Silicon Photomultipliers

Oskar Hartbrich

Summer CaT
06/14/2021



Materials

| stole most of the contents of this presentation from:

* Lecture by Erika Garutti (Uni Hamburg):
- https://www.desy.de/~garutti/LECTURES/SIPM.pdf

* Chen Xu PhD thesis (Uni Hamburg, in Erika’s group):
“Study of the Silicon Photomultipliers and Their Applications in Positron Emission
Tomography”

— https://inis.iaea.org/collection/NCLCollectionStore/ _Public/45/076/45076521.pdf

* My PhD thesis (DESY/Uni Wuppertal):
"Scintillator Calorimeters for a Future Linear Collider Experiment”

— https://inis.iaea.org/collection/NCLCollectionStore/ Public/47/109/47109309.pdf

* Good search terms: CALICE AHCAL/ScECAL, Belle Il KLM/CLAWS, CMS BTL/HGCAL,
endotofpet-us

* Spec sheets of Hamamatsu, KETEK, SensL SiPMs
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* Silicon diodes as photo sensors
* Silicon photomultipliers and their figures of merit
 Some applications and tips on simulation



Signal formation in Silicon Diodes

* Charge/hole separation from ionisation: photon or traversing charged particle
— Drift towards electrodes, can be measured as charge current

Space

No inherent amplification:
one photon - one e/h pair - signal of 1e and

- Works for large photon fluxes (solar panels..)
Revere bias adjusts thickness of active depletion layer
- intrinsic (low-)doped layer increases active volume
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Avalanche (Photo) Diode - APD

* Increasing reverse bias beyond full depletion:
Amplification from impact ionisation during drift

- Gain ~10-1000, “linear mode”

— Doping profile creates layer with strong field

* Characteristics strongly depend on temperature and bias,

difficult to operate
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Single Photon Avalanche Diode - SPAD

* |ncreasing bias beyond “breakdown” voltage:
electrons and holes cause additional
lonisations
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- Self supporting avalanche, infinite current, e
Infinite gain: “Geiger mode”
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Single Photon Avalanche Diode - SPAD

* Adding quenching resistor (~MOhm) in series with diode interrupts avalanche

* Binary photon counter: signal is ~(voltage over breakdown * pixel capacitance)
- “Gain” iIs number of electrons in output signal (but does not depend on input!)
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SPAD Signal

* Typical operation at 1-5V over breakdown, pixel capacitances 10-
100fF: “gain” ~1075-10"6

* Typically fast rise with “slow” fall (but lots of variation between types!)
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Silicon Photomultipliers: SIPM

 SiPMs are arrays of SPAD on a single substrate
— Hundreds to few thousand SPAD “pixels”, ~mm”2 total size

metal (Al) grid
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SIPM Signals

* Signal is sum of “fired” SPAD pixel charges: photon counting
* Can extract with waveform peak, integral (QDC)
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SiIPMs: Breakdown and R_guench

 Measure R_quench from forward bias current slope

« Various ways to measure breakdown:
- Easy: Crank up reverse bias way above breakdown and see R_quench
— Fancy: Fine scan of reverse bias and find first peak in dI/dV
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SIPMs: Gain

(zain vs. over-voltage
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* Breakdown voltage effectively increases with temperature:

Gain dependence around -1%/K

 n.b.: width of single photon peaks scales as sqrt(wg, + N*wg;,,)
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SiIPMs: Darkrate

W A geiger discharge in a SiPM pixel can be initiated by an ‘
® incoming photon or by free carries generated by thermal .
w effects or tunneling (field-assisted generation)

%, Hole

. =» dark count rate of 100 kHz — 10 MHz / mm? (@25°C)
B with threshold at half of one photo-electron amplitude
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SIPMs: Afterpulses

In the silicon volume, where a breakdown p
happened, a plasma with high temperatures t Voltage : 20mV/div, <—>Time :5ne/div
(few thousand degree C) is formed and deep
lying traps in the silicon are filled.

Carrier trapping and delayed release causes
after-pulses during a period of several 100 ns
after a breakdown.

The probability for after-puses increases with  [KE T iG L StA \ r
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SIPM: Pixel Crosstalk

* Geiger avalanche emits 3photons/1075 charge carriers with
E>1.14eV [A. Lacaita et al, IEEE TED (1993)]

* Absorption length in silicon ~2um: can travel to neighbor pixel and
start avalanche

— more than one pixel fired from same Iinitial photon
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SIPM: Pixel Trenches

* Pixel crosstalk is greatly reduced by introducing physical trenches
between pixels

The optical cross talk induced
avalanche

The primary avalanche

+
P Silicon bulk
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SIPMs: Noise w/ QDC
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SiIPMs: Noise w/ Threshold Counter

Easier: Count rate of triggers vs. threshold

* Resulting curves contains everything: rates, crosstalk, gain
— Can fit with integral of single photon spectrum
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SiIPMs: Saturation

« Two photons hitting the same pixel at same time will still only yield 1px signal
» Qutput signal will “compress” stochastically depending on number of photons hitting SiPM

» Easy to solve analytically for pixels with infinite recovery time

- In practice, pixels can (partially) recover until next photon hits, K. Kotera “SiPM Response Functions
Representing Wide Range Including Linear Behavior After Saturation” [arXiv:1510.01102]
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SIPMs: Intermediate Summary

 SIPMs are arrays of binary photon counters
e Output signal is the sum of individual pixels
* Figures of merit (generally depend on voltage over breakdown)
— Gain: output charge per fired pixel
— Dark noise: rate of spontaneous thermal excitations
— Pixel crosstalk: chance of firing neighbor pixel
— [photon detection efficiency, not discussed here]

* For n_in approaching n_pixel, need to take SIPM saturation into
account when reconstructing input signal
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SIPM Applications

* SIPM as replacement for PMT: small, cheap, resistant to B-fields

* Usually coupled to scintillator (or Cherenkov radiator) to detect
generated photons of ~optical wavelengths

* Plastic scintillator tiles: CALICE AHCAL/ScECAL (also used in
CMS outer HGCAL upgrade)

- 15-40 photons/MIP, depending on parameters

* crystal scintillator: LYSO+SIPM fast timing (if time)
- Used for fast timing: HEP, PET scanners
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SiPM + Plastic Tiles: AHCAL 1% Gen

* 5mm thick plastic scintillator, wavelength shifting fiber
- SiPMs used to be more sensitive in green wavelength range

- Shifted photons are emitted isotropically inside WLS fiber, large fraction is confined
along fiber
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SiPM + Plastic Tiles: AHCAL 2™ Gen

* 3mm thick plastic scintillator, shorter wavelength shifting fiber

LS Mirror
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SiPM + Plastic Tiles: AHCAL 3" Gen

* 3mm thick plastic scintillator, “dimple” design, individually wrapped
— Current SIPMs don’t need WLS anymore
- SIPM soldered to board, much simplified assembly
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SIPM + Plastic Tiles: Lightyield

* Tile lightyield adjustable via wrapping material and dimple size to 10-40px/MIP, usually
aiming for ~15px/MIP (MPV)

* MIP response is well modeled by Landau convoluted with Gaussian

Signal Amplitude [Pixels]
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Signal Amplitude [ADC tics]
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Simulating Scintillator + SIPM Systems

e Simulating optical propagation inside scintillator/WLS system is hopeless. We never

got it to match in detail.

* Instead: measure tile lightyield in pixels/MIP, calibrate simulation to 1IMIP peak,

smear with Poisson statistics (check OH PhD thesis for recipe and algorithms)
— Saturation effects are more complicated.

Fraction of Entries
o o
o o
B (4]

o
o
@

0.02

0.01

0.5

15

Raw

[ + Threshold
I + SiPM Stat.
Realistic

III|IIII|IIII|IIII|IIII|IIII|\\_l

2 2.5 3
Hit Energy [MIP]

26



LYSO:Ce + SIPM Readout

« CMS Barrel Timing Layer:
3x3x50mms3 scintillator bars
with SIPM on each end

* 30ps time resolution demonstrated [CMS-TDR-020]
for single MIPs

— Driven by photon statistics,
thousands of photons per MIP

- SIPM matched to size of crystal




SIPM + LYSO Scint.: TOFPET

@

High granular Positron Emission Tomography detectors
with Time-of-Flight information

SiPM matrix

4x4 LYSO 3x3x15mm3

Coincidence
Processing Unit

PET module with
~4000 channels

Lo pwa  Higher
granularity
(0.75 mm)
best with
dSiPM
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}\nlihi]atiml Image Reconstruction 2013: Phi,ips Vereos digital PET/CT .
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