTIMIZE_BIAS [4/4]

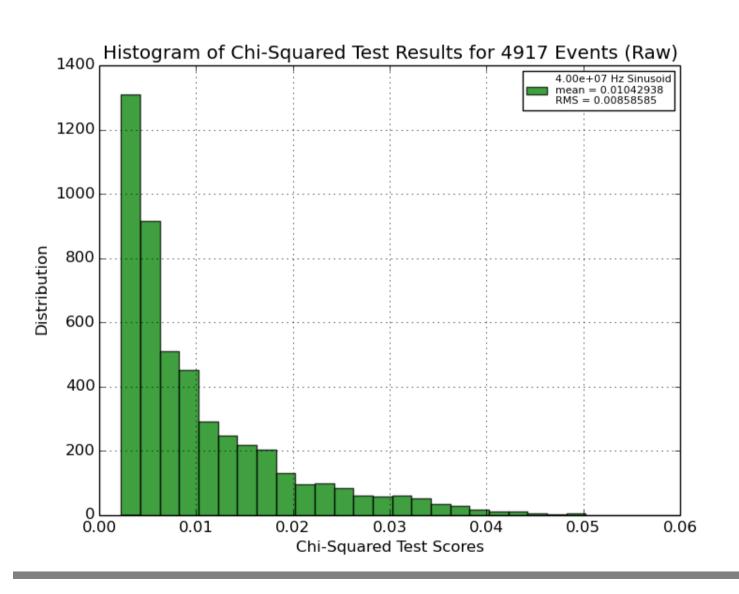
TARGETX Sampling Speed and/or Frequency of Function Generator Changes



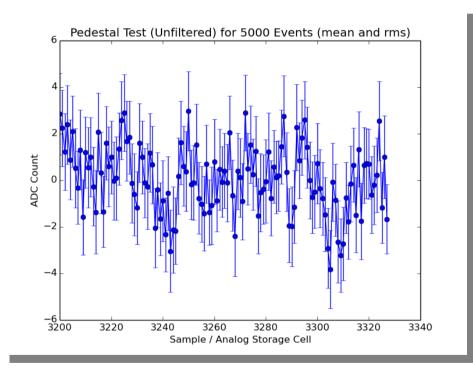
The variance of the sampling speed and/or frequency of the input waveform will affect the fitting which can be seem from looking at the residuals



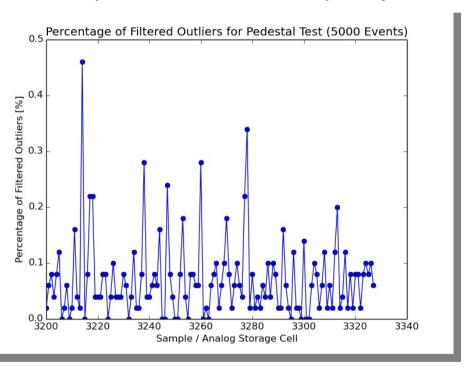
PRODUCTION TEST: 2) SINE_SCAN [1/2]


Avg Chi-Squared Scores Across all Windows

Avg Chi-Squared Scores (with errorbars) Across all Windows



PRODUCTION_TEST: 2) SINE_SCAN [2/2]



PRODUCTION TEST: 3) PEDESTAL_TEST [1/3]

Errorbar plot of Pedestals

Outlier Detection Algorithm may be used to help determine defective chips maybe

PRODUCTION TEST: 3) PEDESTAL_TEST [2/3]

Filtering Outliers: z-score and Chebychev's Theorem

$$z_{i} = \frac{|(x_{i} - mean(x))|}{std(x)}$$

- Z-score
 - Referred to as a standardized value and denotes number of standard deviations X_i is from mean
- Chebyshev's theorem
 - For any data set, at least $1-1/z^2$ of data values must be within z standard deviations from mean, where z minus any value is greater than 1
 - Any Distribution
 - For z = 2: At least 75% of values are there
 - For z = 3: At least 89% of values are there
 - For z = 4: At least 94% of values are there
 - For z = 5: At least 96% of values are there

PRODUCTION TEST: 3) PEDESTAL_TEST [3/3]

Filtering Outliers: REJECT_OUTLIERS Algorithm

REJECT_OUTLIERS(data, m=6)

- 1. for i = 0 to length(data)
- 2. num[i] = abs(data[i] median(data))
- 2. mdev = median(num)
- 3. if (mdev)
- 4. for i = 0 to length(data)
- 5. z_modified[i] = num[i]/mdev
- 6. else $z \mod f$ el = 0
- 7. for i = 0 to length(data)
- 8. if $(z_modified[i] < m)$
- 9. filtered_data.append(data[i])
- 10. return filtered_data

O(n) run-time

Iglewicz-Hoaglin Method

- median(x) can be used as a measure of location when distribution is skewed due to attached outliers
- mdev is called the median absolute deviation because it is basically:

$$mdev(x) = median(|(x_i - median(x))|)$$

$$z_{i} = \frac{\left| (x_{i} - median(x)) \right|}{mdev(x)}$$

PRODUCTION TEST:

Parallel Processing

- BEFORE: Data Acquisition & Data Processing were Sequential
 - OPTIMIZE BIAS (5 Events, 4 Windows)

VANI's Comp: 0 hour(s), 21 min(s), 21 sec(s)
Bronson's Comp: 0 hour(s), 18 min(s), 9 sec(s)

- SINE_SCAN (5 Events, 508 Windows)

VANI's Comp: 4 hour(s), 58 min(s), 23 sec(s)
Bronson's Comp: 4 hour(s), 2 min(s), 16 sec(s)

- PEDESTAL TEST (5k Events, 4 Windows)

VANI's Comp: 9 hour(s), 24 min(s), 40 sec(s)
Bronson's Comp: 8 hour(s), 51 min(s), 9 sec(s)

- TOTAL

VANI's Comp: 14 hour(s), 44 min(s), 24 sec(s)
 Bronson's Comp: 13 hour(s), 11 min(s), 34 sec(s)

```
bronson@bronson-p7-1147c: ~/Desktop/IDLab/SCROD-boardstack/KLM/TX9UMB-3/workspace/usbin 2015-03-30 21:53:03,040 PRODUCTION test for KLMReadout #0008 has started!!! 2015-03-30 21:53:08,339 >> OPTIMIZE_BIAS test for KLMReadout #0008 has begun. 2015-03-30 21:54:56,632 >> OPTIMIZE_BIAS test for KLMReadout #0008 has ended. 2015-03-30 21:54:56,633 >> SINE_SCAN test for KLMReadout #0008 has begun. 2015-03-30 22:18:48,455 >> SINE_SCAN test for KLMReadout #0008 has ended. 2015-03-30 22:18:48,456 >> PEDESTAL_TEST test for KLMReadout #0008 has begun. 2015-03-30 23:11:29,682 >> PEDESTAL_TEST test for KLMReadout #0008 has ended. 2015-03-30 0:02:33,813 >> TIMING_RESOLUTION_TEST test for KLMReadout #0008 has ended. 2015-03-31 00:02:33,813 >> TIMING_RESOLUTION_TEST test for KLMReadout #0008 has begun. 2015-03-31 00:02:33,813 >> TRIG_SCAN test for KLMReadout #0008 has ended. 2015-03-31 00:02:37,467 >> TRIG_SCAN test for KLMReadout #0008 has ended. 2015-03-31 00:02:37,470 PRODUCTION test for KLMReadout #0008 has ended.
```

- NOW: Data Acquisition and Data Processing are in Parallel
 - OPTIMIZE BIAS
 - · VANI's Comp:

• Bronson's Comp: 0 hour(s), 14 min(s), 35 sec(s)

- SINE SCAN
 - · VANI's Comp:

Bronson's Comp: 2 hour(s), 37 min(s), 40 sec(s)

- PEDESTAL TEST
 - · VANI's Comp:

• Bronson's Comp: 8 hour(s), 25 min(s), 29 sec(s)

- TOTAI

VANI's Comp: 1 Gig Memory Could not Handle it
 Bronson's Comp: 11 hour(s), 19 min(s), 48 sec(s)

```
pronson@bronson-p7-1147c: ~/Desktop/IDLab/SCROD-boardstack/KLM/TX9UMB-3/workspace/usbln bronson@bronson-p7-1147c: ~/Desktop/IDLab/SCROD-boardstack/KLM/TX9UMB-3/workspace/usbln 13:28:16,830 PRODUCTION test for KLMReadout #0010 has started!!! 2015-03-31 13:28:30,530 >> OPTIMIZE_BIAS test for KLMReadout #0010 has begun. 2015-03-31 13:29:55,295 >> SINE_SCAN test for KLMReadout #0010 has begun. 2015-03-31 13:45:41,051 >> SINE_SCAN test for KLMReadout #0010 has ended. 2015-03-31 13:45:41,052 >> PEDESTAL_TEST test for KLMReadout #0010 has begun. 2015-03-31 14:36:12,549 >> PEDESTAL_TEST test for KLMReadout #0010 has ended. 2015-03-31 14:36:12,550 >> TIMING_RESOLUTION_TEST test for KLMReadout #0010 has begun. 2015-03-31 15:26:44,155 >> TIMING_RESOLUTION_TEST test for KLMReadout #0010 has ended. 2015-03-31 15:26:44,156 >> TRIG_SCAN test for KLMReadout #0010 has begun. 2015-03-31 15:26:48,030 >> TRIG_SCAN test for KLMReadout #0010 has ended. 2015-03-31 15:26:48,031 PRODUCTION test for KLMReadout #0010 has ended.
```

PRODUCTION_TEST: Run-Time

10 TARGETX ASICs with SCROD (revA) as Readout

Including MotherBoard Testing

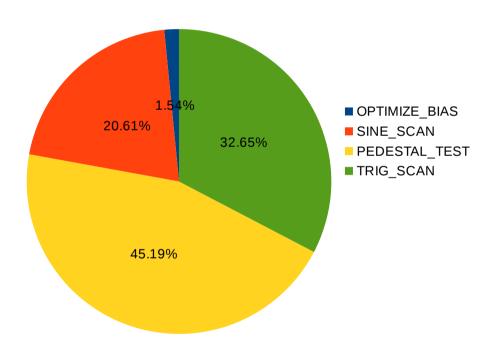
2.41% OPTIMIZE BIAS

■ SINE_SCAN ■ PEDESTAL_TEST

Data Acquisition & Data Processing without RHIC

33.74%

04/17/15

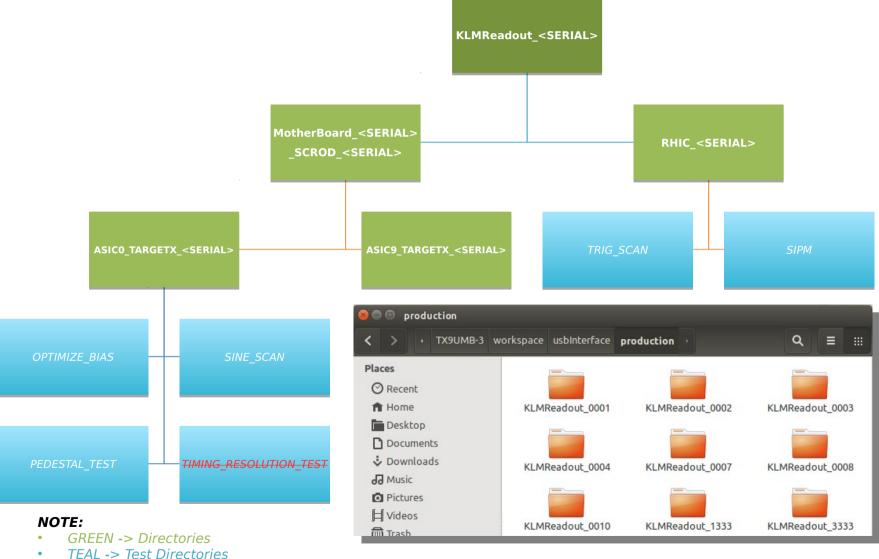

- VANI's Comp (Sequential): 14 hour(s), 44 min(s), 24 sec(s)

63.85%

- Bronson's Comp (Parallel): 11 hour(s), 19 min(s), 48 sec(s)

10 TARGETX ASICs with SCROD (revA) as Readout

Including MotherBoard and RHIC Board Testing

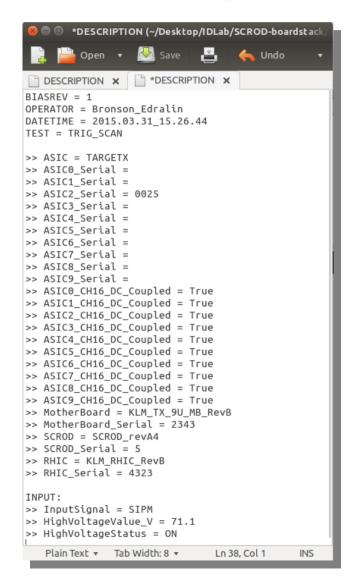


Data Acquisition & Data Processing with RHIC

- VANI's Comp (Sequential): 21 hour(s), 8 min(s), 12 sec(s)

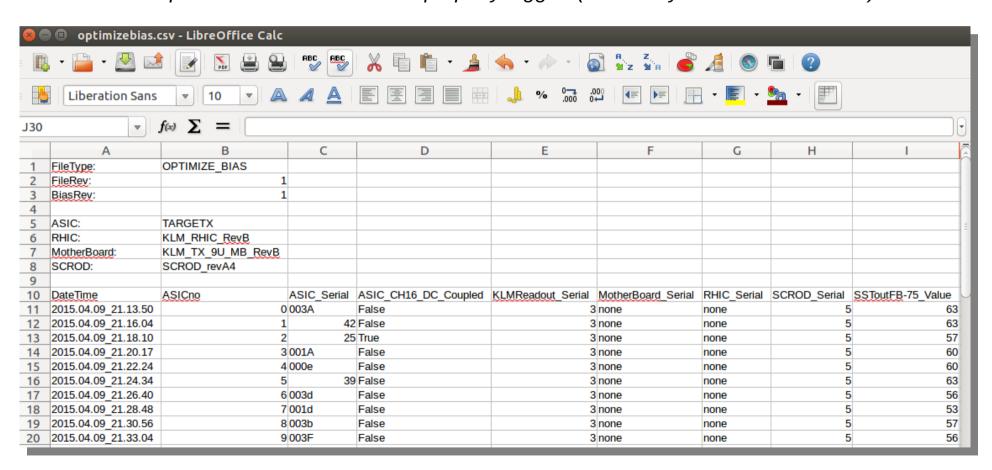
- Bronson's Comp (Parallel): 17 hour(s), 43 min(s), 36 sec(s)

PRODUCTION_TEST: Storing of Data

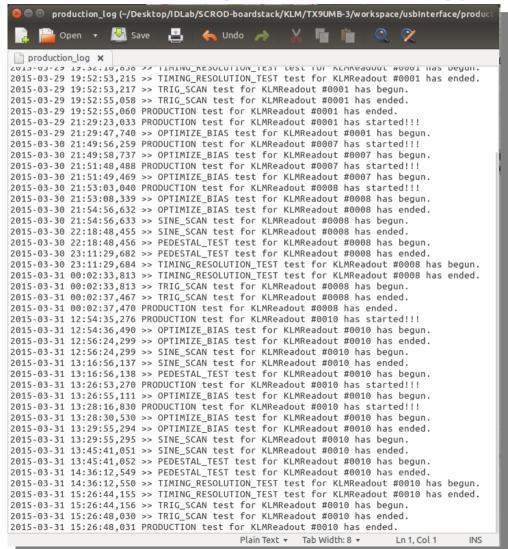


PRODUCTION_TEST: Logging Data [1/3]

DESCRIPTION: OPTIMIZE_BIAS, SINE_SCAN, PEDESTAL TEST



DESCRIPTION: TRIG_SCAN, SIPM


PRODUCTION_TEST: Logging Data [2/3]

Optimized SSToutFB values properly logged (Note: only ASIC #2 connected)

PRODUCTION_TEST: Logging Data [3/3]

Production_log with DateTime logged

