Trigger module

This module is built to collect all the triggers coming in (physics-, calibration- or cpu-trigger) and to combine them,
measure their duration and determine their type in order to calculate the proper time to be read out.

15 ENTITY trigger handling IS

16 GENERIC(n_triggers : INTEGER := 3);

17 PORT(clk : IN STD LOGIC;

18 reset : IN STD LOGIC;

19 physics trigger in : IN STD LOGIC VECTOR (n_triggers-2 DOWNTC 0);
20 cal trigger in : IN STD LOGIC;

21 cpu_trigger in : IN STD LOGIC;

22 pre_trigger length : IN VECTOR ARRAY (0 TC n_triggers);

23 readout length : OUT STD LOGIC VECTOR (8 DOWNTO 0);

24 trigger processed : OUT STD LOGIC;

25 full triggers : BUFFER STD LOGIC VECTOR(n_ triggers DOWNTO 0)
26):

27 END trigger handling;

The input signals are:

o clk - a 100 MHz clock.
e Reset - the connected reset.
e physics_trigger_in - a vector of physics triggers, variable in length (number of triggers).

This will be converted into single inputs (if your proposal is right this
will be three), which are combined to this vector.

e cal trigger _in - a trigger sent for calibration measurements.
e cpu_trigger_in - a periodic trigger, coming from the cpu can be connected here.
e Pre trigger length - The information about the requested pre-trigger-samples for the

readout of each trigger. This will be included in the configuration.
The output signals are:

e Readout_length - this is a 9 bit vector, displaying the length of all combined triggers,
arriving in one trigger block plus the number of pretrigger samples
for the trigger with the highest priority.

e Trigger processed - this is a one cycle event. It appears, when the trigger block ends. On
its rising edge the other outputs will definitely hold its final
state determined for the last trigger block.

e full triggers - A vector, saving all triggers which have been high coincidently in the last
trigger block

Inside the module, the incoming trigger lines are all combined to a trigger vector (trigger_in). As long as this
vector is not equal zero, one or more triggers are high. A STD_LOGIC SIGNAL trigger_combined will be high in this

case.
46 trigger in <= physics trigger in & cal trigger in & cpu trigger in;
47 trigger combined <= 'l' WHEN (trigger in /= zero) ELSE
48 '0' WHEN (trigger in = zero);
49

As long as this signal is high, a counter will be raised each clock cycle (implemented in the process below). It is
converted into a vector (trigger_length) which will be added to the chosen pre_trigger _length.

g4
85
86
87
88
89
80
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
1086

PROCESS (reset, clk, trigger combined)
VBRRIZBLE inhibit : STD LOGIC;
BEGIN
IF reset = '1' THEN
trigger length <= (OTHERS => '0');
count <= 0;
inhibit = "1';
trigger processed <='0';
ELSIF clk'EVENT ZND clk = '1' THEN
IF trigger combined = 'l1l' THEN
trigger processed <='0';
inhibit :='0"';
count <= count + 1;

ELSIF trigger combined = '0' BEND inhibit ='0' THEN
trigger length <= conv_std logic vector(count, 9);
trigger processed <='1l';
inhibit :='1"';
count <= 0;

ELSIF inhibit = '1' THEN

trigger processed <='0';
END IF;
END IF;
END PROCESS;

In the same process the trigger_processed SIGNAL is set high at the next rising edge of the clock after the last
trigger signal switches low (this is done by means of the inhibit VARIABLE).

37
58
59
60
61
62
63
64
65
66
67
68
69
70
71
12
13
74
15
76
17
78
79
80
81
82

PROCESS (reset, clk, trigger combined, trigger in)

VARIZBLE inhibitl : STD LOGIC;

VARIABLE full vector : STD LOGIC VECTOR(n triggers DOWNTC 0);
BEGIN

IF reset = '1l' THEN
full triggers <= (OTHERS => '0');
full vector := (OTHERS => '0'");
inhibitl := "1"';
ELSIF (clk'EVENT RND clk = '1') THEN
IF(trigger combined = 'l') THEN
IF(inhibitl = '"1') THEN
full vector := (OTHERS => '0'");
END IF;
inhibitl := '0"';

FOR i IN trigger in'RENGE LOOF
CASE trigger in(i) IS
WHEN '0' => full vector(i) := full vector(i);
WHEN OTHERS => full vector(i) := 'l';
END CASE;
END LOCOCP;
ELSIF (trigger combined = '0') THEN
full triggers <= full vector;
inhibitl :='1";
END IF;
END IF;
END PROCESS:;

In parallel to this all triggers within one trigger block are saved in the vector full_triggers (see above). The trigger
with the highest priority will occupy the highest significant bit. This bit is detected by a priority encoder (see

below; the result is saved as the INTEGER SIGNAL priority_trigger).

110 PROCESS (full triggers) —-Priority encoder

111 VARIRBLE counter : INTEGER RENGE -1 TO n_ triggers;
112 BEGIN

113 — IF reset = '1' THEN

114 — priority trigger <= 0;

115 — ELSE

11e counter = n_triggers;

117 FOR 1 IN full triggers'RANGE LOOP

118 CRSE full triggers(i) IS

119 WHEN '0' => counter := counter - 1;
120 WHEN OTHERS => EXIT;

121 END CLSE;

122 CASE counter IS

123 WHEN -1 => counter := counter + 1;
124 WHEN OTHERS => counter := counter;
125 END CLSE;

126 END LOCP;

127 priority trigger <= counter;

128 — END IF;

125 END PROCESS;

130

To the pre_trigger_length for the trigger of highest priority a 3 bit vector “100” is attached behind. This vector is
then added to the counted trigger_length (for security it is made sure that the SIGNAL priority_trigger has a
positive value).

54 readout length <= (pre trigger length(priority trigger) & "10000") + trigger length WHEN priority trigger > -1 ELSE
55 "goo0o0000"™;

The utilization summary on a SPARTAN 3 FPGA:

Device Utilization Summary -1

Logic Utilization Used Available Utilization Note(s)
Number of Slice Flip Flops 29 1,536 1%
Number of 4 input LUTs 38 1,536 2%
Number of occupied Slices 33 768 4%

MNumber of Slices containing only related logic 33 33 100%

Mumber of Slices containing unrelated logic 1] 33 0%
Total Number of 4 input LUTs 38 1,536 2%
Number of bonded I0Bs 32 124 25%
Number of BUFGMUXs 1 8 12%
Average Fanout of Non-Clock Nets 2.88

A 2 us simulation of the whole module can be seen below. The output signals are marked.

1,500 ns
1 ke
¥ B pre_trigger_length[0:3
» B [0

_trigger_in[1:0]

1§ cal trigger_in

1 cpu_trigger_in
& trigger_combined 0
0
000011000
0011

]

(1]
i
i

