
DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 1 -

DOR – API Description
Rev. 3.4b

Karl-Heinz Sulanke

DESY Zeuthen

Created on 5/17/2007
com_104q or later

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 2 -

Introduction
This document is a first trial to describe the DOR (DOm Readout interface) - API. It should be seen as a
basis of discussion. Comments and proposals are welcome.

DOR_rev0, Block Diagram

Comm. Ch0
ADC / DAC

FLASH
1 MByte PLD

Comm. & PCI
FPGA

PCI
Bus

96 V

SRAM
1 MByte

Mem.
Bus

Comm. Ch1
ADC / DAC

Comm. Ch2
ADC / DAC

Comm. Ch3
ADC / DAC

JTAG
PLD
FPGA

PLL
clock x2

Osc.

10MHz

Power Control Ch0..Ch3
On

DOM
quad
cable

DOM
quad
cable

JTAG

JTAG

Cfg Req

33MHz

= not implemented in firmware

10MHz
1PPS
Timestring

20MHz

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 3 -

DOR_rev1, Block Diagram

DOM
quad
cable

DOM
quad
cable

Comm. Ch0
ADC / DAC

FLASH
2 MByte

PLD

Comm.
FPGA

PCI
Bus

96 V

SRAM
1 MByte

PCI
FPGA

Local
Bus

Mem.
Bus

Cfg
Req

Cfg

Comm. Ch1
ADC / DAC

Comm. Ch2
ADC / DAC

Comm. Ch3
ADC / DAC JTAG

PLD
FPGA

PLL
In0
In1

Osc.
10MHz

In_sel

Power Control Ch0..Ch3
On Cur Vol

JTAG

JTAG

PLL-In_sel

33MHz

33MHz

10MHz

= not implemented in firmware

10MHz
1PPS
Timestring

20MHz

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 4 -

Configuration Space Registers

Vendor ID 1234h
Device ID 5678h
Revision ID 01h
Class Code 0c8000h
Bits Meaning Value Description
23..16 Class Code 0ch Serial bus controller
15..8 Sub-Class Code 80h
7..0 Prog. I/F 00h

Other network controller

Subsystem ID 0000h
Subsystem VendorID 0000h

Remark: With respect to PCI Rev. 2.2 the Class Code 0c8000h is an illegal combination ! It should get
changed, if the extra software effort is within the limits.

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 5 -

FPGA Configuration, DOR_rev0
According to the PCI Bus conventions it is not allowed to connect more than one chip-pin to a PCI Bus
signal. Therefore it is not possible to use a second, EEPROM based chip, like a PLD to control the PCI Bus
while loading the FPGA.
However a PLD is useful after power-on or PC-Reset to load the FPGA by copying the data from a
FLASH memory to the FPGA byte-wide configuration port. It takes about 0.2 seconds for the PLD
(ALTERA EPM7064AETC44) to configure the FPGA by copying 246002 bytes from a 1 MB FLASH
memory (AM29LV800B) to the FPGA-configuration port. The FLASH is divided into four 256KB pages.
After power on or PC reset flash page #0 is taken as default page always.

3 ways to initiate a FPGA configuration:

• Power on
• PC reset button
• Software controlled, see description of the CTRL register

FPGA Configuration, DOR_rev1
At DOR_rev1 we deal with a 3 chip ensemble: a PLD (Altera EPM7128BFC100), a PCI bus-controller
FPGA (Altera-ACEX, EP1K50FC256) and a communication-controller FPGA (Altera-CYCLONE,
EP1C20FC400).
After power on or PC reset the PLD loads the PCI controller FPGA first and the comm. controller FPGA
afterwards. It takes about 0.2 seconds for the PLD to load both FPGAs.
The 2MB FLASH is divided into four 512KB pages. Pages #0..2 are preserved to be used for the comm.
controller FPGA. The appropriate unkompressed .rbf file is exactly 444951 bytes in size. The compressed
(enabled at the Quartus compiler: /Asignments/Device/…) .rbf file is roughly half that big. Both files can
be used.
The first byte has to be written to the first byte position of the appropriate Flash page always.
Flash page #3 is preserved to accommodate the PCI bus controller design, 98023 bytes in size. Only two
64KB sectors are used.
It is up to the user what to do with the remaining six 64 KB sectors.
The additional Flash address bit19 is available at the FLASH reg. now.

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 6 -

Changing the FLASH and Reconfiguring the FPGA
When the FPGA is loaded, the FPGA itself can be used as an interface to alter the FLASH memory
content. Once the FLASH FPGA-configuration region is completely overwritten, the PLD located state
machine can be started again to reconfigure the FPGA. See the description of register #0 (CTRL) for more
details.
Use register #15 (FLASH) to access the FLASH memory chip. A PCI bus read initiates a FLASH read, a
PCI bus write plus the WE-bit set, a FLASH write cycle. Accessing the FLASH registers puts the FLASH
into byte mode always. Reading is a two cycle operation, if the address value has to be written before.
Writing commands to the FLASH can be achieved by a one cycle operation. To program a FLASH byte, 4
cycles are needed. A detailed knowledge of the FLASH datasheet is required. (DOR_rev0 ->
Am29LV800B, DOR_rev1-> M29W160ET or AM29LV160BT) Both Flash types are 100% compatible
(except the size).

Keep in mind that the PCI configuration space (a set of standard registers) is part of the FPGA as well.
Some of these register like e.g. the Base_Address_0 are initialized by the BIOS while running the POST
(Power-On Self Test). It is in the responsibility of the software to save these values and to restore them
after the FPGA reconfiguration.

A short description of the procedure can be found here:

1. Save the PCI Configuration Space, the bus number and the device number
2. Reprogram the FLASH by copying the .rbf file bytes to the FLASH
3. When all bytes have been programmed, activate the FPGA reload (from the recently prepared

FLASH) by selecting the FLASH page and setting the CTRL reg.-bit FPGA_RELOAD to one.
4. It takes about 0.2 seconds to reload the FPGA by the onboard PLD. Take the previously stored

bus and - device number to verify the Configuration register
5. Check the firmware revison number (FREV, reg. #31) of the new FPGA image

If the reconfiguration failed, reset or powercycle the PC to get the protected default page loaded.

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 7 -

DOR Communications Clock Source Selection
The communication clock is 20Mhz. The DOR cards have an external 10MHz clock input, to be
synchronized by the GPS.
At DOR_rev0 the clock source get selected by the firmware version. dor_02--.rbf runs from the 20MHz
onboard oscillator. dor_01--.rbf gets driven by the external 10MHz clock.
At DOR_rev1 just one firmware version is needed. The clock source get selected by CTRL-bit30. The
clock selection takes place at the onboard PLL circuit (QS5LV919).
IMPORTANT !!! After selecting the clock source it may take up to 10msec for the 20MHz communication
clock (PLL-output) to be stable. Undefined clock transition after reselecting the clock source might bring
the Comm. FPGA into an undefined state. Therefore a global reset (CTRL-bit23) should be issued
afterwards always.

DOR Power Switch Control
At DOR_rev0 the power switch is controlled by CTRL-bits 0..3 only. The wire_pair_power_on_ready bits
4..7 of DSTAT are hard-wired (faked) to the CTRL-bits 0..3. There is NO firmware based over / under
current / voltage protection at all ! To protect against overcurrent the software has to read the DCUR
register.

At DOR_rev1 the power switch is controlled by a state machine, based on a continously running current
and voltage measurement. The cycle time is about 9 µs. There is full over / under current / voltage
protection. The appropriate limits have to be adjusted using the CURL register. To fade out current peaks
while powering on or off, the states PONING and POFFING have been introduced. There is an over
voltage protection in the PONING state. The power gets switched off if the current value is bigger than
four times previously set at the CURL register or the voltage is to high.
Full protection is given in the PON state only.

POFF PONING PON POFFING POFF

DOM, 5V comes
up after ~140ms

(!!!)

voltage

current

corresponding state machine – states, see below

DOM voltage

DOM current

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 8 -

The state machine, controlling the power switch is shown below.
All states except POFF and PON are temporarily states. The following table illustrates the meaning of
signals / conditions with respect to the DOR API.

!, #, &, ^h inversion, OR, AND, hex
ctrl_pon the appropriate read/write CTRL-bits 0..3 is ‘1’
pow_on sto[0], signal, connected to the power switch
del_aclr sto[1], clears the power on/off delay timer
ctrl_clr sto[2], clears the previously set CTRL-bit 0..3 (ctrl_pon ->’0’)
psw_err sto[3], snapshots the error condition, see DSTAT-bits 8..11,16..31
pow_ok sto[4], power on OR off is ready, see DSTAT-bits 4..7
pon_delay 300 ms, by power on/off delay timer
poff_delay 80 ms, by power on/off delay timer
over_volt typical 100V, programmable, see reg.#13 CURL
under_volt typical 70V, programmable, see reg.#13 CURL
over_cur typical 140mA, programmable, see reg.#13 CURL
under_cur typical 20mA, programmable, see reg.#13 CURL

RESET

!over_volt &
pon_delay &
ctrl_pon &
cable_plgd

ctrl_pon & (
over_volt #
!cable_plgd)

!ctrl_pon

fail

!ctrl_pon & !fail

poff_delay

ctrl_pon &
cable_plgd

sto[] = pow_ok psw_err ctrl_clr del_aclr pow_on

fail = under_volt OR over_volt OR under_cur OR over_cur OR !cable_plgd

PONING
sto=^h1;

PON
sto=^h13;

POFFING
sto=^h0;

POFF
sto=^h12;

FAILURE
sto=^he;

CLR_TIMER
sto=^h2;

A typical software power on sequence:

read DSTAT check for power_on_off_ready bits 4..7, if ready do …
write CTRL set appropriate bits 0..3, then
wait at least 380 ms or poll on DSTAT bits 4..7 getting ‘1’ again, then
read CTRL if the appropriate CTRL bit is still on, power on was successful, else

read DSTAT for debugging the error condition

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 9 -

DOR Timer
The DOR timer is a binary 56 bit counter, clocked by the 20MHz communication clock.

The timer reset is:

Timer_reset = FPGA_reload OR CTRL_bit9

To get a snapshot of the DOR timer you have to toggle the CTRL_bit10 “TIMER_SNAP”.
By this measure the DOR timer value gets synchronized to the PCI clock and can be taken from
UTCRD0/1.
Toggling CTRL_bit9 creates a Timer_reset pulse. CTRL_bit9 is NOT a static clear and cannot be used to
hold the timer in a reset state.

Time Synchronization & Calibration
The DOR timer, driven by the 20MHz communication clock, provides the time stamp needed for the time
calibration.
Presently the time calibration is software controlled, simply achieved by a push-button method.. For every
DOM a bit in the DOMC register is available. After this bit has been set, the software must poll on the
same bit. The bit gets cleared after the completion of the TCAL procedure. A TCAL data packet is
available now.
The time calibration data according to the described format can be taken from the appropriate TCAL data
buffer (TCBUF).

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 10 -

GPS Time String Buffering
The GPS time string gets received at the TSTRG-LVDS input which is feeded by the DSB (DOMhub
Service Board).
The time string format is: “(SOH)DDD:HH:MM:SSQ(CR)(LF)” .
It gets recorded every second until the time string buffer (reg.#28, TSTRG) is full (eleven time strings).
(CR)(LF) does NOT get recorded !

The RS2323 protocol is

9600 Baud, one start bit, eight data bits, and one stop bit.
The protocol parameters can not be changed by software. The GPS system must be setup accordingly.

After receiving the quality indicator Q the firmware waits for the next upgoing PPS (Pulse Per Second)
edge. This edge triggers the snap-shot-taking of the 64 bit DOR timer (highest byte is zero).
After recording the 8 timer snapshot bytes a complete time string (22 bytes) is available.
Status bits (GSTAT, bit12,13) are set after having TEN / ONE time strings recorded. An appropriate
interrupt can get enabled (INTEN, bit12,13).
The firmware takes care that the time strings are always in a 22 byte boundary.

The 22 bytes are defined as followed:

byte meaning comment
0 (SOH) Start Of Header (ASCII control character)
1..3 DDD Julian day
4 “:” delimiter
5..6 HH hour
7 “:” delimiter
8..9 MM minute
10 “:” delimiter
11..12 SS second
13 Q Quality indicator of the 1PPS accuracy, see table below
14..21 CCCCCCCC Binary (!!!) timer[63..0] snapshot, multiples of 50ns (20MHz),

byte14 is the most -, byte 21 the least significant byte

The 1PPS quality indicator Q according to the GPS systems (ET6010 ExacTime GPS TC & FG) manual:

ASCII
Character

HEX
Equivalent

Definition

(space) 20 < 1 microsecond
. 2E < 10 microsecond
* 2A < 100 microsecond
23 < 1 millisecond
? 3F > 1 millisecond

Use test connector J17 (DOR_rev0) or J2 (DOR_rev1) to verify a correct 1PPS to 20MHz alignment.
1PPS_setup time = 5.. 45ns (with respect to the 20MHz_out -LH-edge)

 DOR_rev0
J17-pin

 DOR_rev1
J2-pin

Signal (LVTTL)

1 14 GND
2 15 20MHz_out
3 13 PPS_out
4 16 GND

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 11 -

Data Presentation, DOR-Tx Buffer:
Data will be send in a little endian format. The example below shows the sending of 7 bytes:

PCI-Bus data to Tx Buffer:

Header 12348007
1. Dataword 44332211
2. Dataword 00776655

Data Presentation, Cable:

Data bytes, sent to the DOM A, cursive means added by hardware:

Remark: bit DOM_AnotB gets overwritten by hardware, depending on the message buffer
(MBFx) used

The Data Byte

0 1 2 3 4 5 6 7 8 9
Start Data bits Stop

1 bit0 bit1 bit2 bit 3 bit 4 bit 5 bit 6 bit 7 1

The Control Bytes STF and EOF

0 1 2 3 4 5 6 7 8 9
Start “E3” or “99” Stop

1 bit0 bit1 bit2 bit 3 bit 4 bit 5 bit 6 bit 7 0
Message Format (by Arthur Jones)

Start_Of_Frame e3
Packet_Length_7..0
DOM_AnotB, Packet_Type_2..0, Packet_Length_11..8
Sequence_Number_7..0
Sequence_Number_15..8

07
80
34
12

1. Dataword 11
22
33
44

2. Dataword 55
66
77
00

CRC_byte3 xx
CRC_byte2 xx
CRC_byte1 xx
CRC_byte0 xx
End_Of_Frame 99

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 12 -

Adjusting the Communication for ICECUBE and ICETOP
Currently the communications signals decoder is based on the decoding of the falling edge. If the falling
edge is longer than the adjusted threshold (comm_thresh[]), a logic one gets detected.
In the final design phase the DOM got an additional capacitor of 150pF, in parallel to the receiver input,.
The idea was to reduce the communications signal EMI, caught by the DOM’s analog path. Unfortunately
this is a built in hazard for the communication interface, because this capacitor is causing immense
reflections, see the figure below.
The problem arises after the DOR has sent it’s last byte and switched to the receiving mode (half duplex).
The reflection gets misinterpreted as the very first communications signal edge, being equivalent to the
UART start bit. The first byte, the start of frame (stf), did not get recognized, the whole packet is lost.
An adjustable DOR-receiver disable time is helpful to fade out the above mentioned reflections. The
disable time called rec_delay[] (see table below) has to be chosen with care. If the time is to big, the real
signal gets lost as well. The right receiver delay can be calculated according to the formula:

 rec_delay[] = cable_length (m) / 5 + 10
If the cable is longer than 1225m, the max. value of 255 should be taken.
Two parameters affect the size of the reflected signal, the length of the cable and the initial size of the
signal, sent by the DOR. Therefore the amplitude (dac_max[]) of the sent by the DOR signal should be as
small as possible. Another good measure would be, to have a constant DOM send delay >10us (length of
one byte @ 1Mbit/s) . Unfortunately the DOM power up (configboot) firmware, featuring zero delays, is
fixed already.
An “external” measure to get rid of the reflections is to use a filter box, like done for ICETOP already.
Although the motivation there was to unsharp the signal edges for more TCAL waveform samples.
Finally I want to mention, that both, the DOM and the DOR PCBs allow low pass filtering in the receiver
path as a mounting option. Using this option, we wouldn’t need neither adjustable communication
parameters nor extra ICETOP filter boxes.

last send
pulse

receiver
disable

Figure , Receiver disable (scope channel 3) to fade out reflections, 100m cable

rec delay[]

refelections

first received
signal at
transformer ,
ADC side

decoder
“hl_edge”

decoder
“rxd”

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 13 -

Use the write function of reg. #30 (DCREV) to adjust the communication threshold, the receive-enable
delay and the send-enable delay.
The following table shows recommended values for DOR_rev1 and DOR_rev0 (in()) :

bits name range ICECUBE
cable >
1500m

ICETOP
+ filter box

cable >
100m

UW
filter
box

comment

7..0

comm_thresh[] 0..255 64 255 64 length of the falling edge
of the comm. Signal after 4
clocks (200ns)

13..12 dac_max[] 0..3 2

(3)

1

(2)

2

(3)

comm_DAC_amplitude =
128 + dac_max[]*32 + 31,
see in () for DOR_rev0

23..16 rec_delay[] 1..255 255 30 10 multiple of 50ns to fade
out reflections from the
last DOR-send,
seen by the DOR receiver
stage;
receiver_enable_delay
= shortest_cable_length
(m) / 5 + 10

31..24 send_delay[] 1..255 1 255 255 multiple of 50ns to fade
out reflections from the
last DOM-send
seen by the DOM receiver
stage

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 14 -

Message Format (by Arthur Jones)

32 bit word aligned, data arranged in little endian format...

|<------------ 32 bits ------------>|
|<--- 16 bits --->|<--- 16 bits --->|
| sequence number | type and length | <- start of packet
| . |
| . |
| . |
| length bytes of data |
| . |
| . |
| . |
| pad2 | pad1 | pad0 | datan |
|<------------ CRC 32 ------------->| <- last 32 bit word

total packet length in bytes = ((length+3)/4) * 4 + 8

where:

sequence number:

the (unsigned 16 bit) sequence number of the data packet sent or, if the packet is an acknowledge
(ack) the sequence number of the packet that is being acknowledged. the sequence number is only
used in data and ack packets, other packet types could use this field for other purposes, see the
type field description below for other uses of this field by other packet types.

rationale:

 in order to do error correction in software, we need to keep track of the packet sequence number.
16 bits of sequence number allows us to look forward or backward 32K packets, this is far more
than we are ever going to buffer, but the next byte aligned step down (8 bits) only gives us +-128
of range which is currently less that we're using now and so would not be enough margin for a
safe design. a non-byte aligned sequence number size would not allow us to use a standard "C"
type to hold the value, hence all sequence number arithmetic would require masks, a process that
would be error-prone and probably more complicated than could be justified by the savings in
bits on the wire.

type and length:

|A |<-type->|<------------- length ------------->|
|-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- |
|15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |

where:

A (1 bit): dom A or B bit.

 the "A" bit allows us to determine whether this packet was destined for the A dom (1) or the B
dom(0). in the case of packets heading for the surface, this bit indicates whether packets are
sourced from the A dom or the B dom.

rationale:

tagging each packet with the destined dom may allow simplifications of the hardware design at a
later state. esp on the dor side, where it would allow the doms sharing a cable to also share a tx
fifo -- hence, more effectively using the available fifo space...

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 15 -

type (3 bits): packet type.

the packet type is (base 2):

000: data packet in the beginning/middle of a sequence.
001: acknowledgement of a data packet.
010: data packet, at the end of a sequence.
011: control packet.
100: initiate connection
101: connection initiated
110: DOR control message
111: undefined

rationale:

in order to support software error correction,
 we need the first 6 messages. we use these as follows:

000: data packet, no syn_fin. this is a data packet that is not yet ready to be passed to the user. it has

another packet behind it with the rest of the data. the sequence number field contains the sequence
number of this data packet. using this scheme we are able to translate "software" packets of any
length to "hardware" packets of a fixed maximum length.

001: ack packet. acknowledge a data packet. the sequence number field describes the data packet that

we are acknowledging. no payload with this packet.

010: data packet, syn_fin set. this is a data packet that is complete and ready to ship to the user. any

previous packets with no syn_fin are prepended in order to this packet when shipping to the user.

011: control packet. this packet never makes it to the user but is used to communicate unreliably

between the "kernel" communications agents. we are currently using this type of packet to
pass comm statistics from the dom to the dor.

100: initiate connection. on startup, the dom and dor must negotiate sequence numbers. this packet

type allows us to signal that we want to start the negotiation. there is no payload to this packet.

101: connection initiated. this packet type confirms to the other side of the comm link that we are alive

and ready to start our tx and rx sequence numbers from zero.

110: DOR control message, see detailed description on next page.

111: undefined. left over type

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 16 -

110: DOR control message.
This packet type allows DOR control messages to be added to the packets. The control message
data are put in the sequence number field of the packet, the only messages defined now are :

DOR commands (bit11..8 of sequence number field):

 by

DOR
by
DOM

0x1 --------- not used
0x2 --------- not used
0x3 IDREQ x dom id request
0x4 --------- not used
0x5 DRREQ x data read request
0x6 DRAND x data read ack by dom, dom tx has no data
0x7 DRBT x dom reboot
0x8 MRWB x message received, more Rx buffer avail
0x9 MRNB x message received, no more Rx buffer avail
0xa MRWE x message received, but CRC error detected
0xb COMRES x communication channel reset
0xc BFSTAT x dom rx buffer status request
0xd SYSRES x dom system Reset (softboot)
0xe TCAL x start time calibration
0xf IDLE x x dor idle, answered by DOM idle

Bit 12 on means the appropriate DOM left CONFIGBOOT. This bits gets used to block TCAL or
SYSRESET (softboot) commands (by software) while the DOM is still in CONFIGBOOT. Used
for “up going” messages only.

The following schema is used to control the communication signals strength
(bit15..14 of sequence number field in DOR control messages) :

bit15 signal_up_request
bit14 signal_down_request

When receiving:

 IF (signal_up_request AND comm_DAC_level < 255)

THEN comm_DAC_level = comm_DAC_level +1;
IF (signal_down_request AND comm_DAC_level > 160)

THEN comm_DAC_level = comm_DAC_level -1;
When sending:

 IF (comm_ADC_max_level [] < CLEV_MIN)

THEN signal_up_request =1;
IF (comm_ADC_max_level > CLEV_MAX)

THEN signal_down_request =1;

Remark: CLEV_MIN, CLEV_MAX can be programmed in some firmware revisions
(e.g. 010w, 011d). Typical values are CLEV_MIN=800..960, CLEV_MAX=810..970.
See also reg.#31 (FREV) description.

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 17 -

length (12 bits):
data (payload) length in bytes
this field allows us to know how big the data portion of the packet will be. the actual packet length
can be calculated from this number using the "C" code (integer math):
packet length = ((length+3)/4) * 4 + 8

rationale:

this field is first in the header as hardware crc detection and creation would require the length of
the data in order to work (and nothing else). the 12 bits of packet length allow us up to 4096 byte
packets (4104 bytes including header and crc). at 4096 byte packets the header/crc overhead is
about 1 part in 512. this should be negligible overhead for the high speed data throughput mode.
keeping the length reasonably small allows us to buffer less data on the dor and dom side when
using software error correction mode.

data (((length+3)/4) * 4 bits):

this is the payload of the packet. the data are organized in
little endian. and padding is added to the end of this field
so that the data are a multiple of 4 bytes.

rationale:
 4 byte alignment allows the software to be greatly simplified and also allows us to use 32 bit dual
ported memory in the dom side. also, the pci bus core we're using on the dor side has a 32 bit bus,
so data can be directly dropped into the packets. also, 32 bit alignment allows us to drop in the 32
bit crc more cleanly using firmware. the overhead of average loss of 12 bits is not significant
compared to the common packet sizes that we expect.

CRC (32 bits):

this field is the 32 bit aligned CRC32.

rationale:

crc32 is commonly used to detect data transmission errors, 32 bits gives us quite a bit of
confidence in the packet integrity, and is relatively easy to calculate in firmware.

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 18 -

Data Buffer Format
Two 32 bit wide data buffer per DOM exists to handle all data traffic, TXBFn and RXBFn. The overall
buffer size per DOM is 2KB. All 16 DOM buffers are physically located in the FPGA. The Tx and the Rx
part of the buffer are symmetrically, 1 KB for Tx and 1 KB for Rx . From the user point of view these
buffers behave like fifos.
When sending, several messages can be piped into the TXBFn. One just has to ensure that enough place is
available.
When receiving, first step is to know which DOM has sent data. Next step is to to copy the data from
RXBFn into memory.
Incomplete or corrupted (CRC error) packets are getting rejected by the firmware. The appropriate 16 bit
communication error counter (CERR, reg. #25) gets incremented.

Sending Data to the DOM
The message buffer (TXBFn) is 250x32 (1000 Bytes) deep. It can get accessed in two ways, either as a
FIFO-port register or by initiating DMA (Direct Memory Access). Per DOM three status bits are available
in the TTSIC register:

Status bit Register Description
TX_EF_n TTSIC Tx Buffer of DOM_n is empty, 250 data words (32 bit) can be

written to
TX_AEF_n TTSIC Tx Buffer of DOM_n is almost empty, at least 150 data words

(32 bit) can be written to
TX_AFF_n TTSIC Tx Buffer of DOM_n is (almost) full, at least 254 data words

(32 bit) are in the Tx buffer

The following steps have to be undertaken by the DOR driver to access the TXBFn in a register mode:

1. Look to the TTSIC reg. to know about the available space for a certain DOM
2. Write the message to the TXBFn register 32 bit word-wise (!), if the packet length is not in a four-

byte-boundary fill the missing positions with zeros
3. if necessary, poll on the global status or on the individual TX_AEF_n bit or expect an interrupt

The following steps have to be undertaken by the driver to access TXBFn in a DMA mode:

1. Look to the TTSIC reg. to know about the available space for a certain DOM
2. Load the appropriate memory pointer to the MRAR reg.
3. Load the appropriate memory byte count and the DOM number to the MRTC reg.. The byte count

has to be in a four-byte-boundary (!!!). Encode the buffer number (0..7) by using MRTC bits
24..26. If the MR_RD_EN (CTRL reg.) is already set, the DMA starts immediately, skip point
4.

4. Set the MR_RD_EN bit in the CTRL reg.
5. to know about the status of the ongoing DMA poll on the MR_RD_TC (Master Read Transfer

Complete) bit of the GSTAT reg. or expect an interrupt

Do not access TXBFn by a write access to the same DOM buffer if a DMA read is ongoing. Processor –
Write and DMA-Read means the same direction of data flow ! Messages 100 bytes or less in size are
probably more efficient transfered by accessing TXBFn in a register mode.

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 19 -

Receiving Data from the DOM
The message buffer (RXBFn) is 256x32 (1024 Bytes) deep. It can get accessed in two ways, either as a
FIFO-port register or by initiating DMA (Direct Memory Access). Per DOM three status bits are available
in the RTSIC register:

Status bit Register Description
RX_EF_n RTSIC Rx Buffer of DOM_n is empty
RX_AFF_n RTSIC Rx buffer almost full flag of DOM_n,

Rx buffer of DOM_n contains more than 104 data words (32bit),
RX_MRCVD_
n

RTSIC At least one complete Message has been received, coming from
DOM_n, if enabled these bits can cause an interrupt,

The following steps have to be undertaken by the driver to access RXBFn in a register mode:

1. look to the RTSIC reg. to know which DOM has sent a message
2. read the very first 32 bit word from RXBFn to know about the message size
3. read the remaining words and copy them to memory, if a non 4 byte boundary packet length has

been found, read the last word (32 bit access) and copy the needed bytes by using an 8 bit memory
write instruction

The following steps have to be undertaken by the driver to access RXBFn in a DMA mode:

1. Look to the RTSIC reg. to know which DOM has sent a complete message
2. Read the very first 32 bit word from RXBFn to know about the message size
3. Load the appropriate memory pointer to the MWAR reg.
4. Load the appropriate memory byte count and the DOM number to the MWTC reg.. Use a four-

byte-boundary always !!! Encode the buffer number (0..7) by using MWTC bits 24..26. If the
MR_WR_EN (CTRL reg.) is already set, the DMA starts immediately, skip point 5.

5. Set the MR_WR_EN bit in the CTRL reg.
6. to know about the status of the ongoing DMA poll on the MR_WR_TC (Master Write Transfer

Complete) bit of the GSTAT reg. or expect an interrupt
7. if a non 4 byte boundary packet length has been found, read the last word using a 32 bit register

access and copy the needed bytes by using an 8 bit memory write instruction

Do not access RXBFn by a read access to the same DOM buffer if a DMA write is ongoing. Processor –
Read and DMA-Write means the same direction of data flow ! Messages 100 bytes or less in size are
probably more efficient transfered by accessing the RXBFn in a register mode.

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 20 -

Interrupts
Similar to the ISA bus conventions there exist a shared interrupt on the PCI Bus as well. The interrupt line
is not fixed but configured by the BIOS while running the POST (Power On self Test). Read the Interrupt
Line Register of the DOR Configuration Space to know about the interrupt line. It should be a number in
between 0 to 15 (decimal). Beside the classical style of using open drain outputs to share an interrupt line
another method has been defined by PCI Bus standard Rev. 2.2. It is called Message Signaled Interrupt
(MSI). The idea is to overcome the delay caused by the interrupt sharing. The question is, if the platform
(CPU board) is supporting this type of interrupts. We should use the classical style I assume.
The DOR interrupt schema is shown below. Every interrupt source is enabled by an appropriate bit of the
Interrupt Enable register (INTEN) performed by an 2 input AND. All these ANDs or ORed to perform the
signal GLOBAL_INT (see GSTAT reg.). If the GLOBAL_INT_EN bit is on, the PCI_INT open drain
output gets pull down in case of a pending interrupt.

In an interrupt service routine the first step is to find the cause of the interrupt by checking the GSTAT
register bit GLOBAL_INT. If this bit is set, the other GSTAT register bits have to be analyzed. E. g. a
message has been received; the appropriate DMA setup could take place.
To clear the pending interrupt three ways are possible. See the above schema: remove the interrupt causing
condition. Write for instance a one to the CBL_STAT bit of the GSTAT register. Disabling the specific
(e.g. INT_ON_CBL_STAT) or the global interrupt enable (GLOBAL_INT_EN) is another way to stop
driving the PCI_INT line.

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 21 -

The Time Calibration Packet
The TCAL packet concists out of a header and two symmetrical data portions. The first half are the DOR
related, the second are the DOM related data. The software should always use the packet length
information (, amount of bytes, header bits 0..15) to calculate the pointer to both data records. The TCAL
buffer (TCBUF) is 64x32bit in size. The presently used DOR firmware creates packets with the header
0x000100E0 and 56x32 bit words payload, which corresponds to 2 x 48 TCAL pulse waveform samples.
The ‘1’ in the header remained for historical reasons and became meaningless now.
The structure of the time calibration packet is shown below.

Figure 2, TCAL Packet Format

...

Packet_Type_and_Length=0x00E0

0 16 1531

0x00 0x01

24 23

0x0 DOR_ADC_1_11..0 0x0 DOR_ADC_0_11..0

DOR_Tx_Time_31..0

DOR_Tx_Time_63..32

DOR_Rx_Time_31..0

DOR_Rx_Time_63..32

0x0 DOR_ADC_47_11..0 0x0 DOR_ADC_46_11..0

0x0 DOM_ADC_1_11..0 0x0 DOM_ADC_0_11..0

DOM_Rx_Time_31..0

DOM_Rx_Time_63..32

DOM_Tx_Time_31..0

DOM_Tx_Time_63..32

0x0 DOM_ADC_47_11..0 0x0 DOM_ADC_46_11..0

...

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 22 -

DOR_Tx_Time_63..0
Multiples of 20MHz clock cycles (50ns) . On board counter, driven by the local clock (for test
purposes) or an external clock (standard ICECUBE mode). The time corresponds to the leading
edge of the sent time calibration pulse.

DOR_Rx_Time_63..0

Multiples of 20MHz clock cycles (50ns) . On board counter, driven by the local clock (for test
purposes) or an external clock (standard ICECUBE mode). The time corresponds to the last ADC
sample of the received time calibration pulse.
IMPORTANT !!! The first revision of the DOR card is equipped with an ADC (AD9235) having
an internal delay of 8 samples, while the DOM uses the ADC AD9215 with an internal delay of 6
samples !!! The latest DOR card revision is equipped with the AD9215.

DOM_Rx_Time_63..0

Multiples of 40MHz (!!!) clock cycles (25ns) . On board counter, driven by the local clock . Bits
47..0 are used only. Bit 63..48 are zero. The time corresponds to the last ADC sample of the
received time calibration pulse. The ADC is clocked with 20MHz (!!!). The 20 MHz clock is
made from the 40 MHz clock. The leading edges are corresponding.
IMPORTANT !!! The DOM uses the ADC AD9215 with an internal delay of 6 samples !!!

DOM_Tx_Time_63..0
Multiples of 40MHz (!!!) clock cycles (25ns) . On board counter, driven by the local clock. Bits
47..0 are used only. Bit 63..48 are zero. The time corresponds to the leading edge of the sent time
calibration pulse.
After receiving the TCAL pulse the DOM waits for 15 µs before sending it’s TCAL pulse back.

Figure 3, TCAL pulses, 3.5 km New Ericsson Cable, 1→DOR, 4→DOM, full cycle ~ 1.3ms

DOR-
TCAL
command

DOR-
TCAL
Pulse (Tx)

DOM-
TCAL
Pulse (Rx)

DOM-
TCAL
Pulse (Tx)

DOR-
TCAL
Pulse (Rx)

DOM- Start
of the
TCAL data
packet

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 23 -

Tx TCAL
Pulse

Tx_time
taken here

Tx_time
latch enable

20 MHZ
comm.
clock

500ns (10 clocks)

Figure 4, TCAL, DOR / DOM Tx_time sample point

Rx TCAL
Pulse

Rx_time
taken here
 Rx_time

latch enable

20 MHZ
comm.
clock

6 clocks

Figure 5, TCAL, DOR / DOM low going edge, Rx_time sample point at ADC[n] > ADC[n-1]

Last taken
waveform
sample

ADC
internal
delay

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 24 -

Recommended DOR - Global Register Init

Register Bits Write Operation / Comment
CTRL 31..0 CTRL = 0x00000000
 500ms delay (if DOM power was on before)
CTRL 31, 30 clock_select, timout_enable
 10ms delay
INTEN 31..0 INTEN = 0x00000000, Clear all interrupt enable bits

TTSIC 31..24 TTSIC = 0x00000000, Clear all interrupt enable
RTSIC 31..24 RTSIC = 0x00000000, Clear all interrupt enable
TCSIC 31..16 TTSIC = 0xffff0000, Clear interrupt enable and TCAL packet

received bits

MRTC 31..0 MRTC = 0x00000000, Clear Master Read Transfer Count (DMA)
MWTC 31..0 MWTC = 0x00000000, Clear Master Write Transfer Count (DMA)
GSTAT 10,3,2 GSTAT = 0x000004c0, Clear previous status

Recommended DOR - Register Init for individual Wire Pairs / DOMs

Register Bits Comment
DSTAT 3..0 check if cable is plugged
CTRL 7..4 wire pair reset on
CTRL 3..0 wire pair power on
 …1000 ms delay (DOM related)
DSTAT 11..8, 7..4 check for wire_pair_current_off_limits, check for power_on_ready
CTRL 7..4 wire pair reset off
DOMC 15..8 DOM comm. reset on
DOMS 7..0 check for DOM_detected
CTRL 20 if no_DOM, after software time_out clear pending comm. reset

TTSIC 31..24 set interrupt enable bits
RTSIC 31..24 set interrupt enable bits
TCSIC 31..24 set interrupt enable bits

MWAR 31..2 if DMA, set master write address
MRAR 31..2 if DMA, set master read address
MRTC 26..24, 19..2 if DMA, set master read transfer count
MWTC 26..24, 19..2 if DMA, set master write transfer count

INTEN 16,13,12,10..6,2 set interrupt enable bits

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 25 -

DOR, FPGA – 32 Bit Register Map

Interface Control & Status Registers – Read / Write Function, Overview
Resulting I/O or Memory_ Address = (Base_Address _0 & 0xfffffffc) + Offset

Access: 32 bit always

Nr. #
(dec.)

Name Offse
t

(hex)

 Description

PCI
FPGA

Com
m

FPGA
00 CTRL 00 Control Reg. x x
01 GSTAT 04 Global Status Reg. x x
02 DSTAT 08 Detailed Status Reg. x x
03 TTSIC 0c Tx Transfer Status & Interrupt Control reg x
04 RTSIC 10 Rx Transfer Status & Interrupt Control reg x
05 INTEN 14 Interrupt Enable Reg. x x
06 DOMS 18 DOM Status Register x
07 MRAR 1c Master Read Address Register x
08 MRTC 20 Master Read Transfer Count x x
09 MWAR 24 Master Write Address Register x
10 MWTC 28 Master Write Transfer Count x x
11 UTCRD0 2c UTC (Universal Time Coordinated) Read #0 x
12 UTCRD1 30 UTC (Universal Time Coordinated) Read #1 x
13 CURL 34 Current / Voltage Limits x
14 DCUR 38 Dom Current x
15 FLASH 3c FLASH memory Address / Data Register x
16 MBF0 40 Message data buffer, DOM_0 x
17 MBF1 44 Message data buffer, DOM_1 x
18 MBF2 48 Message data buffer, DOM_2 x
19 MBF3 4c Message data buffer, DOM_3 x
20 MBF4 50 Message data buffer, DOM_4, DOR_rev1-

only
 x

21 MBF5 54 Message data buffer, DOM_5, DOR_rev1-
only

 x

22 MBF6 58 Message data buffer, DOM_6, DOR_rev1-
only

 x

23 MBF7 5c Message data buffer, DOM_7, DOR_rev1-
only

 x

24 DOMC 60 DOM Control register x
25 CERR 64 Communication (Rx) Error counter x
26 TCSIC 68 TCAL Status & Interrupt Control reg. x
27 TCBUF 6c TCAL data Buffer x
28 TSTRG 70 Time String buffer, 11x22bytes x
29 DOMID 74 DOM-ID reg. x
30 DCREV 78 Supported DOM Comm. Module Revision x
31 FREV 7c Firmware Revision x x

Shadow Register for Test & Debugging

03 DBCS 0c Debug Status & Control Register x
04 CDLT 10 Communaction DAC Look up Table x

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 26 -

06 WFRB 18 Waveform Read Buffer x
11 STMF 2c Statemachine log FIFO, 1kx32, (wire pair #0) x

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 27 -

Interface Control & Status Registers – Detailed Description

RW Read / Write
RWC Read / Write-Clear, writing a 1 clears the status bit
RO Read Only
WO Write Only
RWSC Read / Write / Self Clear, gets 0 when ready (poll function)

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 28 -

#0 CTRL @ 00h Control register power on state: C000:0000h

Bit Signal Attribute Description
0..3 WP_PON_0..3 RW Wire pair power on/off bits, poll on WP_PON_RDY_0..3

(DSTAT) to get the status,
4..7 WP_RES_0..3 RW Wire pair communication modules reset signal

8 RETRANS_EN RW packet retransmit by firmware, only if in 8B/10B mode
9 TIMER_CLEAR RW The 0-1 transition clears the 64 bit DOR timer

10 TIMER_SNAP RW The 0-1 transition cause a snapshot of the 64 bit DOR
timer,
The value can be read from UTCRD0/1. Needed because
the timer is not synchronous to the PCI clock,

11 ENC_8B10B_DIS RW 8b10b encoding-disable, default is off ! if NOT set, the
firmware trys to run at 2 Mbaud speed, using an 8b10b
enoding schema.

12..14 TCBUF_SEL_0..2 RW To select one of the TCAL data buffers 0..7, mirrored by
TCSIC bits 8..10 (!!!)

15 LEV_ADAPT_DIS RW comm. signal level adaption – disable. The comm. level
adaption only effective with the DOM being in ICEBOOT.

16..19 x RW Unused
20 DEBUG_LEDS_EN RW switches the data transfer monitoring LEDs into software

debug mode, see reg. #31 FREV_write
21 CPAR_RD_EN RW default is off ! when set, the comm. parameters can get

read back from reg. #30,#31
22 DBG_REG_SEL RW Debug (Shadow) Register Space Select
23 GLOBAL_RES RW resets the comm. FPGA,

Select the clock source (CTRL bit 31) first.
After reloading the comm. FPGA this bit should be toggled
not earlier than 20 µs after CFG_DONE (GSTAT-bit 2)
went high.
IMPORTANT !!!
After switching off the bit the reset is still active for about
500ns. A delay should be inserted here.

24..25 FPGA_IMAGE_0..1 RW FPGA firmware version (FLASH page) select bits, to be
used together with FPGA_RELOAD

26 FPGA_RELOAD WO Initiates the FPGA reload. The (previously saved) PCI
config space has to be restored after the reload operation !

27 MR_RD_EN RW Master (DMA) Read Enable
Bus master view, PC_memory -> DOR_buffer
Writing a 0 while running DMA Read cancels the
operation

28 MR_WR_EN RW Master (DMA) Write Enable
Bus master view, DOR_buffer-> PC_memory
Writing a 0 while running DMA Write cancels the
operation

29 MEM_RD_MULT RW Memory Read Multiple used for Master Read operations
30 COM_TOUT_EN RW Communication Time Out Enable, time out occurs if

DOM_x is not responding after 16 sec. (256 retrials)
Default (and after GLOBAL_RES) is on.

31 LOCAL_OSC_EN RW Local Oscillator select instead of external clock.
IMPORTANT !!!
Wait at least 10 ms, required by the PLL to settle down.

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 29 -

Rem.: bits 23..29, 31 are located in the PCI-control FPGA

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 30 -

#1 GSTAT @ 04h Global Status Register power on state: 0000:01C4h

Bit Signal Attribute Description
0 CFG_ERR RO Comm. Controller FPGA configuration (Flash page 0..2)

failed due to HW problems or a corrupt Flash page.
DOR_rev1 – only !!!

1 CFG_DONE RO Comm. Controller FPGA configuration (Flash page 0..2)
ready,
DOR_rev1 – only !!!

2 CBL_STAT_CHD RWC Cable Status Changed, at least one cable has been plugged
or unplugged

3 WP_POW_FAILED RWC At least one wire pair has been powered on and the current
/ voltage is beyond the limits (see CURL reg.) or a cable
has been unplugged while under power. Check DSTAT
reg. for details
DOR_rev1 – only !!!

4 HW_TIMEOUT RO Or of all eight possible DOM hardware timeouts, see
DOMS

5 0 RO Unused
6 MR_WR_TC RO Master (DMA) Write Transfer Complete
7 MR_RD_TC RO Master (DMA) Read Transfer Complete
8 TXBFn_EF RO TX Buffer_n Empty Flag, an OR of all

DOM message buffer empty flags
9 RXBFn_MRCVD RO RX Buffer_n Message Received,

At least one DOM message buffer RXBFn is containing a
complete message

10 TCALn_RDY RWC The time calibration for a selected DOM (see CTRL reg.) is
ready, the time calibration data can be taken from TCBUF.
For status you can also use the DOMC reg., bits 24..31.

11 PPS_DET RWC Pulse Per Second Detected, for synchronization and test
purposes. Write a “1” clears the bit.

12 TSTRG_10x RO Ten time strings are available for readout.
13 TSTRG_1x RO One time string (at least) is available for readout.
14 TSTRG_F_FF RO Time String Fifo Full Flag.

Eleven time strings are available for readout.
15 0 RO Unused
16 GLOBAL_INT RO This is an OR of all enabled interrupt sources (see INTEN

reg.), gets cleared by clearing the interrupt causing status
bits or by disabling the appropriated interrupt-enable bits.
If GLOBAL_INT_EN (INTEN_bit16) is set an interrupt
will occur.

17..23 0 RO unused
24 PPS_MISSED RWC Pulse Per Second missed . Write a “1” clears the bit.
25 SOH_MISSED RWC SOH (GPS time string) missed . Write a “1” clears the bit.

26..31 0 RO unused

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 31 -

#2 DSTAT @ 08h Detailed Status Register power on state: 0000:0003h

Bit Signal Attribute Description
0..3 CBL_PLGD_0..3 RO Cable (wire pair) 0..3 has been plugged
4..7 WP_PON_RDY_0..3 RO wire pair_0..3, power on OR off is ready. AND these bits

with CTRL bits 0..3 to know about the power on / off status
8..11 WP_UNPLGD_0..3 RWC wire pair_0..3, cable was unplugged under power

12..15 CARD_ID_0..3 RO Read back of the CARD_ID hex switch,
IMPORTANT !!!
Don’t do this while programming the FLASH !!!

16..19 WP_CUR_BL_0..3 RWC wire pair_0..3, current is BELOW the limits, the current
was smaller than the programmed value, see CURL reg.#13

20..23 WP_CUR_AL_0..3 RWC wire pair_0..3, current is ABOVE the limits, the current
was bigger than the programmed value, see CURL reg.#13

24..27 WP_VOLT_BL_0..3 RWC wire pair_0..3, voltage is BELOW the limits, the voltage
was smaller than the programmed value, see CURL reg.#13

28..31 WP_VOLT_AL_0..3 RWC wire pair_0..3, voltage is ABOVE the limits, the voltage
was bigger than the programmed value, see CURL reg.#13

#3 TTSIC @ 0ch Tx Transfer Status & Interrupt Ctrl. Reg. power on state: 0000:0F0Fh

Bit Signal Attribute Description
0..7 TX_EF_0..7 RO Tx buffer empty flag of DOM_n

At least 250 32 bit words can be written to.
These bits cause an interrupt, if the appropriate interrupt
enables bits were set

8..15 TX_AEF_0..7 RO Tx buffer almost empty flag of DOM_n,
Max. 150 32 bit words can be written to,

16..23 TX_AFF_0..7 RO Tx buffer almost full flag of DOM_n.
At least 252 32bit words are in the Tx buffer, ,

24..31 TX_ INT_EN_0..7 RW Tx interrupt enable for DOM_n to get an interrupt when
TX_EF_x = 1

#4 RTSIC @ 10h Rx Transfer Status & Interrupt Control Reg. power on state: 0000:000Fh

Bit Signal Attribute Description
0..7 RX_EF_0..7 RO Rx buffer empty flag of DOM_n

8..15 RX_AFF_0..7 RO Rx buffer almost full flag of DOM_n,
Rx buffer of DOM_n contains 103..256 32bit words,

16..23 RX_MRCVD_0..7 RWC At least one complete Message has been received, coming
from DOM_n, these bits cause an interrupt, if the
appropriate interrupt enables bits were set.
Every Rx buffer has a message-received-counter. The
incoming message does a counting up.
Writing a one to RX_MRCVD_x (software acknowledge)
is needed to count down.. As long as the counter is not zero
the bit RX_MRCVD_x remains set.

24..31 RX_INT_EN_0..7 RW Rx interrupt enable for DOM_n to get an interrupt when
RX_MRCVD_x = 1

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 32 -

#5 INTEN @ 14h Interrupt Enable Register power on state: 0000:0000h

Bit Signal Attribute Description
0 X RW reserved
1 X RW reserved
2 INT_ON_CBL_STAT RW Cable status changed, at least one cable has been

plugged or unplugged
3 INT_ON_WP_POW_FAILED RW at least one of the power switch error conditions is

true, see DSTAT bits 8..11, 16..31,
implemented for com_102j and later

4 INT_ON_HW_TIMEOUT RW Interrupt on hardware timeout
5 X RW reserved
6 INT_ON_MR_WR_TC RW Master (DMA) Write Transfer Complete
7 INT_ON_MR_RD_TC RW Master (DMA) Read Transfer Complete
8 INT_ON_TXBFn_EF RW TX Buffer_n Empty Flag,

At least one DOM message buffer TXBFn is empty.
While this is a global Tx-Interrupt enable bit,
individual enables are available at the TTSIC reg..

9 INT_ON_RXBFn_MRCVD RW RX Buffer_n Message Received Flag
At least one DOM message buffer RXBFn is
containing a complete message. While this is a global
Rx-Interrupt enable bit, individual enables are
available at the RTSIC reg..

10 INT_ON_TCALn_RDY RW The time calibration for a selected DOM (see TCSIC
reg.) is ready, the time calibration data can be taken
from TCBUF, addressed by CTRL_bit14..12

11 x RW reserved
12 INT_ON_TSTRG_10x RW Ten time strings can get read out now.
13 INT_ON_TSTRG_1x RW One time string can get read out now.

14..15 x RW Reserved
16 GLOBAL_INT_EN RW If set and GLOBAL_INT (GSTAT_bit16) is on an

interrupt will occur.
17..31 x RW reserved

#6 DOMS @ 18h DOM Status register power on state: 0000:0000h

Bit Signal Attribute Description
0..7 DOM_DET_0..7 RO DOM 0..7 detected

8..15 DOM_TOUT_0..7 RWC Hardware timeout detected,
DOM 0..7 were not responding within 4.1 sec,
gets cleared as well by DOMC-bits 7..0 or 15..8

16..23 DOM_BFULL_0..7 RO DOM 0..7 Rx Buffer has filled up,
24..31 DOM_NOT_CFG_BOOT_0..7 RO DOM 0..7, DOM are not in CONFIGBOOT.

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 33 -

#7 MRAR @ 1Ch Master Read Address Register power on state: 0000:0000h

Bit Signal Attribute Description
0 0 RO 32 bit boundary required
1 0 RO

2..31 MRAR_2..31 RW Used for Bus Master (DMA) Read operations,
Memory buffer -> DOM message buffer,
Points to the first 32 bit memory word to be transferred to
the selected (MRTC reg. bit 24…26) DOM message buffer.

#8 MRTC @ 20h Master Read Transfer Count power on state: 0000:0000h

Bit Signal Attribute Description
0..1 MRTC_1..0 RW Can be used, but a 4 byte boundary is preferred

2..19 MRTC_2..19 RW Used for Bus Master (DMA) Read operations,
Memory buffer -> DOM message buffer,
Amount of 32 bit memory words to be transferred to the
selected (bit 24…26) DOM message buffer.

20..23 0 RO Reserved
24..26 RXBF_0..2 RW DOM message buffer number the transfer is associated

with
27..31 0 RO Reserved

#9 MWAR @ 24h Master Write Address Register power on state: 0000:0000h

Bit Signal Attribute Description
0 0 RO 32 bit boundary required
1 0 RO

2..31 MWAR_2..31 RW Used for Bus Master (DMA) Write operations,
DOM message buffer -> Memory buffer ,
32 bit memory address, the data from the selected DOM
(MWTC reg., bit24…26) message buffer have to be written
to

#10 MWTC @ 28h Master Write Transfer Count power on state: 0000:0000h

Bit Signal Attribute Description
0 0 RO 32 bit boundary required
1 0 RO

2..19 MWTC_2..19 RW Used for Bus Master (DMA) Write operations,
DOM message buffer -> Memory buffer ,
Amount of 32 bit memory words to be transferred from the
selected (bit24…26) DOM message buffer.

20..23 0 RO Reserved
24..26 TXBF_0..2 RW DOM message buffer number the transfer is associated

with
27..31 0 RO Reserved

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 34 -

#11 UTCRD0 @ 2Ch UTC Read #0 power on state: 0000:0000h

Bit Signal Attribute Description
0..31 UTC_TIME_0..31 3) RO DOR Timer (later UTC time), lower 32 bits,50ns ticks.

CTRL reg. bit10 (TIMER_SNAP) must be used before.

#12 UTCRD1 @ 30h UTC Read #1 power on state: 0000:0000h

Bit Signal Attribute Description
0..31 UTC_TIME_32..63 3) RO DOR Timer (later UTC time), upper 32 bits,50ns ticks

 3) counts up immediately after FPGA load

#13 CURL @ 34h Current Limits power on state: E19E:8C14h

Bit Signal Attribute Description
0..7 CUR_MIN_0..7 RW DOM power, minimum current in mA,

When DOMs are powered on and the current is smaller, an
status bit get set. See DSTAT reg. and GSTAT reg..
The appropriate channel gets shut down.
recommended range 20mA…25mA,
default value = 20mA,

8..15 CUR_MAX_0..7 RW DOM power, maximum current in mA,
When DOMs are powered on and the current is bigger, an
status bit get set. See DSTAT reg. and GSTAT reg..
The appropriate channel gets shut down.
recommended range 100mA…200mA,
default value = 200mA,
IMPORTANT !!!!
A short term (max 100sec) of up to 255mA is allowed.
But permanently using more than 200mA could damage
the inductances L100, L101, L200 .. L401 !

16..23 VOLT_MIN_0..7 RW DOM power, minimum voltage * 2.25 in V,
When DOMs are powered on and the voltage is lower, an
status bit get set. See DSTAT reg. and GSTAT reg..
The appropriate channel gets shut down.
recommended range 60V…70V,
default value = 70V,

24..31 VOLT_MAX_0..7 RW DOM power, maximum voltage * 2.25 in V,
When DOMs are powered on and the voltage is bigger, an
status bit get set. See DSTAT reg. and GSTAT reg..
The appropriate channel gets shut down.
recommended range 96V…110V,
default value = 100V,

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 35 -

#14 DCUR @ 38h DOM Current power on state: 0000:0000h

Bit Signal Attribute Description
0..11 DCUR _VAL_0..11 RO DOM (wire pair) current value

current (mA) = DCUR_VAL_11..0 / 2

Use the bit12…13 to select the wire pair

12..13 DCUR_SEL_0..1 RW Wire pair, the current to measure from
14 0 RO unused
15 0 RO unused

16..27 DVOL _VAL_0..11 RO DOM voltage value

voltage (V) = DVOL_VAL_11..0 / 36 (exactly 35.64)

Use the bit28..29 to select the wire pair

28..29 DVOL_SEL_0..1 RW Wire pair, the voltage to measure from
30..31 0 RO unused

#15 FLASH @ 3Ch FLASH access register power on state: xx00:0000h

Bit Signal Attribute Description
0 FL_ADR _-1 RW FLASH address -1, (identical to DQ15)

1..19 FL_ADR _0..18 RW FLASH address bus
20 FL_WE WO FLASH write enable, read back value is zero,

if set, FL_DATA_0…7 are written to FL_ADR-1…18
21 FL_ADR_19 RW DOR_rev1 - only
22 FL_RESET RW FLASH reset is on if FL_RESET==1
23 FL_RESET_VID RW Enforces +12V (VID) at the reset pin, if FL_RESET==0.

This bit allows sector protect / unprotect operations, if
jumper J3 is set.

24..31 FL_DATA_0..7 RW FLASH data bus, accessing this register set the FLASH
always into byte mode.
A write operation takes one cycle; a read operation might
need two cycles, if the address has to be written before.

#16…19 MBF0…3 @ 40..4Ch Rx/Tx Message Buffer 0…3 power on state: 00000000h

Bit Signal Attribute Description
0..31 MBFn _0..31 R/W Read selects the Rx FIFO of DOM_n,

Write selects the Tx FIFO of DOM_n,

#20…23 MBF0…7 @ 50..5Ch Rx/Tx Message Buffer 4…7 power on state: 00000000h

Bit Signal Attribute Description
0..31 MBFn _0..31 R/W Reserved, not yet implemented.

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 36 -

#24 DOMC @ 60h DOM Control power on state: 0000:0000h

Bit Signal Attribute Description
0..7 DOM_SYS_RES_0..7 RW1O DOM Mainboard System Reset (Softreset).

Read / Write_1_Only (cannot be cleared by writing a zero)
Get blocked if the DOM is in CONFIGBOOT, see DOMS
bits 24..31.
The appropriate Tx-and RxFIFO of MBF_n get cleared as
well.When ready the DOM replys with an IDLE command.
Gets cleared by:

IDLE command received,
Appropriate WP_RES_x, see CTRL reg. 4..7,
DOM_COM_RES_x,

8..15 DOM_COM_RES_0..7 RW1O DOM Mainboard Comunication Module Reset.
Read / Write_1_Only (cannot be cleared by writing a zero)

The appropriate Tx-and RxFIFO of MBF_n get cleared as
well.When ready the DOM replys with an IDLE command.
Gets cleared by:

IDLE command received,
Appropriate WP_RES_x, see CTRL reg. 4..7,
Hardware timout (after 4.1 sec.)

16..23 DOM_ID_REQ_0..7 RW1O DOM Mainboard ID Request
Read / Write_1_Only (cannot be cleared by writing a zero)
When ready the appropriate DOMID reg. contains the 6
byte DOM mainboard ID.
Gets cleared by:

DOM-ID received,
Appropriate WP_RES_x, see CTRL reg. 4..7,
DOM_SYS_RES_x.
DOM_COM_RES_x,

24..31 DOM_TCAL_REQ_0..7 RW1O TCAL Request
Read / Write_1_Only (cannot be cleared by writing a zero)
To enforce a time calibration. When ready the appropriate
TCAL buffer (TCBUF) contains the TCAL data packet.
Get blocked if the DOM is in CONFIGBOOT, see DOMS
bits 24..31.
Gets cleared by:

TCAL packet received,
Appropriate WP_RES_x, see CTRL reg. 4..7,
DOM_SYS_RES_x.
DOM_COM_RES_x,

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 37 -

#25 CERR @ 64h Communication Errors power on state: 0000:0000h

Bit Signal Attribute Description
0..15 COMM_ERR_0..15 RO Amount of received corrupt control or data messages.

Get cleared by:
- CERR_29..31, DOMC_0..7, DOMC_8..15, CTRL_4..7

16..27 COMM_DEBUG_0..12 RO dependend on the firmware revision, debugging
information per DOM

28 DOMb_notDOMa RW DOM select, ‘0’ = DOMa, ‘1’=DOMb
29..30 WIRE_SEL_0..1 RW To select wire pairs 0..3

31 COMM_ERR_CLR WO Communication Error Clear for the selected DOM
(bit30..28), a single write clears the selected error counter

#26 TCSIC @ 68h TCAL Status & Interrupt Ctrl. Reg. power on state: 0000:000Fh

Bit Signal Attribute Description
0..7 TC_EF_0..7 RO TCAL buffer empty flag of DOM_n

8..10 TC_BUF_SEL_0..2 RW to select the TCAL data buffer,
mirrored (!!!) CTRL bits 12..14

11 TC_BUF_SEL_ENA RW if set TC_BUF_SEL_0..2 are being used, else CTRL bits
12..14 are valid

12..15 0 RO unused
16..23 TC_PRCVD_0..7 RWC TCAL Packet Received for DOM_n
24..31 TC_ INT_EN_0..7 RW TCAL interrupt enable for DOM_n

#27 TCBUF @ 6Ch TCAL data Buffer power on state: 0000:0000h

Bit Signal Attribute Description
0..31 TC_DATA _0..31 RO TCAL data,

see format description, select the DOM by using CTRL
reg., bits 14..12

#28 TSTRG @ 70h Time String buffer power on state: 0000:0000h

Bit Signal Attribute Description
0..7 TSTRG_F_DATA[0..7] RO Time String Fifo Data

24..31 0 RO unused

#29 DOMID @ 74h DOM-ID Register power on state: 0000:0000h

Bit Signal Attribute Description
0..7 DOM_ID_0..7 RO DOM-ID, byte0 / 3

8..15 DOM_ID_8..15 RO DOM-ID, byte1 / 4
16..23 DOM_ID_16..23 RO DOM-ID, byte2 / 5

24
25..27

DOM_ID_UPPER
DOM_0..7

RW
RW

Bits 0..23 represent the Upper 3 bytes, else lower…
DOM_0..7, the ID is read from

28..31 0 RO unused

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 38 -

#30 DCREV_read @ 78 DOM Comm. Module Revision power on state: 0000:xxxxh

Bit Signal Attribute Description
 if CTRL_bit21=0 (CPAR_RD_EN): DCOM firmware rev.,

if CTRL_bit21=1 (CPAR_RD_EN):
 DOR comm. parameters, see below

0..15 DC_REV_0..15 RW 16 bit number, this revision must be the same used at the
DOM;

16..31 0 RO unused

#30 DCREV_write @ 78 DOR Comm. Parameters

Bit Signal Attribute Description
0..7 COMM_THRESH_0..7 WO length of the lowgoing edge of the comm. Signal after 4

clocks (200ns) in multiples of 0.4 mV (cable signal)
or 2mV (comm. ADC input);
Power up value dependend on the firmware revision;

12..13 DAC_MAX_0..1 WO 0…3,
initial comm_DAC_amplitude
 = 128 + dac_max[]*32 + 31 ;
can get changed if CTRL_bit15 = 1;
Power up value dependend on the firmware revision,;

16..23 REC_DELAY_0..7 WO 1..255,
multiples of 50ns to fade out reflections from the last DOR-
send, seen by the DOR receiver stage;
receiver_enable_delay = shortest_cable_length (m) / 5 + 10
Power up value dependend on the firmware revision;

24..31 SEND_DELAY_0..7 WO 1..255,
multiples of 50ns to fade out reflections from the last
DOM-send, seen by the DOM receiver stage;
Power up value dependend on the firmware revision;

#31 FREV_read @ 7c DOR Firmware Revision power on state: xxxx:xxxxh

Bit Signal Attribute Description
 if CTRL_bit21=0 (CPAR_RD_EN): firmware revsion,

if CTRL_bit21=1 (CPAR_RD_EN):
bit9..0= CLEV_MIN, bit21..12 (!!!)=CLEV_MAX

0..7 CHAR_TAG_ID_0..7 RO Character tag
8..15 SUB_MINOR_ID_0..7 RO 0..99

16..23 MINOR_ID_0..7 RO 0..99
24..31 PCI_CTRL_FREV_0..7 RO 0..255, these bits are located in the PCI_CTRL FPGA

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 39 -

#31 FREV_write @ 7c Limits for the comm. level adaption power on state: xxxx:xxxxh

Bit Signal Attribute Description
0..9 CLEV_MIN_0..9 WO Lower limit, gets compared to the comm. ADC output,

typical value = 800..960;
Power up value dependend on the firmware revision,

10..11 RO unused
12 DEBUG_LEDS_0 WO first row, green LED (wire pair #0 range)
13 DEBUG_LEDS_1 WO first row, yellow LED
14 DEBUG_LEDS_2 WO second row, green LED
15 DEBUG_LEDS_3 WO second row, green LED

16..25 CLEV_MAX_0..9 WO Upper limit, gets compared to the comm. ADC output,
typical value = 810..970;
Power up value dependend on the firmware revision,

26..17 RO unused
28 DEBUG_LEDS_4 WO third row, green LED (wire pair #0 range)
29 DEBUG_LEDS_5 WO third row, yellow LED
30 DEBUG_LEDS_6 WO fourth row, green LED
31 DEBUG_LEDS_7 WO fourth row, green LED

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 40 -

Debug (Shadow) Register Space, for accessing Ctrl-bit22 must be set

#3 DBCS @ 0ch Debug Control & Status power on state: 0000:0000h

Bit Signal Attribute Description
0 CDLT_GO RWSC 1K Byte comm. DAC look up table burst start, ready when

bit returned to zero
1 CDLT_RES RW Resets the look up table write-address and read-address

counters
2..3 0 RO unused
4..5 CDWP_SEL_0..1 RW Comm. DAC (wire pair = = noise channnel) select,
6..7 0 RO unused

8 WF_RECORD RWSC Starts the waveform recorder. Gets cleared if the waveform
read buffer is full. The waveform buffer address gets reset
automatically before the recording starts.
Don’t try to read, before WF_RECORD went low !

9 0 RO reserved
10 WF_ADR_RES RW Resets the waveform buffer address counter
11 WF_SEL RW Waveform select, 0 -> wire pair #0,1; 1-> wire pair #2,3
12 0 RO Reserved

13..15 0 RO Reserved
16 STM_FIFO_EF RO wire pair #0 states recording Fifo is empty
17 STM_FIFO_FF RO wire pair #0 states recording Fifo is full, 1000 words can

get read
18 STM_FIFO_CLR RW clears wire pair #0 states recording Fifo
19 0 RO Reserved
20 STM_ADV_ON_WP RW recording if wire pair control state has been changed
21 STM_ADV_ON_RX RW recording if rx buffer write control state has been changed
22 STM_HLT_ON_TOUT_A RW recording stops, if DOM_A timeout has been detected
23 STM_HLT_ON_TOUT_B RW recording stops, if DOM_B timeout has been detected

24..31 0 RO Reserved

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 41 -

#4 CDLT @ 10h Communication DAC Look up Table power on state: 0000:0000h

Bit Signal Attribute Description
0..7 CDLT_DATA_7..0 RW 1K Byte comm. DAC look up table

31..8 0 RO unused

#6 WFRB @ 18h Waveform Read Buffer power on state: 0000:0000h

Bit Signal Attribute Description
0..9 WP0_WF_9..0 RO Wire pair #0 or # 2, 256Kx10bit recorded comm. ADC

waveform, the read address counter gets incremented per
read

10..15 0 RO unused
16..25 WP1_WF_9..0 RO Wire pair #1 or # 3, 256Kx10bit recorded comm. ADC

waveform
26..31 0 RO unused

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 42 -

#11 STMF @ 2ch State Machine Fifo power on state: 0000:0000h
Depending on bits 20..23 of DBCS the states of the wire pair #0 control state machine and / or the
states of the Rx buffer- write control state machine get recorded continously. The recording stops
in case of a selected halt condition (see DBCS).

Bit Signal Attribute State Name binary decimal
2..0 WP_CTRL_SV_2..0 RO POFFA

A_AVAL
CLR_CRESA
CRES_RDYA
CRESA
TOUT_A

001
000
100
010
110
101

1
0
4
2
6
5

7..3 WP_CTRL_SV_7..3 RO IDL_AB
CRESACKWT
CRESET
DBUFCHK
DBUFWT
DRBT_CRES
DRBT_IDLE_WT
ID_REC
ID_REQ
RACKWT
RDREQ
REC_IDLE
SND_IDLE
SRES_WT
SRESET
TC_RDAT
TC_WAIT1
TCALIB
TCPULSND
TCPULSREC
TCWFMCPY
WACKWT
WDAT

00010
00000
10000
01000
11000
00100
10100
01100
11100
10010
01010
11010
00110
10110
01110
11110
00001
10001
01001
11001
00101
10101
01101

2
0

16
8

24
4

20
12
28
18
10
26
6

22
14
30
1

17
9

25
5

21
13

8 WP_CTRL_SV_8 RO DOMBUF_A
NODOMBUF_A

0
1

0
1

9 WP_CTRL_SV_9 RO DOMBUF_B
NODOMBUF_B

0
1

0
1

12..10 WP_CTRL_SV_12..10 RO PRIO_A
PRIO_B
RUN_A
RUN_B
SEL_A
SEL_B

000
100
010
110
001
101

0
4
2
6
1
5

15..13 WP_CTRL_SV_15..13 RO POFFB
B_AVAL
CLR_CRESB
CRES_RDYB
CRESB
TOUT_B

001
000
100
010
110
101

1
0
4
2
6
5

17..16 WP_CTRL_SV_17..16 RO WRA
RDA
WTA

10
00
01

2
0
1

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 43 -

19..18 WP_CTRL_SV_19..18 RO WRB
RDB
WTB

10
00
01

2
0
1

24..20 RX_FWR_SV_4..0 RO BYTE0
BYTE0_TCAL
BYTE1
BYTE2
BYTE3
CLR_BYTES
CPY_BYTE0
CTRL_EOF_WT
CTRL_OK
DAT_OK
DCMD_SEQ1
LAT_WADR
LEN0
MTYPE_LEN1
PIDL
PTYPE_SEQ0
RxTIME_H
RxTIME_L
RxWFM_CPY
RxWFM_WT
STF_WAIT
TCAL_HDR
TCWF_CLR,
TxTIME_H
TxTIME_L
WFM_RDY
WR_HOLD
WRITE

00000
10000
01000
11000
00100
10100
01100
11100
00010
10010
01010
11010
00110
10110
01110
11110
00001
10001
01001
11001
00101
10101
01101
11101
00011
10011
01011
11011

0
16
8

24
4

20
12
28
2

18
10
26
6

22
14
30
1

17
9

25
5

21
13
29
3

19
11
27

26..25 RX_FWR _SV_6..5 RO REC_DOM_ID
DOM_ID0
DOM_ID1

01
00
10

1
0
2

30..26 RX_FWR _SV_10..7 RO REC_IDLE
CTR_ERR
CTR_MSG
DAT_ERR
DAT_MSG
DATA_OK
ID_ERR
ID_MSG
SEQ1
TCAL_ERR
TCAL_MSG

1110
0000
1000
0100
1100
0010
1010
0110
0001
1001
0101

14
0
8
4

12
2

10
6
1
9
5

DOR–API, Rev. 3.4 (…), see Revision History at the end

DOR_API_rev_34b.doc, K.-H. Sulanke, DESY Zeuthen - 44 -

Revision History

Revision Changes

2.8 Reg. #0 (CTRL), bit 11=DCUR_CONT, removed. Current / voltage get measured ALWAYS
now
Reg. #1 (GSTAT), bit 3, new
Reg. #2 (DSTAT), bits 8..11, 16..31 new / changed
Reg. #13 (CURL), in use now, set max./min. current and max./min. voltage
Reg. #14 (DCUR), bit 15=START_notRDY, removed, not needed anymore
Reg. #31 (FREV), bits 31..24 = pci control FPGA revision

2.9 Reg. #14 (DCUR), document correction, it is NOT a Fifo
3.0 Reg. #0 (CTRL), bit 23=GLOBAL_RES, new (pci_009 and later)

Reg. #5 (INTEN), bit 3, new (com_102j and later)
3.1 Reg. #26 (TCSIC), bits 8..11 new defined, TCSIC bits 8..11 = mirrored CTRL bits 12..14
3.2 Reg. #1 (GSTAT), bits 24,25 new defined

Reg. #25 (CERR), bits 16..27 new defined
3.3 see figure 3, TCAL cycle symplified, extra DRREQ within the TCAL cycle removed,

Reg. #0 (CTRL) new: bit 11 = DBG_REG_SEL
Reg. #1 (GSTAT) new: bit 4 = HW_TIMEOUT, bit 5 = DOM_REBOOT
Reg. #5 (INTEN) new: bit 4 = INT_ON_HW_TIMEOUT, bit 5 =
INT_ON_DOM_REBOOT
Reg. #6 (DOMS) bits 8..15 RWC now, bits 24..31 DOM_REBOOT now

3.4 Reg. #6 (DOMS) bits 24..31 = DOM_NOT_CFG_BOOT_0..7 now
Reg. #24 (DOMC) check description of bits 0..7, 24..31
Reg. #1 (GSTAT), bit 5 = DOM_REBOOT removed
Reg. #5 (INTEN), bit 5 = INT_ON_DOM_REBOOT removed
for upgoing messages headers, the sequence number field bit12 = NOT_CONFIGBOOT now
Reg. #25 (CERR) , see description
Shadow register added (firmware rev. 104p), see Reg. #11 (STMF) ,
see Reg. #3 (DBCS), new bits 16..23
see Figure 5, TCAL – Rx time sample point description changed:

“…Rx_time sample point at ADC[n] > ADC[n-1] “ was “ >= “ before

3.4a Reg. #0 (CTRL) new: bit 11 = ENC_8B10B_DIS; bit 21 = CPAR_RD_EN

