NIM-HV-PSU PRESENTATION

Vihtori Virta 12/16/2014

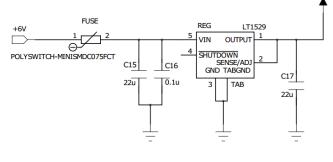
Content

- Display Board
- High Voltage Board
- 3D Model
- Mechanical Design
- What was learnt during the project

Display board

- Display board works as a user interface between:
 - Control unit (Raspberry Pi)
 - High Voltage Board

Regulator and Fuse


• Fuse / Polyswitch

Max Voltage	Max Current	Current-Hold	Current-Trip	R Min/Max	Time to Trip
13,2V	100A	750mA (Max)	1,5A	0,110-0,450Ω	0,2s

• Regulator

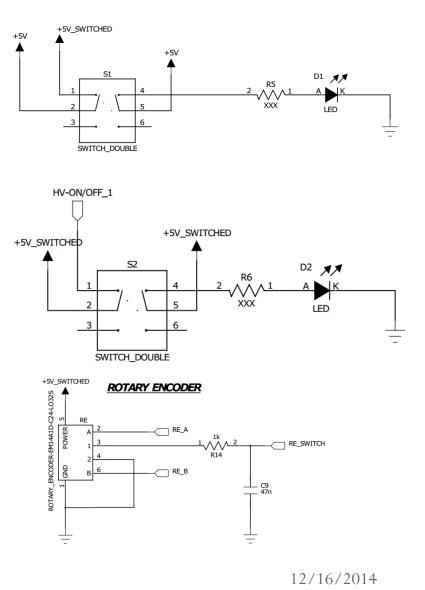
Dropout Voltage	Output Current	Quiescent current
0,4V at Iout = 1,5A	3A	50 μΑ

- Power dissipation
- (Vin-Vout)*Iout = (6V-5V)*1, 5A = 1.5W

12/16/2014

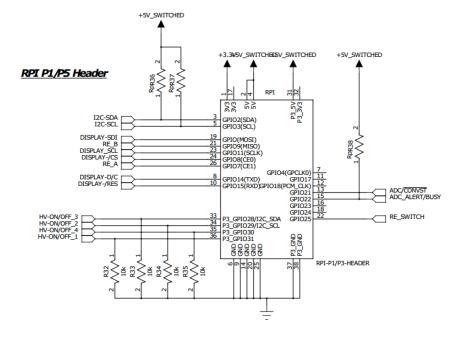
+5V

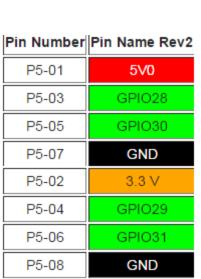
Power analysis

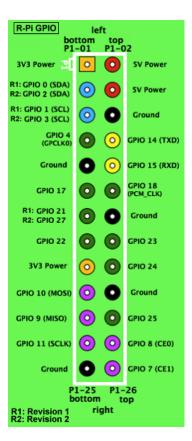

• Display Board

• HV Board

Component	Current Draw	Component	Current Draw
Raspberry Pi	700-1000 mA	Ultravolt AA modules	1350 mA with Full load and Max Eout
Display	330 mA (max)		
DAC	1,3 mA		
ADC	1,5 mA		
Other components	<100 mA		
Total (Worst Case)	~1450 mA		

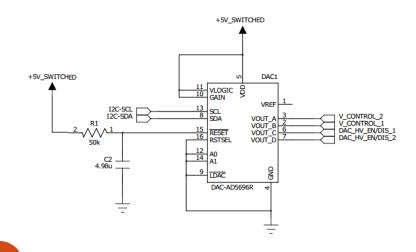

Switch and rotary encoder functionality

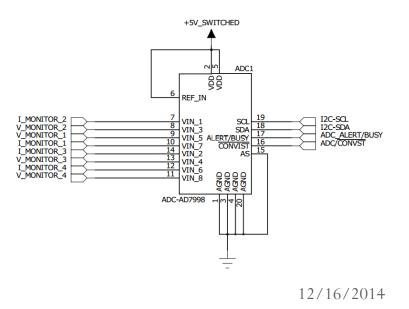

- "Top Switch"
 - Power on
 - LED indicates that PSU is on
- Other switches
 - HV channels on
 - LED indicates that the channel is on
- Rotary encoder
 - 2-bit quadrature code



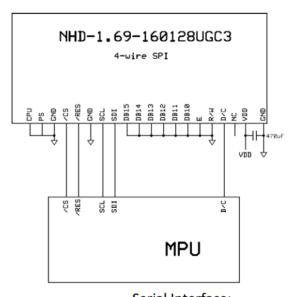
RPI Connection

- GPIO voltage levels are 3.3 V and are not 5 V tolerant.
- No over-voltage protection on the board



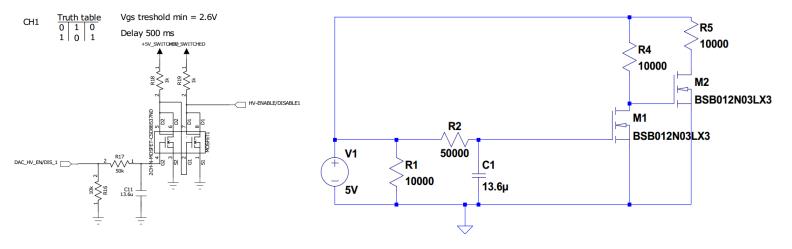

ADC and DAC Connection

- DAC
 - Reset delay: 300 ms
 - To make sure that RPI wakes up first

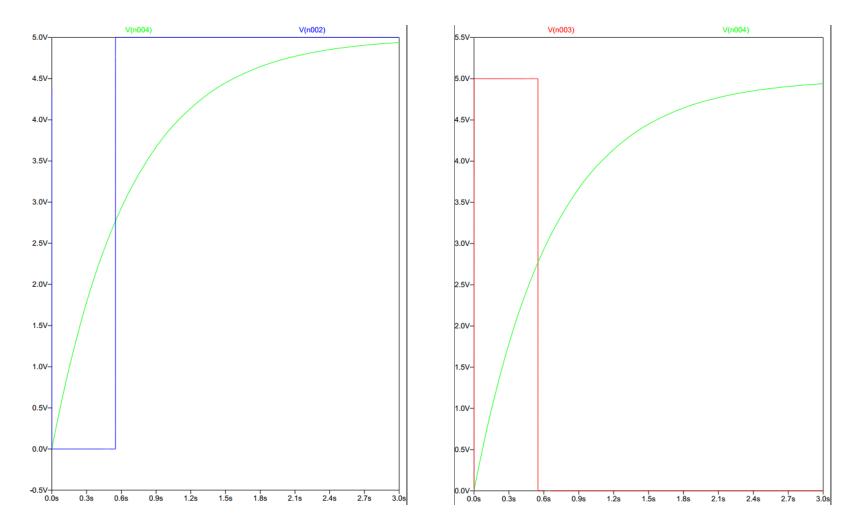

```
• ADC
```

 Reference pin must have 1µF and 0.1µF Capacitors

Display connection

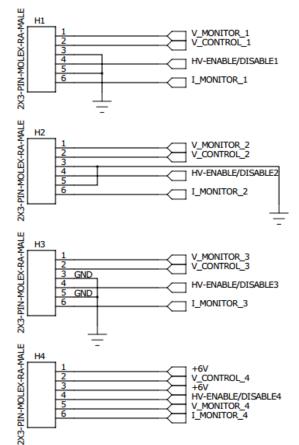

DISPLAY +3.3V C1 2 DISPLAY 470u 3 4 D/C ę DISPLAY-D/C VSS VSS 6 13 14 DISPLAY-SDI SDI SCL DISPLAY_SCL <u>16</u> 17 DISPLAY-/RES /RES /CS DISPLAY-/CS 19 20 PS CPU <u>800-100</u> OLED-NHD-1.69-160128UGC3

Ser	al	Int	er	a	ce:


Pin No.	Symbol	External Connection	Function Description
1	GND	Power Supply	Ground
2	VDD	Power Supply	Supply Voltage for OLED and logic.
3	NC	-	No Connect
4	D/C	MPU	Register select signal. D/C=0: Command, D/C=1: Data
			Tie LOW for 3-wire Serial Interface.
5-6	VSS	Power Supply	Ground
7-12	GND	Power Supply	Ground
13	SDI	MPU	Serial Data Input signal.
14	SCL	MPU	Serial Clock signal.
15	GND	Power Supply	Ground
16	/RES	MPU	Active LOW Reset signal.
17	/CS	MPU	Active LOW Chip Select signal.
18	GND	Power Supply	Ground
19	PS	MPU	Parallel/Serial select. HIGH: Parallel. LOW: Serial
20	CPU	MPU	Interface select. HIGH: 6800 interface. LOW: 8080 interface

Delay circuit for HV EN/DIS pin

- 500ms delay circuit to make sure that the HV modules wakes up at the disabled state
- Simulations are done with the FET with different threshold voltage and thus is slightly incorrect

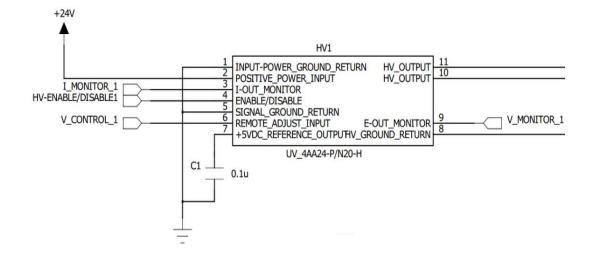

Simulation result

Connector comparison

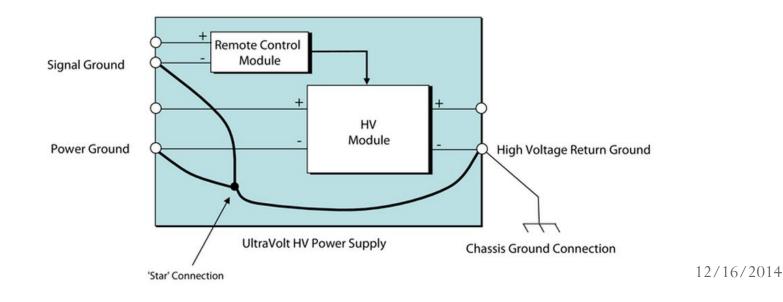
• Display Board 2X3-PIN-MOLEX-FEMALEX3-PIN-MOLEX-FEMALEX3-PIN-MOLEX-FEMALEX3-PIN-MOLEX-FEMALE V_MONITOR_1 V_CONTROL_1 3 GND 4 HV-ENABLE/DISABLE1 5 GND 6 I_MONITOR_1 V_MONITOR_2 V CONTROL 2 3 4 HV-ENABLE/DISABLE2 5 6 I_MONITOR_2 H3 V_MONITOR_3 V CONTROL 3 3 GND 4 HV-ENABLE/DISABLE3 5 GND 6 I_MONITOR_3 H4 +6V V CONTROL 4 3 +6V 4 HV-ENABLE/DISABLE4 5 V MONITOR 4 6 I MONITOR 4

Display Board – Bill of Materials

Part	Part Number	Quantity	Datasheet	Price
Display	NHD-1.69-160128UGC3-ND (Digikey)	1	http://www.newhavendisplay.com/specs/NHD-1.69- 160128UGC3.pdf	\$28,5
ADC	AD7998	1	http://www.analog.com/static/imported- files/data_sheets/AD7997_7998.pdf	\$8,62
DAC	AD5696R	2	http://www.analog.com/en/digital-to-analog- converters/da- converters/ad5696r/products/product.html	\$17,24
FET	CSD8853/296-37303-1-ND (digikey)	2	http://www.ti.com/lit/ds/symlink/csd88537nd.pdf	\$1,72
Polyswitch	MINISMDC075FCT	1		\$0,31
Regulator	LT1529CQ-5#PBF	1	http://cds.linear.com/docs/en/datasheet/1529fb.pdf	\$7,41
Toggle Switch	7201SYWQE	5	http://datasheet.octopart.com/7201SYWQE-C%26K- Components-datasheet-11046592.pdf	\$7,77
Rotary encoder	Bourns EM14	1	http://www.bourns.com/pdfs/em14.pdf	\$30,56
Board Connector	WM17736-ND (Digikey)	4	http://www.molex.com/pdm_docs/sd/015247043_sd. pdf	\$1,67


High Voltage Board

• High Voltage Board has the High Voltage components


Pin Routing / Configuration

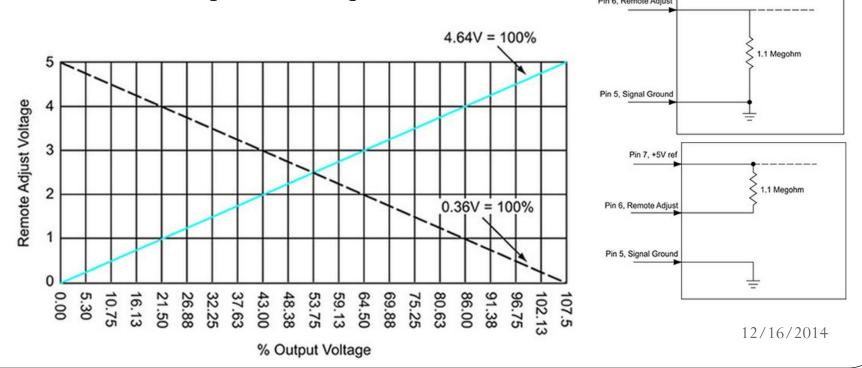
CONNECTIONS			
PIN	FUNCTION		
1	Input-Power Ground Return		
2	Positive Power Input		
3	Iout Monitor		
4	Enable/Disable		
5	Signal Ground Return		
6	Remote Adjust Input		
7	+5VDC Reference Output		
8	HV Ground Return		
9	Eout Monitor		
10 & 11	HV Output		

Grounding

- Module has 3 different grounds:
 - Signal Ground
 - Power Ground
 - High Voltage Return Ground
- All Grounds are tied together inside the module

Power Problems

- The power supply for power supply can provide 1,5 A for 24V line
- If all 4 channels are in use together with full load and max Eout, the total current draw is 5.4 A

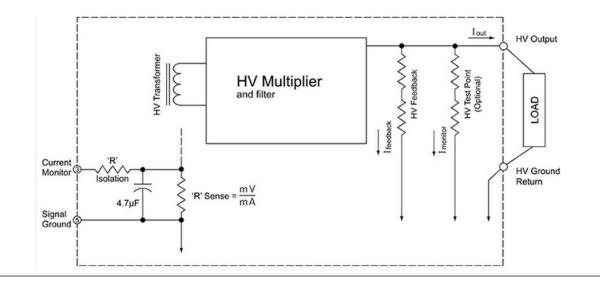

Solution

- The PMT's needs only 2000V (max) to work
- Therefore the total current draw will be 2,7A
- Not still enough
 - Only 2 Channels will be used with this main power supply

Voltage controlling

18

- Voltage can be controlled from 0% to 107.5%
 - Positive supplies are scaled so that 4.64 V = 100%
 - Negative supplies are scaled so that 5V = 0%
- A $1.1M\Omega$ resistor pull up provides zero output voltage if the control pin is left open



Voltage monitoring

- Is accomplished with a high-voltage divider resistor set
- The divider resistor set is designed to be properly scaled with a $10M\Omega$ input-impedance meter connected to the circuit

Current monitoring

- The HV Multiplier in each high-voltage power supply is grounded through the $\rm R_{Sense}$ resistor
- Current scale factor is 0,752 mA/V
- Positive supplies has negative current-monitor voltage and vise versa with negative supplies
- Low output Impedance: $1-22\Omega$
 - Buffer?

HV Board Bill of Materials

Part	Part Number	Quantity	Datasheet	Price
Ultravolt Positive HV-Module	4AA24-P20-H	2	http://www.ultravolt.com/uv_ docs/AASeriesDS.pdf	\$514
Ultravolt Negative HV-Module	4AA24-N20-H	2	http://www.ultravolt.com/app lication_notes/TN-2.pdf	\$514
Board Connector	WM17723-ND (Digikey)	4	http://www.molex.com/pdm_ docs/sd/015246180_sd.pdf	\$1,78
Power connector	WM18446-ND (Digikey)	1	http://www.molex.com/pdm_ docs/sd/039303035_sd.pdf	\$0,89

What still has to be done

- Can get rid of one DAC
 - The HV Enable / Disable pins should be connected directly to the GPIO pins
- Pull up resistors has to be moved closer to the receiving pins.
 - Also more pull up resistors
- Buffers for the low impedance current-monitor path
- Current compensation in code

What is learnt during this Project

- HTML and CSS Web designing
 - The project page was the first one I used HTML
- AutoCAD 2D mechanical designing tool
- Autodesk Inventor 3D mechanical designing tool
- Circuit designing
- What not to do in next design $\textcircled{\odot}$