
OSU status update 6/22

PSA

Electronics status

• DDA rev C, TDA rev A: boards in production (qty
15: enough for 3 stations + 3 spares)

– TDA rev A: ~Monday/Tuesday

– DDA rev C: July 5

– Stencils are also in production, should arrive
Monday/Tuesday

– Mass production should be quick (2-3 days)

• ATRI rev B: at assembly house, pick’n’place
programming done, board assembly in progress

ATRI rev A testing

• Hacked-up ATRI rev A testing slowed due to incredible crosstalk from fly-
wiring data bus (pickup was almost 1V!)
– Had to rewire clock as clock+ground, cover with copper tape, etc.

• However, now have been able to talk from FPGA to USB
• Porting DDA_EVAL firmware to ATRI in progress

– Just need to replace the ethernet_packet_interface with a
“usb_packet_interface” module

– Almost done: testing again slowed due to ridiculous timing constraints needed
for FX2 USB interface
• 18.7 ns setup time on a 20.83 ns clock period!

– Had same problem with ICRR, however Spartan-6 has worse problems due to
longer propagation times across the chip!
• Newer isn’t always faster…

– Problems resolved, though: just had to mostly rework the logic to push the
outputs into the IOBs and advance the clock enough so clock-to-out is the
limiting time
• Previously we just had the router work really hard to keep delays down

DDA Wilkinson ramp mods

• Default IRS_EVAL values way off

– 100 pF Cramp, 20k Isel resistor

– Gives ~2.5 us ramp time (6.2 us Wilkinson clock)

• Trial and error gave 100 pF Cramp, 33k Isel
gives a little less than 6.2 us ramp

RampMon output
(Sbbias = 50k to 2.5V)

irs_block_manager improvements

• Previous block manager had no way to select a given block for readout
– This makes getting pedestals very difficult

• Modify block manager to have a “pedestal mode”
– In pedestal mode, sample a given address once (in the correct TSA phase) then set WR[9] to 0 (disabling

writes)
– Same pedestal can be read out again by asserting a pedmode_clear flag
– Pedestal mode is basically a separate path to the normal block manager path
– When pedestal mode entered, when the end of the normal 6-cycle (3 block) path is reached, transition to

pedestal mode
– When pedestal mode exited, transition back to the normal path (at end of 6-cycle pedestal path)

• Free block queue/active buffer not affected in pedestal mode, but lock register is, so the idea is:
– 1: disable all triggers
– 2: finish all readout
– 3: switch to pedestal mode (specifying a given block address)
– 4: read out as many times as you want
– 5: when done, finish all readout
– 6: end pedestal mode
– 7: reenable triggers

Pedestal mode details

• irs2_block_manager has three new inputs
– ped_mode_i: 1 if pedestal mode is on, 0 if not

– ped_address_i: 9-bit block address

– ped_clear_i: Take another sample (reassert WR[9] for
one sample)

• In DDA_EVAL, accessible via IRS WISHBONE
module
– Address 0x0024: bit 0: ped_mode_i, bit 1 (self-

clearing) ped_clear_i

– Address 0x0025,0x0026: ped_address_i (little-endian)

Pedestal example

Procedure for pedestal readout

• To read out block 0x0123 100 times

– Program FPGA

– Start ddad

– Run pedtrig 0x0123 100

• ddad will save the events as evdump#.dat, where
is the number of events received in the run so
far (just a running ID in ddad)

• ddad doesn’t need to be restarted for each block
address, just run pedtrig (block addr) (ntimes)

“ddad” test program

• ‘ddad’ is somewhat of a prototype for ‘atrid’, an
ATRI controller program
– Not an acquisition program: just multiplexes access to

the DDA_EVAL/ATRI

• Currently it accepts data for the control data path
via a Unix domain socket at “atri_control”

• Any event data it receives it dumps to a file using
its own internal event ID

• Event/control data paths are threaded, so event
data is immediately dumped as soon as it’s
available

