Simple Tracker Geometry

• Started with a simple geometry:
 • 75 silica optical fibres stacked together (38, 37 → double layers)
 • Two double-layered trackers

• Will improve the geometry as we go ahead.

• Looking at DD4hep as well. We’ll probably need an xml of the drawing.
4 GeV muons (μ^+, μ^-)
Incident with a moving particle gun
CRY (Cosmic-ray Shower Library)

• Installed it on my virtual machine running Ubuntu 20.04.
• Tested out some included examples, installation seems to be fine.
• Looking into more details.

Importing CAD geometry in DD4hep

• Documentation says it is possible with the assimp package (available on git). Supports import from ~53 filetypes.
• I haven’t tried this yet. What filetypes can the geometry be exported in with Solid Edge or SOLIDWORKS? Is XML supported?
• Do we want to import everything in black box for Geant4 simulations?
Scintillating Fiber Geometry & Material
(Single-clad fibers - confirmed)

Core
- Material: Polystyrene
- Refractive index: 1.60
- Density: 1.05 g/cc
- Diameter: 1.94 mm

Cladding
- Material: Acrylic (PMMA)
- Refractive index: 1.49
- Density: 1.2 g/cc
- Thickness: 60 μm
Importing CAD files in DD4hep

• Start from a very simple CAD file, maybe collada export (.dae) – similar to xml
• Looking into assimp package examples
• Would like to try out a few different filetypes:

 STL, STEP → DAE, 3DXML, IFC, XAML
Supported filetypes with ASSIMP package

Collada
- *.dae
- *.xml

Blender
- *.blend

Biovision BVH
- *.bvh

3D Studio Max 3DS
- *.3ds

3D Studio Max ASE
- *.ase

Wavefront Object
- *.obj

Stanford Polygon Library
- *.ply

AutoCAD DXF
- *.dxf

IFC-STEP, Industry Foundation Classes
- *.ifc

Neutral File Format
- *.nff

Sense8 WorldToolkit
- *.nff

Valve Model
- *.mdl
- *.vta

Quake I
- *.md1

Quake II
- *.md2

Quake III
- *.md3

Quake 3 BSP
- *.pk3

RtCW
- *.mdc

Doom 3
- *.md5mesh
- *.md5anim
- *.md5camera

DirectX X
- *.x

Quick3D
- *.q3o
- *.q3s

Raw Triangles
- *.raw

AC3D
- *.ac

Stereolithography
- *.stl

Autodesk DXF
- *.dxf

Irrlicht Mesh
- *.irrmesh
- *.xml

Irrlicht Scene
- *.irr
- *.xml

Object File Format
- *.off

Terragen Terrain
- *.ter

3D GameStudio Model
- *.mdl

3D GameStudio Terrain
- *.hmp

Ogre
- *.mesh.xml
- *.skeleton.xml
- *.material

Milkshape 3D
- *.ms3d

LightWave Model
- *.lwo

LightWave Scene
- *.lws

Modo Model
- *.lxo

CharacterStudio Motion
- *.csm

Stanford Ply
- *.ply

TrueSpace
- *.cob
- *.scn

XGL
- *.xgl
- *.zgl
Importing CAD geometry in DD4hep

• Open .STEP file in FreeCAD software and export selected parts to a Collada .dae file.
• Import this .dae file (detector assembly) in DD4hep with DDCAD and then, root may be used for visualization.

In FreeCAD (STEP file) → Collada (.dae) Import in DD4hep Visualize with root
Tested XML (simple layout):

```
<lcdd>
    <includes>
    </includes>
    <detectors>
        <detector id="1" name="HMB_STL" type="DD4hep_TestShape_Creator">
            <check vis="T1_Fiber">
                <shape type="CAD_Assembly" ref="/mnt/hgfs/VMShared/HMB/allGeo.stl"/>
            </check>
        </detector>
    </detectors>
</lcdd>
```

Auxiliary detector model information

- `<includes>` ... `<includes>` Section defining GDML files to be included
- `<define>` ... `<define>` Dictionary of constant expressions and variables
- `<materials>` ... `<materials>` Additional material definitions
- `<display>` ... `<display>` Definition of visualization attributes
- `<detectors>` ... `<detectors>` Section with sub-detector definitions
- `<readouts>` ... `<readouts>` Section with readout structure definitions
- `<limits>` ... `<limits>` Definition of limit sets for Geant4
- `<fields>` ... `<fields>` Field definitions

```
geoDisplay -compact test.xml
```
CAD drawings from STL → GDML

geoConverter -compact2gdml -input test.xml -output test.gdml

• GDML: XML like syntax, compatible with Geant4
• This can be used in an independent Geant4 simulation (independent of DD4hep)
• Material info in CAD files, perhaps lost in translation! Does STL have material info?
• The resulting GDML file might not be efficiently processed with Geant4 though, especially for complex detector geometries.
GENERATION OF PARTICLES WITH CRY LIBRARY

CRY: Cosmic-ray Shower Library (v1.7)

~/cry/test/testOut.cc setup.file 100000

Output file → shower.out:

<table>
<thead>
<tr>
<th>#</th>
<th>nEvent</th>
<th>nSecondary</th>
<th>KE</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>u</th>
<th>v</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1183</td>
<td>-0.35553</td>
<td>-0.17427</td>
<td>0</td>
<td>0.21387</td>
<td>0.5026</td>
<td>-0.83764</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>4</td>
<td>6618</td>
<td>-0.74499</td>
<td>-0.38886</td>
<td>0</td>
<td>-0.3633</td>
<td>0.047603</td>
<td>-0.93046</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>4</td>
<td>6580.5</td>
<td>0.68209</td>
<td>-0.18992</td>
<td>0</td>
<td>-0.27037</td>
<td>-0.38348</td>
<td>-0.88309</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>4150.8</td>
<td>-0.10935</td>
<td>-0.59347</td>
<td>0</td>
<td>0.22576</td>
<td>0.29066</td>
<td>-0.01675</td>
</tr>
</tbody>
</table>

Altitude: 0 m, 2.1 km, 11.3 km
Incident Muon’s Zenith Angle vs KE

Zenith angle: $\cos^{-1}(-w)$

w is the z-component of the particle velocity.
CRY Library Data File

Primary binning

% bin boundaries for Energy (MeV) of primary cosmic ray proton

<table>
<thead>
<tr>
<th>% bins</th>
<th>primaryBins = {</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1800 2000 3000 4000 5000 6000</td>
</tr>
<tr>
<td>2</td>
<td>7000 8000 9000 10000 11000 12000</td>
</tr>
<tr>
<td>3</td>
<td>13000 14000 15000 25118.9 39818.7 63095.7</td>
</tr>
<tr>
<td>4</td>
<td>10000 15849 25118.9 398170 630957 1000000</td>
</tr>
<tr>
<td>5</td>
<td>1.5849e+06 2.51185e+06 3.8107e+06 6.30957e+06 10000000 1.5849e+07</td>
</tr>
<tr>
<td>6</td>
<td>3.9817e+07 6.30957e+07 100000000</td>
</tr>
<tr>
<td></td>
<td>];</td>
</tr>
</tbody>
</table>

Secondary binning

% bin boundaries for Energy (MeV) of secondary particles produced in the shower

<table>
<thead>
<tr>
<th>% bins</th>
<th>secondaryBins = {</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e-09</td>
<td>1.5849391924611e-09 2.51188643158958e-09 3.98187170533497e-09 6.30957344408193e-09</td>
</tr>
<tr>
<td>1e-08</td>
<td>1.5849391924611e-08 2.51188643158958e-08 3.98187170533497e-08 6.30957344408194e-08</td>
</tr>
<tr>
<td>1e-07</td>
<td>1.5849391924611e-07 2.51188643158958e-07 3.98187170533498e-07 6.30957344408195e-07</td>
</tr>
<tr>
<td>1e-06</td>
<td>1.5849391924611e-06 2.51188643158958e-06 3.98187170533498e-06 6.30957344408196e-06</td>
</tr>
<tr>
<td>1e-05</td>
<td>1.5849391924611e-05 2.51188643158958e-05 3.98187170533498e-05 6.30957344408197e-05</td>
</tr>
<tr>
<td>0e-04</td>
<td>0.00000158493919246112 0.00002511886431589599 0.00003981871705334948 0.0000630957344480195</td>
</tr>
<tr>
<td>0e-03</td>
<td>0.0001 0.00158493919246112 0.002511886431589599 0.003981871705334948 0.00630957344480195</td>
</tr>
<tr>
<td>0e-02</td>
<td>0.01 0.0158493919246112 0.02511886431589599 0.0398187170533498 0.0630957344480195</td>
</tr>
<tr>
<td>0e-01</td>
<td>1 0.158493919246112 0.2511886431589599 0.3981871705334948 0.630957344480195</td>
</tr>
<tr>
<td>-1</td>
<td>10 10.8493919246112 22.18864315895993 39.81071705334948 63.0957344480195</td>
</tr>
<tr>
<td>-2</td>
<td>100 158.493919246112 251.18864315895993 398.10717053349483 630.6957344480195</td>
</tr>
<tr>
<td>-3</td>
<td>1000 1584.93919246112 2511.8864315895993 3981.071705334948 6309.573444480195</td>
</tr>
<tr>
<td>-4</td>
<td>10000 158493.919246112 251188.64315895993 39817.05334983 63095.7344480195</td>
</tr>
<tr>
<td>-5</td>
<td>100000 1584939.19246112 2511886.4315895993 398170.5334983 630957.3444480195</td>
</tr>
<tr>
<td>-6</td>
<td>1000000 15849391.9246112 25118886.4315895993 3981705.334983 6309573.4444480195</td>
</tr>
<tr>
<td>-7</td>
<td>10000000 158493919.246112 251188864.3158959993 39817085.334983 63095734.4444480195</td>
</tr>
<tr>
<td>-8</td>
<td>100000000 1584939192.46112 2511888643.158959939817.053349 630957344.4480195</td>
</tr>
</tbody>
</table>

| 33 primary bins |

| 85 secondary bins |

| 85x33 values |
CRY DATA FILE: ORGANIZATION OF PARTICLE PDFs

- **Primary cosmic ray proton energies** (33 primary bins)
 - 1500
 - 2500
 - 5.14 \times 10^7
 - 8.15 \times 10^7

- **85 secondary bins** (sBins)

- Increasing sBins require interpolation of:
 - **Energy** distribution
 - **Time** distribution
 - **cos \theta** distribution
 - **Charge** distribution

For all secondary particles.
Muon Energy Distribution
(After interpolation of almost all distributions in CRY data files)

1M muons

4x more points in KE dist.
More details on NaI Calorimeter

Good references:

- **Product list:** https://www.crystals.saint-gobain.com/products/radiation-detection-products/standard-scintillation-product-list
- **Similar product drawings:**
Nal Scintillator Slab (Calorimeter)

Missing details:
- Spacing between various elements
- Placement/Alignment of Nal Slab inside the HMB Box
Change in Muon KE due to Concrete & Rebars

- Concrete thickness: 8.25 in
- Material: G4_CONCRETE
- Estimated thickness of rebars: 1 in.
- Material: G4_Fe
Including building structures in simulation

Concrete slabs (no rebars yet)

HMB black box

Nal Slab

Color codes:
- Default color: grey
- e^+ : blue
- e^- : red
- Gamma : green
- Neutron : yellow
- π^+ : magenta
- π^- : magenta
- Proton : cyan
- μ^+ : orange
- μ^- : pink