A Trigger- and Data-Readout-Module for the ARA1 firmware

Kael Hanson, Thomas Meures

July 20, 2011

CONTENTS

Contents
1 General functionality (Introduction)

2 The used modules

2.1 Time stamping e e e
2.2 Trigger handling
2.3 Readout comm e e
2.4 Readout queue frame
2.5 Readout Buffer e

3 Design properties and performance
3.1 Device utilization summaryo e
3.2 simulations e

D O TR

o ©

1 General functionality (Introduction)

The described module has different purposes. It is supposed to:

1. receive all trigger signals and process them properly to allow the correct association of data to
the given trigger signals,

2. communicate with the history_buffer and the block manager, to lock or unlock the associated
data blocks for each trigger,

3. store the data-block addresses and do the actual digitization and readout of the data belonging
to a trigger.

For this purpose it consists of different submodules, shown in figure 1.1.

Hierarchy

© ara_readout
= 3 xc3s50a-5tgldd
= [Haler e ara_trigger_readout - behavior (ara_readout.vhd)
time_count - time_stamping - behavior (time_stamping.vhd)
= trg_hndl - trigger_handling - behavior (trigger_handling.vhd)
delay_calc - delay_matching - behavior {delay_matching.vhd}
delay_| - delay_line? - behavior (delay_line2.vhd}
readout - readout_comm - behavior (readout_comm.vhd)
readout_gqueue - readout_gueue_frame - behavior (readout_gueue_frame.vhd)
= packaging - readout_buffer - rtl {readout_buffervhdl)
% memory - memcore (memcore.xco)

Figure 1.1 The design flow of the ARA trigger-readout-module.

In short terms, the time stamping module provides the system timestamp, initialyzed at a signal of
choice. The output consists of two timestamps, which are just different parts of the overall timestamp
(see fig. 1.2).

The trigger_handling module receives all the different triggers implemented in the ARA-firmware and
processes them, according to different parameters in the firmware configuration, to provide one com-
bined trigger signal with the information about the delay and the combination of triggers in each clock
cycle.

These signals are passed to the readout comm module. Here the block address of the data corre-
sponding to the triggers are requested from the history buffer, using the information coming from the
trigger_handling module, and the blocks are assigned to be locked by the block manager; In addition
to that the block addresses are associated with a timestamp and the trigger combination and sent to
readout_queue_frame module.

In the readout_queue frame module, the block addresses are stored into a block RAM, with the
trigger combination and the timestamp. From this block RAM the information are passed to the
readout_buffer.

Here the actual digitization and readout of the data, stored at the given block address, is controlled.

2 THE USED MODULES

Combined trigger, delayl[...], trigger combination]...]

Triggers[...]

Communication with
history buffer, block
manager

Trigger_handling

Delays/ pre-

trigger : Readout_comm >
. Delayed
samples]...] Comman Triggers]...] srave Block address|...],
delayl.-] triggersl..] Ack. signals
Delay_matching matohed Delay_line Read done, Block Info[..] [address,
delays[...] frea block timestamp, trigger
address[..] comb.) into Block RAM
Ref signal (GPS-PPS, ...) Readout_queue_frame
Register timestamp]...]
. . (15 least sign. bits) Read done Block infol...],
Time_stamping Read strobe
Common timestampl...]
(33 most sign. bits) Digitization-/readout-
controls to chip
Readout_buffer
Data from chip[...]
Std_logic

Std_logic_vector|...]

Figure 1.2 The module network inside the ARA trigger-readout-module (only the most important signals are
shown).

2 The used modules

2.1 Time stamping

In this module a timestamp, initialized with an external reference signal of any kind (ex.: GPS-PPS
signal, or some signal once a week), will be incremented with each clock cycle. The timestamp is saved
in a 48 bit vector, thus, at a clock speed of 100 M H z, it can be incremented for about a month time
(more precisely 32.5 days), before rolling over and restarting at zero. This timestamp will be devided
into a 15 bit register_timestamp (least significant part) and a 33 bit common_timestamp (most
significant part), which feed into different modules in the design (see fig. 1.2).

The register_timestamp is sufficiently long to count for 327 us, which should be sufficient for the
readout of multiple blocks. In fact it is chosen to not roll over more then once for each data block,
between being stored in the readout queue and being actually read out. A roll over will be recognized
in the main module and it will be accounted for it.

The correct implementation concerning an external refernce still has to be done, once the reference is
chosen for the firmware.

2.2 Trigger _handling

Here all triggers which are implemented arrive and are processed. Since they can have different delay
times and pre-trigger-samples to be read out, they will all be delayed by means of the delay matching
and the delay line modules, in order to fit the highest possible delay in the current configuration. This
is one possibility to avoid conflicts in later data processing.

4

2.2 'Trigger handling

1. The delay matching module takes the delays of all triggers from the configuration, determines
which is the highest and provides the difference of all other delays to this highest delay, as well
as the highest delay itself.

2. In the delay line module, the trigger signals are delayed to the given delay difference by means
of shift registers. The output of this module will be the triggers, all having the same delay to
the time when corresponding data is buffered on the chip.

Physics side (the actual trigger) Arriving at trigger module
Without delay line: Will try to read out the same
blocks, which are not longer
I 1 available for the second one
1 e
Need to lock two different blocks
at the same time
S [S
I 1

Using the delayline:

I L S I S S [
S E— I _

Figure 2.1 An illustration of the functionality of the delay handling.

In the trigger handling module, these triggers are combined to one trigger signal, being the "OR” of
all triggers. Moreover a vector of the delayed triggers is created showing the given trigger combination
at each clock cycle. These two signals are passed together with their delay (which is now the common
delay for all of them) to the readout_comm module.

Inputs

internal {

DT T i 1150 007 (0011

output

000001100

Figure 2.2 An example simulation of the behavior of the trigger handling module.

2 THE USED MODULES

2.3

Readout_comm

This module connects the trigger handling with the readout_queue_frame and does the communication
with the block_manager and the history_buffer.

The signals coming from the trigger handling are directly passed to the history buffer, requesting
the address of the data block written when the trigger was asserted. Moreover a direct connection is
passing the information which are going to be written into the readout_queue_frame. These information
consist of the timestamp at the trigger time, the trigger combination and the block address coming
from the history buffer.

A small state machine, switching between an idle state and a reading or liberating state, will ensure
that all signals are passed at the right time and do the communication with the block manager. The
three states have the following functionality:

1.

Inputs f from
trigger_handling

Comms with
history_buffer

and

From

time_stamping

Comms with
readout_queus -

_frame

internal

24

block_manager

In the idle state all outgoing control signals are set to zero and either a trigger_processed or
a readout_done signal are awaited to switch to the corresponding state.

The reading state is chosen when triggerprocessed signal occurs. In this state the system
awaits the answer from the history_buffer (the history_ack signal), because together with this
signal the the requested block address is provided. In this moment all lock signals are sent to
the block_manager and a write strobe is sent to the readout_queue_frame. As long as there is
an incoming trigger signal high in the moment the history ack signal occurs, the machine will
stay in the reading state. If not it will switch back to the idle state.

The liberating state has the lowest priority in the state machine. This is ensured by adding
a statement telling the machine to switch directly back to the reading state. If this doesn’t
happen the address of the block to be liberated is sent along with the liberating control signals
to the block_manager. When the block manager sends back an acknowledge signal, everyting is
switched back to the idle state.

Figure 2.3 An example simulation of the behavior of the readout_comm module.

Readout_queue frame

The readout_queue_frame is a frame around a block RAM, which is used to store the block addresses
of blocks, locked to be digitized and read out. The block RAM contains 512 blocks of 36 bits. In these

2.5 Readout Buffer

35 occupation bit
34...9 + n°triggers + 1 | register time stamp
9 + ntriggers...9 trigger combination
8...0 block address

Table 2.1 Use of the block RAM.

36 bits all needed information about the block will be saved as shown in table 2.1. It has two access
lines, each with in and output. By this conflicts between writing and reading can be avoided easily.
When a write signal occurs, the block information coming fom the readout_comm module are written
into the block RAM and the write address is incremented. Then the writing part is waiting for the
next write signal.

On the other side the moment a part of the block RAM is occupied, the readout start signal is sent
to the readout_buffer module, along with the block information. After getting a readout_done signal
back, the block RAM content is deleted, the block address is sent to the readout_comm module, to be
liberated and also on this side the address counter is incremented. This procedure is repeated as long
as a block in the block RAM is found occupied.

Inputs / from
readout_comm

Comms to
readout_buffer

Internal—block
RAM controls

Figure 2.4 An example simulation of the behavior of the readout_queue_frame module.

2.5 Readout_Buffer

From this module the digitization and readout on the chip is controlled and the read data are trans-
ferred to the event interface, from where they go to a computer for further processing and finally to
the data storage.

The core of this module is a block RAM of 2024 blocks, each 16 bits wide. The digitized data is written
as 4 12 bit words into 3 16 bit blocks of this block RAM in the format shown in table 2.2.

Further the module consists basically of two parts. One part controls the digitization and collec-
tion of data from the IRS2 chip. The other part is dealing with the event interface, to hand the
collected data over to the dda_eval _event_fifo module.

The first part is based on a state machine of seven states. It works in the following way:

1. The default state is the ROS_IDLE state. Here all control signals are set to 0. The machine
will leave this state when a start signal, coming form the readout_queue_frame, switches high. A

write control signal, going to the block RAM, is set high and the state of the system switches
to ROS_CLK1.

2 THE USED MODULES

. ROS_CLK1, ROS CLK2, ROS CLKS3: In these three states an event header is started with
writing the timestamp of the block into the block RAM. This has to be devided into three states
because the timestamp is 48 bits long. After that, the system switches to the ROS_HDR1
state.

. In the ROS HDRI1 state, the other components of the header, i. ex. the block ID and the
trigger combination, are written into the memory and the system is switched to the actual data
readout.

. In the ROS_SAMPLE START state the blcok address and the sample and channel number
of the data to be read out is sent to the IRS2 chip. Moreover a read_enable signal and the
control signals to start the digitization are sent. The write control signal to the block RAM
is switched low because from now on the 12 bit words of data have to be combined to a 16 bit

vector, before being written to the memory. From this state the system switches directly to the
ROS_SAMPLE WAIT state.

. In the ROS_SAMPLE_WALIT state the system waits for a response from the IRS2 chip. Once
this response arrives, the 12 bit data of the samples is packed into 16 bit vectors and saved in
the block RAM. Now the system switches forth and back between the last two states, until all
samples for all channels in one block are saved in the block RAM. The form how they are saved

can be seen in table 2.2. When all data is saved, the system sends out a done signal and swithces
back to the IDLE state.

block number | bit number content
0 number of words in this block
1 low 16-bits of the system clock
2 mid 16-bits of the system clock
Header 3 hi 16-bits of the system clock
4 trigger / block ID word:
8..0 block ID
12..9 trigger pattern
5 11..0 sample[0]
15..12 sample[1] low 4 bits
6 7..0 sample[1] hi 8 bits
Data 15..8 sample[2] low 8 bits
7 3.0 sample[2] hi 4 bits
15.4 sample[3]
Etc. (it repeats - 4 12-bit words packed into 3 16-bit)

Table 2.2 Use of the block RAM in the readout_buffer.

The second part of the module handles the data transfer to the dda_eval event fifo module.

The

functionality of this part is very simple. One process is just checking, if data has been written to a
block RAM address. If this is the case and if the FIFO on the other side is not occupied, the data is

directly sent out (along with the needed control signals).

Standard inputs/ Comms
to readout_queus fAme ——=
and readout_comm

Comms to IRS2 chip —

Comms to - I
dda_sval_svaent_fifo I

Internal, maink block RAM
controls B

Figure 2.5 An example simulation of the behavior of the readout_buffer module.

3 Design properties and performance
3.1 Device utilization summary

ara_trigger_readout Project Status

Project File: DDA_EVALXise Parser Errors: o Errors
Module Name: ara_trigger_readout Implementation State: Programming File Generated
Target Device: xc35700a-4fg484 *Errors: o Errors
Product Version: ISE 13.1 * Warnings: 117 Warnings (117 new)
Design Goal: Balanced *Routing Results: All Signals Completely Routed
Design Strategy: Xilinx Default (unlocked) «Timing Constraints: All Constraints Met
Environment: System Settings * Final Timing Score: 0 (Timing Report)
Device Utifization Summary 5|

Logic Utilization Used Available utilization Note(s)
Number of Slice Fiip Flops 150 11,776 1%
Number of 4 input LUTS 107 11,776 1%
Number of occupied Slices 161 5,888 2%

Number of Slices containing only related logic 161 161 100%

Number of Slices containing unrelated logic] 161 0%
Total Number of 4 input LUTS 213 11,776 1%

Number used as logic 189

Number used as a route-thru 16

Number used as Shift registers s
Number of bonded [0Bs o5 372 25%
Number of BUFGMUXS 1 24 4%
Number of RAMB16BWES 1 20 5%
Average Fanout of Non-Clock Nets 201

Figure 3.1 The utilization summary of the complete trigger and readout module on an Xilinx Spartan 3S
device.

3.2 simulations

