

Jonathan Davies UCL

ARA Timing Calibration

 Δt – Time Between Samples

- ϵ Wrap around Timing
- -Interleave time
- -Event to event jitter

ARA Timing Calibration

Time Between Samples Δt

 Voltage in each waveform is zero-meaned
Total no. of zero Crossings counted over run
Zero-crossing occupancy averaged over run, then scaled to input wavelength

ARA Timing Calibration

Time Between Samples

Wrap Around ε

- 1. Voltage in each waveform is zeromeaned
- 2. Apply time between samples
- 3. Find the last (first) -ve to +ve zero crossing before (after) the wrap around
- 4. Interpolate to find times
- 5. Move waveforms so they overlap
- 6. ε is the Δ t required to match waveforms

After wrap around

t (ns) - With no ∈

Epsilon Chip 2 RCO 0

ARA Timing Calibration

Wrap Around ε

Epsilon Chip 1 RCO 0

Epsilon Chip 0 RCO 0

ARA Timing Calibration

RCO Phase Determination

Hardware problem where RCO phase is incorrectly assigned if earliest sample < 20

ARA Timing Calibration

RCO Phase Determination

Guess RCO in UsefulAraEvent.h tries each RCO and chooses the one closest to the clock period

ARA Timing Calibration

Interleave Timing

1. Zero mean the wavform 2. Apply Δt and ϵ calibrations 3.Fit sine waves to interleaved channel pairs 4. Interleave time taken from the difference in phase

ARA Timing Calibration

Interleave Timing

200 MHz at 158mV Sample used

Event to Event Jitter

1. Zero mean the waveform 2. Apply Δt , ϵ and Interleave timing calibrations 3. Look for +ve to -ve zero crossings in clock channel, taking off wavelengths 4. Compare the average clock pulse start in the three chips

ARA Timing Calibration

Event to Event Jitter

Having used the clock timing calibration the clocks are now aligned

Clocks - Chip 1 & 2

ARA Timing Calibration

Event to Event Jitter

Calibration Types

KnoCalib – Gets first 260 samples from RAW data kFirstCalib – Applies Δt , ϵ and Interleave kSecondCalib – Applies Δt , ϵ , Interleave and event to event jitter kLatestCalib – Currently kSecondCalib + cable delay calibration

Best to use kLatestCalib in code as this will always be the most up to date calibration

ARA Timing Calibration

Pulser Data

ARA Timing Calibration

Pulser Data

Correlate Channels 1 & 7 then look for timing offset of the peak correlation value

ARA Timing Calibration

Pulser Data

Peak Correlation Channels 1 and 7 - kSecondCalib

Peak Correlation Channels 1 & 7 - kSecondCalib - epsilon

ARA Timing Calibration

Pulser Data

Peak Correlation Channels 1 & 7 - kSecondCalib - Sample Spacing

ARA Timing Calibration

Pulser Data

Peak Correlation Channels 1 and 7 - kSecondCalib

Peak Correlation Channels 1 & 7 - kFirstCalib

ARA Timing Calibration

Pulser Data

Peak Correlation Channels 1 & 7 - kSecondCalib - Interleave

Looking at other ways of characterising this

Conclusions

Electronics calibration seems to be working The event to event jitter has the greatest impact ~ 7ns Followed by time between samples ~ 1.8 ns and epsilon ~ 793ps

Looking at ways of better characterising interleave timing effects

Use kLatestCalib in your code as this contains the most recent calibrations

Further Work

Build on these calibrations to look at cable delays and further calibrations