
THE IRS_BLOCK_MANAGER ARCHITECTURE: BEFORE A TRIGGER

A B C D E F G H I J K L M … S T
Active buffer (really 384 blocks long)

M N O L P Q R S T A B C D E F

irs_block_manager fetches a block from active buffer, checks
to see if it is locked (for future reading), and if not, uses it
and places it in the history buffer.

now 15 cycles prior

History buffer (really 384 blocks long)

U V W X Y Z Free buffer (really 128 blocks long)

Readout queue

A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z

Lock register
(really 512 blocks long)

?

THE IRS_BLOCK_MANAGER ARCHITECTURE: WHEN TRIGGER OCCURS

A B C D E F G H I J K L M … S T
Active buffer (really 384 blocks long)

M N O G P Q R S T A B C D E F
now 15 cycles prior

History buffer (really 384 blocks long)

U V W X Y Z Free buffer (really 128 blocks long)

Readout queue

A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z

Lock register
(really 512 blocks long)

?

Suppose trigger occurs when block “F” is being written, and
suppose want to read out 4 blocks: 1 pre-trigger and 2 post
trigger.

Trigger
Handler

Lock
“E”

“E” was 2 cycles ago

Trigger places “2” on ‘nprev’ input to history buffer. At
next write cycle (when “G” is written to) history buffer
puts “E” on ‘block’ output.

Trigger handler then places “E” on lock_address
input of block manager, and asserts “lock” and
“lock_strobe”.

Trigger handler places “E” in
readout queue.

Readout “E”

E

THE IRS_BLOCK_MANAGER ARCHITECTURE: AFTER TRIGGER OCCURS

A B C D E F G H I J K L M … S T
Active buffer (really 384 blocks long)

N O G P Q R S T A B C D E F
now 15 cycles prior

History buffer (really 384 blocks long)

U V W X Y Z Free buffer (really 128 blocks long)

Readout queue

A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z

Lock register
(really 512 blocks long)

?

Trigger handler leaves ‘nprev’ input to history buffer for as
many cycles as blocks desired. When next write cycle occurs,
“F” is placed on ‘block’ output.

Trigger
Handler

Lock
“F”

“F” was 2 cycles ago

Process repeats until E,F,G,H are placed in readout queue
and locked in the lock register.

Readout “F”

E F

H

THE IRS_BLOCK_MANAGER ARCHITECTURE: WHILE READOUT IS OCCURRING

A B C D E F G H I J K L M … S T
Active buffer (really 384 blocks long)

K L D M N O P Q R S T A B C
now 15 cycles prior

History buffer (really 384 blocks long)

U V W X Y Z Free buffer (really 128 blocks long)

Readout queue

A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z

Lock register
(really 512 blocks long)

?

While readout is occuring, the block manager will
reencounter “E” in the active buffer.

Trigger
Handler

E F

U

G H

It will discover “E” is locked, and use the first block from the
free buffer instead, deleting it from the free buffer.

It then overwrites “E” in the active buffer with
“U”.

U

THE IRS_BLOCK_MANAGER ARCHITECTURE: WHEN READOUT COMPLETES

A B C D E V W X I J K L M … S T
Active buffer (really 384 blocks long)

K L D M N O P Q R S T A B C
now 15 cycles prior

History buffer (really 384 blocks long)

Y Z Free buffer (really 128 blocks long)

Readout queue

A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z

Lock register
(really 512 blocks long)

?

Trigger
Handler

E F

U

G H

U

When the readout of “E”
completes…

Readout of “E” done

Trigger handler places
“E” on lock_address
input, “0” on ‘lock’, and
asserts ‘lock_strobe’

Unlock “E”

Trigger handler then puts “E”
on ‘free_address’ and asserts
‘free_strobe’

Add “E” to free buffer

E

