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Materials
● I stole most of the contents of this presentation from:
● Lecture by Erika Garutti (Uni Hamburg):

– https://www.desy.de/~garutti/LECTURES/SiPM.pdf
● Chen Xu PhD thesis (Uni Hamburg, in Erika’s group): 

“Study of the Silicon Photomultipliers and Their Applications in Positron Emission 
Tomography”
– https://inis.iaea.org/collection/NCLCollectionStore/_Public/45/076/45076521.pdf

● My PhD thesis (DESY/Uni Wuppertal):
”Scintillator Calorimeters for a Future Linear Collider Experiment”
– https://inis.iaea.org/collection/NCLCollectionStore/_Public/47/109/47109309.pdf

● Good search terms: CALICE AHCAL/ScECAL, Belle II KLM/CLAWS, CMS BTL/HGCAL,
endotofpet-us

● Spec sheets of Hamamatsu, KETEK, SensL SiPMs
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Contents
● Silicon diodes as photo sensors
● Silicon photomultipliers and their figures of merit
● Some applications and tips on simulation
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Signal formation in Silicon Diodes
● Charge/hole separation from ionisation: photon or traversing charged particle

– Drift towards electrodes, can be measured as charge current
● No inherent amplification: 

one photon → one e/h pair → signal of 1e and 
– Works for large photon fluxes (solar panels..)

● Revere bias adjusts thickness of active depletion layer
– intrinsic (low-)doped layer increases active volume
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Avalanche (Photo) Diode - APD
● Increasing reverse bias beyond full depletion: 

Amplification from impact ionisation during drift
– Gain ~10-1000, “linear mode”
– Doping profile creates layer with strong field

● Characteristics strongly depend on temperature and bias, 
difficult to operate
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Single Photon Avalanche Diode - SPAD
● Increasing bias beyond “breakdown” voltage:

electrons and holes cause additional 
ionisations
– Self supporting avalanche, infinite current, 

infinite gain: “Geiger mode”
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Single Photon Avalanche Diode - SPAD
● Adding quenching resistor (~MOhm) in series with diode interrupts avalanche
● Binary photon counter: signal is ~(voltage over breakdown * pixel capacitance)

– “Gain” is number of electrons in output signal (but does not depend on input!)
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SPAD Signal
● Typical operation at 1-5V over breakdown, pixel capacitances 10-

100fF: “gain” ~10^5-10^6 
● Typically fast rise with “slow” fall (but lots of variation between types!)
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Silicon Photomultipliers: SiPM
● SiPMs are arrays of SPAD on a single substrate

– Hundreds to few thousand SPAD “pixels”, ~mm^2 total size
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SiPM Signals
● Signal is sum of “fired” SPAD pixel charges: photon counting
● Can extract with waveform peak, integral (QDC)
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SiPMs: Breakdown and R_quench
● Measure R_quench from forward bias current slope
● Various ways to measure breakdown:

– Easy: Crank up reverse bias way above breakdown and see R_quench
– Fancy: Fine scan of reverse bias and find first peak in dI/dV 
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SiPMs: Gain

● Breakdown voltage effectively increases with temperature: 
Gain dependence around -1%/K 

● n.b.: width of single photon peaks scales as sqrt(wele + n*wsipm)
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SiPMs: Darkrate
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SiPMs: Afterpulses
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SiPM: Pixel Crosstalk
● Geiger avalanche emits  3photons/10^5 charge carriers with 

E>1.14eV [A. Lacaita et al, IEEE TED (1993)]
● Absorption length in silicon ~2um: can travel to neighbor pixel and 

start avalanche 
– more than one pixel fired from same initial photon



 16

SiPM: Pixel Trenches
● Pixel crosstalk is greatly reduced by introducing physical trenches 

between pixels
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SiPMs: Noise w/ QDC
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SiPMs: Noise w/ Threshold Counter
● Easier: Count rate of triggers vs. threshold
● Resulting curves contains everything: rates, crosstalk, gain

– Can fit with integral of single photon spectrum
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SiPMs: Saturation
● Two photons hitting the same pixel at same time will still only yield 1px signal
● Output signal will “compress” stochastically depending on number of photons hitting SiPM
● Easy to solve analytically for pixels with infinite recovery time

– In practice, pixels can (partially) recover until next photon hits, K. Kotera “SiPM Response Functions 
Representing Wide Range Including Linear Behavior After Saturation” [arXiv:1510.01102]
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SiPMs: Intermediate Summary
● SiPMs are arrays of binary photon counters
● Output signal is the sum of individual pixels
● Figures of merit (generally depend on voltage over breakdown)

– Gain: output charge per fired pixel
– Dark noise: rate of spontaneous thermal excitations
– Pixel crosstalk: chance of firing neighbor pixel 
– [photon detection efficiency, not discussed here]

● For n_in approaching n_pixel, need to take SiPM saturation into 
account when reconstructing input signal
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SiPM Applications
● SiPM as replacement for PMT: small, cheap, resistant to B-fields
● Usually coupled to scintillator (or Cherenkov radiator) to detect 

generated photons of ~optical wavelengths
● Plastic scintillator tiles: CALICE AHCAL/ScECAL (also used in 

CMS outer HGCAL upgrade)
– 15-40 photons/MIP, depending on parameters

● crystal scintillator: LYSO+SiPM fast timing (if time)
– Used for fast timing: HEP, PET scanners
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SiPM + Plastic Tiles: AHCAL 1st Gen
● 5mm thick plastic scintillator, wavelength shifting fiber

– SiPMs used to be more sensitive in green wavelength range
– Shifted photons are emitted isotropically inside WLS fiber, large fraction is confined 

along fiber
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SiPM + Plastic Tiles: AHCAL 2nd Gen
● 3mm thick plastic scintillator, shorter wavelength shifting fiber
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SiPM + Plastic Tiles: AHCAL 3rd Gen
● 3mm thick plastic scintillator, “dimple” design, individually wrapped

– Current SiPMs don’t need WLS anymore
– SiPM soldered to board, much simplified assembly
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SiPM + Plastic Tiles: Lightyield
● Tile lightyield adjustable via wrapping material and dimple size to 10-40px/MIP, usually 

aiming for ~15px/MIP (MPV)
● MIP response is well modeled by Landau convoluted with Gaussian
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Simulating Scintillator + SiPM Systems
● Simulating optical propagation inside scintillator/WLS system is hopeless. We never 

got it to match in detail.
● Instead: measure tile lightyield in pixels/MIP, calibrate simulation to 1MIP peak, 

smear with Poisson statistics (check OH PhD thesis for recipe and algorithms)
– Saturation effects are more complicated.
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LYSO:Ce + SiPM Readout

● CMS Barrel Timing Layer: 
3x3x50mm3 scintillator bars 
with SiPM on each end

● 30ps time resolution demonstrated 
for single MIPs
– Driven by photon statistics, 

thousands of photons per MIP
– SiPM matched to size of crystal

[CMS-TDR-020]
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SiPM + LYSO Scint.: TOFPET
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