DOR – API Description

Rev. 3.4b

Karl-Heinz Sulanke DESY Zeuthen

Created on 5/17/2007 com_104q or later

Introduction

This document is a first trial to describe the DOR (DOm Readout interface) - API. It should be seen as a basis of discussion. Comments and proposals are welcome.

DOR_rev0, Block Diagram

DOR_rev1, Block Diagram

Configuration Space Registers

Vendor	· ID		1234h				
Device	ID		5678h				
Revisio	on ID		01h				
Class C	Code		0c8000h				
Bits	Meaning	Value	Description				
2316	Class Code	0ch	Serial bus controller				
158	Sub-Class Code	80h	Other network controller				
70	Prog. I/F	00h					
Subsys	tem ID		0000h				
Subsys	tem VendorID		0000h				

Remark: With respect to PCI Rev. 2.2 the Class Code 0c8000h is an illegal combination ! It should get changed, if the extra software effort is within the limits.

FPGA Configuration, DOR rev0

According to the PCI Bus conventions it is not allowed to connect more than one chip-pin to a PCI Bus signal. Therefore it is not possible to use a second, EEPROM based chip, like a PLD to control the PCI Bus while loading the FPGA.

However a PLD is useful after power-on or PC-Reset to load the FPGA by copying the data from a FLASH memory to the FPGA byte-wide configuration port. It takes about 0.2 seconds for the PLD (ALTERA EPM7064AETC44) to configure the FPGA by copying 246002 bytes from a 1 MB FLASH memory (AM29LV800B) to the FPGA-configuration port. The FLASH is divided into four 256KB pages. After power on or PC reset flash page #0 is taken as default page always.

3 ways to initiate a FPGA configuration:

- Power on
- PC reset button
- Software controlled, see description of the CTRL register

FPGA Configuration, DOR_rev1

At DOR_rev1 we deal with a 3 chip ensemble: a PLD (Altera EPM7128BFC100), a PCI bus-controller FPGA (Altera-ACEX, EP1K50FC256) and a communication-controller FPGA (Altera-CYCLONE, EP1C20FC400).

After power on or PC reset the PLD loads the PCI controller FPGA first and the comm. controller FPGA afterwards. It takes about 0.2 seconds for the PLD to load both FPGAs.

The 2MB FLASH is divided into four 512KB pages. Pages #0..2 are preserved to be used for the comm. controller FPGA. The appropriate unkompressed .rbf file is exactly 444951 bytes in size. The compressed (enabled at the Quartus compiler: /Asignments/Device/...) .rbf file is roughly half that big. Both files can be used.

The first byte has to be written to the first byte position of the appropriate Flash page always.

Flash page #3 is preserved to accommodate the PCI bus controller design, 98023 bytes in size. Only two 64KB sectors are used.

It is up to the user what to do with the remaining six 64 KB sectors.

The additional Flash address bit19 is available at the FLASH reg. now.

Changing the FLASH and Reconfiguring the FPGA

When the FPGA is loaded, the FPGA itself can be used as an interface to alter the FLASH memory content. Once the FLASH FPGA-configuration region is completely overwritten, the PLD located state machine can be started again to reconfigure the FPGA. See the description of register #0 (CTRL) for more details.

Use register #15 (FLASH) to access the FLASH memory chip. A PCI bus read initiates a FLASH read, a PCI bus write **plus the WE-bit set**, a FLASH write cycle. Accessing the FLASH registers puts the FLASH into byte mode always. Reading is a two cycle operation, if the address value has to be written before. Writing commands to the FLASH can be achieved by a one cycle operation. To program a FLASH byte, 4 cycles are needed. A detailed knowledge of the FLASH datasheet is required. (DOR_rev0 -> Am29LV800B, DOR_rev1-> M29W160ET or AM29LV160BT) Both Flash types are 100% compatible (except the size).

Keep in mind that the PCI configuration space (a set of standard registers) is part of the FPGA as well. Some of these register like e.g. the Base_Address_0 are initialized by the BIOS while running the POST (Power-On Self Test). It is in the responsibility of the software to save these values and to restore them after the FPGA reconfiguration.

A short description of the procedure can be found here:

- 1. Save the PCI Configuration Space, the bus number and the device number
- 2. Reprogram the FLASH by copying the .rbf file bytes to the FLASH
- 3. When all bytes have been programmed, activate the FPGA reload (from the recently prepared FLASH) by selecting the FLASH page and setting the CTRL reg.-bit FPGA_RELOAD to one.
- 4. It takes about 0.2 seconds to reload the FPGA by the onboard PLD. Take the previously stored bus and device number to verify the Configuration register
- 5. Check the firmware revison number (FREV, reg. #31) of the new FPGA image

If the reconfiguration failed, reset or powercycle the PC to get the protected default page loaded.

DOR Communications Clock Source Selection

The communication clock is 20Mhz. The DOR cards have an external 10MHz clock input, to be synchronized by the GPS.

At **DOR_rev0** the clock source get selected by the firmware version. dor_02--.rbf runs from the 20MHz onboard oscillator. dor_01--.rbf gets driven by the external 10MHz clock.

At **DOR_rev1** just one firmware version is needed. The clock source get selected by CTRL-bit30. The clock selection takes place at the onboard PLL circuit (QS5LV919).

IMPORTANT !!! After selecting the clock source it may take up to 10msec for the 20MHz communication clock (PLL-output) to be stable. Undefined clock transition after reselecting the clock source might bring the Comm. FPGA into an undefined state. Therefore a global reset (CTRL-bit23) should be issued afterwards always.

DOR Power Switch Control

At **DOR_rev0** the power switch is controlled by CTRL-bits 0..3 only. The wire_pair_power_on_ready bits 4..7 of DSTAT are hard-wired (faked) to the CTRL-bits 0..3. There is NO firmware based over / under current / voltage protection at all ! To protect against overcurrent the software has to read the DCUR register.

At **DOR_rev1** the power switch is controlled by a state machine, based on a continously running current and voltage measurement. The cycle time is about 9 μ s. There is full over / under current / voltage protection. The appropriate limits have to be adjusted using the CURL register. To fade out current peaks while powering on or off, the states PONING and POFFING have been introduced. There is an over voltage protection in the PONING state. The power gets switched off if the current value is bigger than four times previously set at the CURL register or the voltage is to high. Full protection is given in the PON state only.

The state machine, controlling the power switch is shown below.

All states except POFF and PON are temporarily states. The following table illustrates the meaning of signals / conditions with respect to the DOR API.

!, #, &, ^h	inversion, OR, AND, hex
ctrl_pon	the appropriate read/write CTRL-bits 03 is '1'
pow_on	sto[0], signal, connected to the power switch
del_aclr	sto[1], clears the power on/off delay timer
ctrl_clr	sto[2], clears the previously set CTRL-bit 03 (ctrl_pon ->'0')
psw_err	sto[3], snapshots the error condition, see DSTAT-bits 811,1631
pow_ok	sto[4], power on OR off is ready, see DSTAT-bits 47
pon_delay	300 ms, by power on/off delay timer
poff_delay	80 ms, by power on/off delay timer
over_volt	typical 100V, programmable, see reg.#13 CURL
under_volt	typical 70V, programmable, see reg.#13 CURL
over_cur	typical 140mA, programmable, see reg.#13 CURL
under_cur	typical 20mA, programmable, see reg.#13 CURL

A typical software power on sequence:

read DSTAT	check for power_on_off_ready bits 47, if ready do
write CTRL	set appropriate bits 03, then
wait	at least 380 ms or poll on DSTAT bits 47 getting '1' again, then
read CTRL	if the appropriate CTRL bit is still on, power on was successful, else
	read DSTAT for debugging the error condition

DOR Timer

The DOR timer is a binary 56 bit counter, clocked by the 20MHz communication clock.

The timer reset is: Timer_reset = FPGA_reload **OR** CTRL_bit9

To get a snapshot of the DOR timer you have to toggle the CTRL_bit10 "TIMER_SNAP".

By this measure the DOR timer value gets synchronized to the PCI clock and can be taken from UTCRD0/1.

Toggling CTRL_bit9 creates a Timer_reset pulse. CTRL_bit9 is NOT a static clear and cannot be used to hold the timer in a reset state.

Time Synchronization & Calibration

The DOR timer, driven by the 20MHz communication clock, provides the time stamp needed for the time calibration.

Presently the time calibration is software controlled, simply achieved by a push-button method.. For every DOM a bit in the DOMC register is available. After this bit has been set, the software must poll on the same bit. The bit gets cleared after the completion of the TCAL procedure. A TCAL data packet is available now.

The time calibration data according to the described format can be taken from the appropriate TCAL data buffer (TCBUF).

GPS Time String Buffering

The GPS time string gets received at the TSTRG-LVDS input which is feeded by the DSB (DOMhub Service Board).

The time string format is: "(SOH)DDD:HH:MM:SSQ(CR)(LF)".

It gets recorded every second until the time string buffer (reg.#28, TSTRG) is full (eleven time strings). (CR)(LF) does NOT get recorded !

The RS2323 protocol is

9600 Baud, one start bit, eight data bits, and one stop bit.

The protocol parameters can not be changed by software. The GPS system must be setup accordingly.

After receiving the quality indicator Q the firmware waits for the next upgoing PPS (Pulse Per Second) edge. This edge triggers the snap-shot-taking of the 64 bit DOR timer (highest byte is zero). After recording the 8 timer snapshot bytes a complete time string (22 bytes) is available. Status bits (GSTAT, bit12,13) are set after having TEN / ONE time strings recorded. An appropriate interrupt can get enabled (INTEN, bit12,13).

The firmware takes care that the time strings are always in a 22 byte boundary.

The 22 bytes are defined as followed:

byte	meaning	comment
0	(SOH)	Start Of Header (ASCII control character)
13	DDD	Julian day
4	···;"	delimiter
56	HH	hour
7	···;"	delimiter
89	MM	minute
10	····"	delimiter
1112	SS	second
13	Q	Quality indicator of the 1PPS accuracy, see table below
1421	CCCCCCCC	Binary (!!!) timer[630] snapshot, multiples of 50ns (20MHz),
		byte14 is the most -, byte 21 the least significant byte

The 1PPS quality indicator Q according to the GPS systems (ET6010 ExacTime GPS TC & FG) manual:

ASCII	HEX	Definition
Character	Equivalent	
(space)	20	< 1 microsecond
	2E	< 10 microsecond
*	2A	< 100 microsecond
#	23	< 1 millisecond
?	3F	> 1 millisecond

Use test connector J17 (DOR rev0) or J2 (DOR rev1) to verify a correct 1PPS to 20MHz alignment. 1PPS setup time = 5.. 45ns (with respect to the 20MHz out -LH-edge)

DOR_rev0 J17-pin	DOR_rev1 J2-pin	Signal (LVTTL)
1	14	GND
2	15	20MHz_out
3	13	PPS_out
4	16	GND

Data Presentation, DOR-Tx Buffer:

Data will be send in a little endian format. The example below shows the sending of 7 bytes:

PCI-Bus data to Tx Buffer:

Header	12348007
1. Dataword	44332211
2. Dataword	00776655

Data Presentation, Cable:

Data bytes, sent to the DOM A, cursive means *added by hardware*:

Start_Of_Frame	е3
Packet_Length_70	07
DOM_AnotB, Packet_Type_20, Packet_Length_118	80
Sequence_Number_70	34
Sequence_Number_158	12
1. Dataword	11
	22
	33
	44
2. Dataword	55
	66
	77
	00
CRC_byte3	xx
CRC_byte2	xx
CRC_byte1	xx
CRC_byte0	xx
End_Of_Frame	99

Remark: bit DOM_AnotB gets overwritten by hardware, depending on the message buffer (MBFx) used

The Data Byte

0	1	2	3	4	5	6	7	8	9
Start		Data bits							
1	bit0	bit1	bit2	bit 3	bit 4	bit 5	bit 6	bit 7	1

The Control Bytes STF and EOF

0	1	2	3	4	5	6	7	8	9
Start	"E3" or "99"								Stop
1	bit0	bit1	bit2	bit 3	bit 4	bit 5	bit 6	bit 7	0

Adjusting the Communication for ICECUBE and ICETOP

Currently the communications signals decoder is based on the decoding of the falling edge. If the falling edge is longer than the adjusted threshold (comm_thresh[]), a logic one gets detected. In the final design phase the DOM got an additional capacitor of 150pF, in parallel to the receiver input,. The idea was to reduce the communications signal EMI, caught by the DOM's analog path. Unfortunately this is a built in hazard for the communication interface, because this capacitor is causing immense reflections, see the figure below.

The problem arises after the DOR has sent it's last byte and switched to the receiving mode (half duplex). The reflection gets misinterpreted as the very first communications signal edge, being equivalent to the UART start bit. The first byte, the start of frame (stf), did not get recognized, the whole packet is lost. An adjustable DOR-receiver disable time is helpful to fade out the above mentioned reflections. The disable time called rec_delay[] (see table below) has to be chosen with care. If the time is to big, the real signal gets lost as well. The right receiver delay can be calculated according to the formula:

 $rec_delay[] = cable_length (m) / 5 + 10$

If the cable is longer than **1225**m, the max. value of 255 should be taken.

Two parameters affect the size of the reflected signal, the length of the cable and the initial size of the signal, sent by the DOR. Therefore the amplitude (dac_max[]) of the sent by the DOR signal should be as small as possible. Another good measure would be, to have a constant DOM send delay >10us (length of one byte @ 1Mbit/s). Unfortunately the DOM power up (configboot) firmware, featuring zero delays, is fixed already.

An "external" measure to get rid of the reflections is to use a filter box, like done for ICETOP already. Although the motivation there was to unsharp the signal edges for more TCAL waveform samples.

Finally I want to mention, that both, the DOM and the DOR PCBs allow low pass filtering in the receiver path as a mounting option. Using this option, we wouldn't need neither adjustable communication parameters nor extra ICETOP filter boxes.

Figure, Receiver disable (scope channel 3) to fade out reflections, 100m cable

Use the write function of reg. **#30** (DCREV) to adjust the communication threshold, the receive-enable delay and the send-enable delay.

bits	name	range	ICECUBE cable > 1500m	ICETOP + filter box cable > 100m	UW filter box	comment
70	comm_thresh[]	0255	64	255	64	length of the falling edge of the comm. Signal after 4 clocks (200ns)
1312	dac_max[]	03	2	1	2	$comm_DAC_amplitude =$ 128 + dac_max[]*32 + 31,
			(3)	(2)	(3)	see in () for DOR_rev0
2316	rec_delay[]	1255	255	30	10	multiple of 50ns to fade out reflections from the last DOR-send, seen by the DOR receiver stage; receiver_enable_delay = shortest_cable_length (m) / 5 + 10
3124	send_delay[]	1255	1	255	255	multiple of 50ns to fade out reflections from the last DOM-send seen by the DOM receiver stage

The following table shows recommended values for DOR_rev1 and DOR_rev0 (in()) :

Message Format (by Arthur Jones)

32 bit word aligned, data arranged in little endian format...

where:

sequence number:

the (unsigned 16 bit) sequence number of the data packet sent or, if the packet is an acknowledge (ack) the sequence number of the packet that is being acknowledged. the sequence number is only used in data and ack packets, other packet types could use this field for other purposes, see the type field description below for other uses of this field by other packet types.

rationale:

in order to do error correction in software, we need to keep track of the packet sequence number. 16 bits of sequence number allows us to look forward or backward 32K packets, this is far more than we are ever going to buffer, but the next byte aligned step down (8 bits) only gives us +-128 of range which is currently less that we're using now and so would not be enough margin for a safe design. a non-byte aligned sequence number size would not allow us to use a standard "C" type to hold the value, hence all sequence number arithmetic would require masks, a process that would be error-prone and probably more complicated than could be justified by the savings in bits on the wire.

type and length:

A <-type-> <								length>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

where:

A (1 bit): dom A or B bit.

the "A" bit allows us to determine whether this packet was destined for the A dom (1) or the B dom(0). in the case of packets heading for the surface, this bit indicates whether packets are sourced from the A dom or the B dom.

rationale:

tagging each packet with the destined dom may allow simplifications of the hardware design at a later state. esp on the dor side, where it would allow the doms sharing a cable to also share a tx fifo -- hence, more effectively using the available fifo space...

type (3 bits): packet type.

the packet type is (base 2):

000: data packet in the beginning/middle of a sequence.
001: acknowledgement of a data packet.
010: data packet, at the end of a sequence.
011: control packet.
100: initiate connection
101: connection initiated
110: DOR control message
111: undefined

rationale:

in order to support software error correction, we need the first 6 messages. we use these as follows:

- 000: data packet, no syn_fin. this is a data packet that is not yet ready to be passed to the user. it has another packet behind it with the rest of the data. the sequence number field contains the sequence number of this data packet. using this scheme we are able to translate "software" packets of any length to "hardware" packets of a fixed maximum length.
- 001: ack packet. acknowledge a data packet. the sequence number field describes the data packet that we are acknowledging. no payload with this packet.
- 010: data packet, syn_fin set. this is a data packet that is complete and ready to ship to the user. any previous packets with no syn_fin are prepended in order to this packet when shipping to the user.
- 011: control packet. this packet never makes it to the user but is used to communicate unreliably between the "kernel" communications agents. we are currently using this type of packet to pass comm statistics from the dom to the dor.
- 100: initiate connection. on startup, the dom and dor must negotiate sequence numbers. this packet type allows us to signal that we want to start the negotiation. there is no payload to this packet.
- 101: connection initiated. this packet type confirms to the other side of the comm link that we are alive and ready to start our tx and rx sequence numbers from zero.
- 110: DOR control message, see detailed description on next page.
- 111: undefined. left over type

110: DOR control message.

This packet type allows DOR control messages to be added to the packets. The control message data are put in the sequence number field of the packet, the only messages defined now are :

		by	by	
		DOR	DOM	
0x1				not used
0x2				not used
0x3	IDREQ	Х		dom id request
0x4				not used
0x5	DRREQ	Х		data read request
0x6	DRAND		Х	data read ack by dom, dom tx has no data
0x7	DRBT		Х	dom reboot
0x8	MRWB		Х	message received, more Rx buffer avail
0x9	MRNB		Х	message received, no more Rx buffer avail
0xa	MRWE		х	message received, but CRC error detected
0xb	COMRES	Х		communication channel reset
0xc	BFSTAT	х		dom rx buffer status request
0xd	SYSRES	Х		dom system Reset (softboot)
0xe	TCAL	х		start time calibration
0xf	IDLE	Х	Х	dor idle, answered by DOM idle

DOR commands (bit11..8 of sequence number field):

Bit 12 on means the appropriate DOM left CONFIGBOOT. This bits gets used to block TCAL or SYSRESET (softboot) commands (by software) while the DOM is still in CONFIGBOOT. Used for "up going" messages only.

The following schema is used to control the communication signals strength (**bit15..14** of sequence number field in DOR control messages) :

bit15	signal_up_request
bit14	signal_down_request

When receiving:

IF (signal_up_request AND comm_DAC_level < 255) THEN comm_DAC_level = comm_DAC_level +1; IF (signal_down_request AND comm_DAC_level > 160) THEN comm_DAC_level = comm_DAC_level -1;

When sending:

IF (comm_ADC_max_level [] < CLEV_MIN) THEN signal_up_request =1; IF (comm_ADC_max_level > CLEV_MAX) THEN signal_down_request =1;

Remark: CLEV_MIN, CLEV_MAX can be programmed in some firmware revisions (e.g. 010w, 011d). Typical values are CLEV_MIN=800..960, CLEV_MAX=810..970. See also reg.#31 (FREV) description.

length (12 bits):

data (payload) length in bytes

this field allows us to know how big the data portion of the packet will be. the actual packet length can be calculated from this number using the "C" code (integer math): packet length = ((length+3)/4) * 4 + 8

rationale:

this field is first in the header as hardware crc detection and creation would require the length of the data in order to work (and nothing else). the 12 bits of packet length allow us up to 4096 byte packets (4104 bytes including header and crc). at 4096 byte packets the header/crc overhead is about 1 part in 512. this should be negligible overhead for the high speed data throughput mode. keeping the length reasonably small allows us to buffer less data on the dor and dom side when using software error correction mode.

data (((length+3)/4) * 4 bits):

this is the payload of the packet. the data are organized in little endian. and padding is added to the end of this field so that the data are a multiple of 4 bytes.

rationale:

4 byte alignment allows the software to be greatly simplified and also allows us to use 32 bit dual ported memory in the dom side. also, the pci bus core we're using on the dor side has a 32 bit bus, so data can be directly dropped into the packets. also, 32 bit alignment allows us to drop in the 32 bit crc more cleanly using firmware. the overhead of average loss of 12 bits is not significant compared to the common packet sizes that we expect.

CRC (32 bits):

this field is the 32 bit aligned CRC32.

rationale:

crc32 is commonly used to detect data transmission errors, 32 bits gives us quite a bit of confidence in the packet integrity, and is relatively easy to calculate in firmware.

Data Buffer Format

Two 32 bit wide data buffer per DOM exists to handle all data traffic, TXBFn and RXBFn. The overall buffer size per DOM is 2KB. All 16 DOM buffers are physically located in the FPGA. The Tx and the Rx part of the buffer are symmetrically, 1 KB for Tx and 1 KB for Rx. From the user point of view these buffers behave like fifos.

When sending, several messages can be piped into the TXBFn. One just has to ensure that enough place is available.

When receiving, first step is to know which DOM has sent data. Next step is to to copy the data from RXBFn into memory.

Incomplete or corrupted (CRC error) packets are getting rejected by the firmware. The appropriate 16 bit communication error counter (CERR, reg. #25) gets incremented.

Sending Data to the DOM

The message buffer (**TXBF**n) is 250x32 (*1000 Bytes*) deep. It can get accessed in two ways, either as a FIFO-port register or by initiating DMA (Direct Memory Access). Per DOM three status bits are available in the **TTSIC** register:

Status bit	Register	Description	
TX_EF_n	TTSIC	Tx Buffer of DOM_n is empty, 250 data words (32 bit) can be	
		written to	
TX_AEF_n	TTSIC	Tx Buffer of DOM_n is almost empty, at least 150 data words	
		(32 bit) can be written to	
TX_AFF_n	TTSIC	Tx Buffer of DOM_n is (almost) full, at least 254 data words	
		(32 bit) are in the Tx buffer	

The following steps have to be undertaken by the DOR driver to access the TXBFn in a register mode:

- 1. Look to the TTSIC reg. to know about the available space for a certain DOM
- 2. Write the message to the **TXBF**n register 32 bit word-wise (!), if the packet length is not in a fourbyte-boundary fill the missing positions with zeros
- 3. if necessary, poll on the global status or on the individual **TX_AEF_n** bit or expect an interrupt

The following steps have to be undertaken by the driver to access **TXBF**n in a DMA mode:

- 1. Look to the **TTSIC** reg. to know about the available space for a certain DOM
- 2. Load the appropriate memory pointer to the MRAR reg.
- Load the appropriate memory byte count and the DOM number to the MRTC reg.. The byte count has to be in a four-byte-boundary (!!!). Encode the buffer number (0..7) by using MRTC bits 24..26. If the MR_RD_EN (CTRL reg.) is already set, the DMA starts immediately, skip point 4.
- 4. Set the **MR_RD_EN** bit in the **CTRL** reg.
- 5. to know about the status of the ongoing DMA poll on the **MR_RD_TC** (Master Read Transfer Complete) bit of the **GSTAT** reg. or expect an interrupt

Do not access **TXBF**n by a write access to the same DOM buffer if a DMA read is ongoing. Processor – Write and DMA-Read means the same direction of data flow ! Messages 100 bytes or less in size are probably more efficient transfered by accessing **TXBF**n in a register mode.

Receiving Data from the DOM

The message buffer (**RXBF**n) is 256x32 (*1024 Bytes*) deep. It can get accessed in two ways, either as a FIFO-port register or by initiating DMA (Direct Memory Access). Per DOM three status bits are available in the **RTSIC** register:

Status bit	Register	Description	
RX_EF_n	RTSIC	Rx Buffer of DOM_n is empty	
RX_AFF_n	RTSIC	Rx buffer almost full flag of DOM_n,	
		Rx buffer of DOM_n contains more than 104 data words (32bit),	
RX MRCVD RTSIC At least one complete Message has been received, comir		At least one complete Message has been received, coming from	
n		DOM_n, if enabled these bits can cause an interrupt ,	

The following steps have to be undertaken by the driver to access **RXBF**n in a register mode:

- 1. look to the **RTSIC** reg. to know which DOM has sent a message
- 2. read the very first 32 bit word from **RXBF**n to know about the message size
- 3. read the remaining words and copy them to memory, if a non 4 byte boundary packet length has been found, read the last word (32 bit access) and copy the needed bytes by using an 8 bit memory write instruction

The following steps have to be undertaken by the driver to access **RXBF**n in a DMA mode:

- 1. Look to the **RTSIC** reg. to know which DOM has sent a complete message
- 2. Read the very first 32 bit word from RXBFn to know about the message size
- 3. Load the appropriate memory pointer to the **MWAR** reg.
- 4. Load the appropriate memory byte count and the DOM number to the **MWTC** reg.. Use a fourbyte-boundary always !!! Encode the buffer number (0..7) by using MWTC bits 24..26. If the **MR_WR_EN** (**CTRL** reg.) is already set, the DMA starts immediately, skip point 5.
- 5. Set the MR_WR_EN bit in the CTRL reg.
- 6. to know about the status of the ongoing DMA poll on the **MR_WR_TC** (Master Write Transfer Complete) bit of the **GSTAT** reg. or expect an interrupt
- 7. if a non 4 byte boundary packet length has been found, read the last word using a 32 bit register access and copy the needed bytes by using an 8 bit memory write instruction

Do not access **RXBF**n by a read access to the same DOM buffer if a DMA write is ongoing. Processor – Read and DMA-Write means the same direction of data flow ! Messages 100 bytes or less in size are probably more efficient transfered by accessing the **RXBF**n in a register mode.

Interrupts

Similar to the ISA bus conventions there exist a shared interrupt on the PCI Bus as well. The interrupt line is not fixed but configured by the BIOS while running the POST (Power On self Test). Read the Interrupt Line Register of the DOR Configuration Space to know about the interrupt line. It should be a number in between 0 to 15 (decimal). Beside the classical style of using open drain outputs to share an interrupt line another method has been defined by PCI Bus standard Rev. 2.2. It is called Message Signaled Interrupt (MSI). The idea is to overcome the delay caused by the interrupt sharing. The question is, if the platform (CPU board) is supporting this type of interrupts. We should use the classical style I assume. The DOR interrupt schema is shown below. Every interrupt source is enabled by an appropriate bit of the Interrupt Enable register (INTEN) performed by an 2 input AND. All these ANDs or ORed to perform the signal GLOBAL_INT (see GSTAT reg.). If the GLOBAL_INT_EN bit is on, the PCI_INT open drain output gets pull down in case of a pending interrupt.

In an interrupt service routine the first step is to find the cause of the interrupt by checking the GSTAT register bit GLOBAL_INT. If this bit is set, the other GSTAT register bits have to be analyzed. E. g. a message has been received; the appropriate DMA setup could take place.

To clear the pending interrupt three ways are possible. See the above schema: remove the interrupt causing condition. Write for instance a one to the CBL_STAT bit of the GSTAT register. Disabling the specific (e.g. INT_ON_CBL_STAT) or the global interrupt enable (GLOBAL_INT_EN) is another way to stop driving the PCI_INT line.

The Time Calibration Packet

The TCAL packet concists out of a header and two symmetrical data portions. The first half are the DOR related, the second are the DOM related data. The software should always use the packet length information (, amount of bytes, header bits 0..15) to calculate the pointer to both data records. The TCAL buffer (TCBUF) is 64x32bit in size. The presently used DOR firmware creates packets with the header 0x000100E0 and 56x32 bit words payload, which corresponds to 2 x 48 TCAL pulse waveform samples. The '1' in the header remained for historical reasons and became meaningless now. The structure of the time calibration packet is shown below.

31	24 23		23 16	15	0	
	0x00		0x01	Packet_Ty	pe_and_Length=0x00E0	
	DOR_Tx_Time_310					
			DOR_Tx_T	ime_6332		
			DOR_Rx_'	Time_310		
			DOR_Rx_1	Time_6332		
	0x0	DO	R_ADC_1_110	0x0	DOR_ADC_0_110	
· · · ·						
	0x0 DOR_ADC_47_11.		R_ADC_47_110	0x0	DOR_ADC_46_110	
	DOM_Rx_Time_310					
	DOM_Rx_Time_6332					
	DOM_Tx_Time_310					
	DOM_Tx_Time_6332					
	0x0 DOM_ADC_1_110		M_ADC_1_110	0x0	DOM_ADC_0_110	
			•			
	0x0 DOM_ADC_47_110		/_ADC_47_110	0x0	DOM_ADC_46_110	

Figure 2, TCAL Packet Format

DOR_Tx_Time_63..0

Multiples of 20MHz clock cycles (50ns). On board counter, driven by the local clock (for test purposes) or an external clock (standard ICECUBE mode). The time corresponds to the leading edge of the sent time calibration pulse.

DOR_Rx_Time_63..0

Multiples of 20MHz clock cycles (50ns). On board counter, driven by the local clock (for test purposes) or an external clock (standard ICECUBE mode). The time corresponds to the last ADC sample of the received time calibration pulse.

IMPORTANT !!! The first revision of the DOR card is equipped with an ADC (AD9235) having an internal delay of **8 samples**, while the DOM uses the ADC AD9215 with an internal delay of **6 samples** !!! The latest DOR card revision is equipped with the AD9215.

DOM_Rx_Time_63..0

Multiples of **40MHz** (!!!) clock cycles (25ns). On board counter, driven by the local clock. Bits 47..0 are used only. Bit 63..48 are zero. The time corresponds to the last ADC sample of the received time calibration pulse. **The ADC is clocked with 20MHz** (!!!). The 20 MHz clock is made from the 40 MHz clock. The leading edges are corresponding.

IMPORTANT !!! The DOM uses the ADC AD9215 with an internal delay of 6 samples !!!

DOM_Tx_Time_63..0

Multiples of **40MHz (!!!)** clock cycles (25ns). On board counter, driven by the local clock. Bits 47..0 are used only. Bit 63..48 are zero. The time corresponds to the leading edge of the sent time calibration pulse.

After receiving the TCAL pulse the DOM waits for 15 µs before sending it's TCAL pulse back.

Figure 3, TCAL pulses, 3.5 km New Ericsson Cable, $1 \rightarrow DOR$, $4 \rightarrow DOM$, full cycle ~ 1.3ms

Figure 4, TCAL, DOR / DOM Tx_time sample point

Figure 5, TCAL, DOR / DOM low going edge, Rx_time sample point at ADC[n] > ADC[n-1]

Register	Bits	Write Operation / Comment	
CTRL	310	CTRL = 0x00000000	
		500ms delay (if DOM power was on before)	
CTRL	31, 30	clock_select, timout_enable	
		10ms delay	
INTEN	310	INTEN = $0x00000000$, Clear all interrupt enable bits	
TTSIC	3124	TTSIC = $0x00000000$, Clear all interrupt enable	
RTSIC	3124	RTSIC = 0x00000000, Clear all interrupt enable	
TCSIC	3116	TTSIC = 0xffff0000, Clear interrupt enable and TCAL packet	
		received bits	
MRTC	310	MRTC = 0x00000000, Clear Master Read Transfer Count (DMA)	
MWTC	310	MWTC = 0x00000000, Clear Master Write Transfer Count (DMA)	
GSTAT	10,3,2	GSTAT = 0x000004c0, Clear previous status	

Recommended DOR - Global Register Init

Recommended DOR - Register Init for individual Wire Pairs / DOMs

Register	Bits	Comment	
DSTAT	30	check if cable is plugged	
CTRL	74	wire pair reset on	
CTRL	30	wire pair power on	
		1000 ms delay (DOM related)	
DSTAT	118, 74	check for wire_pair_current_off_limits, check for power_on_ready	
CTRL	74	wire pair reset off	
DOMC	158	DOM comm. reset on	
DOMS	70	check for DOM_detected	
CTRL	20	if no_DOM, after software time_out clear pending comm. reset	
TTSIC	3124	set interrupt enable bits	
RTSIC	3124	set interrupt enable bits	
TCSIC	3124	set interrupt enable bits	
MWAR	312	if DMA, set master write address	
MRAR	312	if DMA, set master read address	
MRTC	2624, 192	if DMA, set master read transfer count	
MWTC	2624, 192	if DMA, set master write transfer count	
INTEN	16,13,12,106,2	set interrupt enable bits	

DOR, FPGA – 32 Bit Register Map

Interface Control & Status Registers – Read / Write Function, Overview Resulting I/O or Memory_ Address = (Base_Address _0 & 0xffffffc) + Offset

Access: 32 bit always

Nr. #	Name	Offse	Description		Com
(dec.)		t		FPGA	m
		(hex)			FPGA
00	CTRL	00	Control Reg.	Х	Х
01	GSTAT	04	Global Status Reg.	Х	х
02	DSTAT	08	Detailed Status Reg.	Х	Х
03	TTSIC	0c	Tx Transfer Status & Interrupt Control reg		Х
04	RTSIC	10	Rx Transfer Status & Interrupt Control reg		х
05	INTEN	14	Interrupt Enable Reg.	Х	х
06	DOMS	18	DOM Status Register		Х
07	MRAR	1c	Master Read Address Register	х	
08	MRTC	20	Master Read Transfer Count	Х	Х
09	MWAR	24	Master Write Address Register	х	
10	MWTC	28	Master Write Transfer Count	Х	Х
11	UTCRD0	2c	UTC (Universal Time Coordinated) Read #0		Х
12	UTCRD1	30	UTC (Universal Time Coordinated) Read #1		Х
13	CURL	34	Current / Voltage Limits		Х
14	DCUR	38	Dom Current		Х
15	FLASH	3c	FLASH memory Address / Data Register	Х	
16	MBF0	40	Message data buffer, DOM_0		Х
17	MBF1	44	Message data buffer, DOM_1		Х
18	MBF2	48	Iessage data buffer, DOM_2		Х
19	MBF3	4c	Message data buffer, DOM_3		х
20	MBF4	50	Message data buffer, DOM_4, DOR_rev1-		Х
			only		
21	MBF5	54	Message data buffer, DOM_5, DOR_rev1-		х
			only		
22	MBF6	58	Message data buffer, DOM_6, DOR_rev1-		Х
		-	only		
23	MBF7	5c	Message data buffer, DOM_7, DOR_rev1-		Х
	DOMG		only	-	
24	DOMC	60	DOM Control register		X
25	CERR	64	Communication (Rx) Error counter		X
26	TCSIC	68	TCAL Status & Interrupt Control reg.		X
27	TCBUF	6c	TCAL data Buffer		X
28	TSTRG	70	Time String buffer, 11x22bytes		X
29	DOMID	74	DOM-ID reg.		X
30	DCREV	78	Supported DOM Comm. Module Revision		Х
31	FREV	7c	Firmware Revision x		X
	i	Shado	w Register for Test & Debugging		i
03	DBCS	0c	Debug Status & Control Register		Х
04	CDLT	10	Communaction DAC Look up Table		Х

DOR–API, Rev. 3.4 (...), see Revision History at the end

06	WFRB	18	Waveform Read Buffer	Х
11	STMF	2c	Statemachine log FIFO, 1kx32, (wire pair #0)	Х

Interface Control & Status Registers – Detailed Description

RW	Read / Write
RWC	Read / Write-Clear, writing a 1 clears the status bit
RO	Read Only
WO	Write Only
RWSC	Read / Write / Self Clear, gets 0 when ready (poll function)

#0 CTRL @ 00h	
---------------	--

Control register

power on state: C000:0000h

Bit	Signal	Attribute	Description
03	WP_PON_03	RW	Wire pair power on/off bits, poll on WP_PON_RDY_03
			(DSTAT) to get the status,
47	WP_RES_03	RW	Wire pair communication modules reset signal
8	RETRANS_EN	RW	packet retransmit by firmware, only if in 8B/10B mode
9	TIMER_CLEAR	RW	The 0-1 transition clears the 64 bit DOR timer
10	TIMER_SNAP	RW	The 0-1 transition cause a snapshot of the 64 bit DOR
			timer,
			The value can be read from UTCRD0/1. Needed because
11	ENG ODIOD DIG	DW	the timer is not synchronous to the PCI clock,
11	ENC_8B10B_DIS	KW	80100 encoding-disable, default is off ! if NOT set, the
			enoding schema
1214	TCBUF SEL 02	RW	To select one of the TCAL data buffers 0.7. mirrored by
			TCSIC bits 810 (!!!)
15	LEV_ADAPT_DIS	RW	comm. signal level adaption – disable. The comm. level
			adaption only effective with the DOM being in ICEBOOT.
1619	х	RW	Unused
20	DEBUG_LEDS_EN	RW	switches the data transfer monitoring LEDs into software
			debug mode, see reg. #31 FREV_write
21	CPAR_RD_EN	RW	default is off ! when set, the comm. parameters can get
22	DDC DEC SEL	DW	read back from reg. #30,#31 Dabug (Shadow) Pagistar Space Salast
22	DDU_KEU_SEL		Debug (Shadow) Register Space Select
23	GLUBAL_RES	KW	Select the clock source (CTRI bit 31) first
			After reloading the comm. FPGA this bit should be toggled
			not earlier than 20 µs after CFG_DONE (GSTAT-bit 2)
			went high.
			IMPORTANT !!!
			After switching off the bit the reset is still active for about
24.25	EDCA IMACE 0 1	DW	500ns. A delay should be inserted here.
2423	FFGA_IMAGE_01	K VV	used together with FPGA_RFLOAD
26	FPGA RELOAD	WO	Initiates the FPGA reload. The (previously saved) PCI
			config space has to be restored after the reload operation !
27	MR_RD_EN	RW	Master (DMA) Read Enable
			Bus master view, PC_memory -> DOR_buffer
			Writing a 0 while running DMA Read cancels the
20	MD WD EN	DW	operation Master (DMA) Write Enable
28		ĸw	Bus master view DOR huffer > PC memory
			Writing a 0 while running DMA Write cancels the
			operation
29	MEM_RD_MULT	RW	Memory Read Multiple used for Master Read operations
30	COM_TOUT_EN	RW	Communication Time Out Enable, time out occurs if
			DOM_x is not responding after 16 sec. (256 retrials)
			Default (and after GLOBAL_RES) is on.
31	LOCAL_OSC_EN	RW	Local Oscillator select instead of external clock.
			IVIFORIANI !!! Wait at least 10 ms_ required by the PLL to settle down
31	LOCAL_OSC_EN	RW	Local Oscillator select instead of external clock. IMPORTANT !!! Wait at least 10 ms, required by the PLL to settle down.

Rem.: bits 23..29, 31 are located in the PCI-control FPGA

#1 GSTAT @ 04h Global Status Register

Bit	Signal	Attribute	Description
0	CFG_ERR	RO	Comm. Controller FPGA configuration (Flash page 02)
			failed due to HW problems or a corrupt Flash page.
1	CFG_DONE	RO	Comm. Controller FPGA configuration (Flash page 02)
			ready,
			DOR_rev1 – only !!!
2	CBL_STAT_CHD	RWC	Cable Status Changed, at least one cable has been plugged or unplugged
3	WP_POW_FAILED	RWC	At least one wire pair has been powered on and the current
			/ voltage is beyond the limits (see CURL reg.) of a cable has been upplugged while under power Check DSTAT
			reg. for details
			DOR_rev1 – only !!!
4	HW_TIMEOUT	RO	Or of all eight possible DOM hardware timeouts, see
		DO	DOMS
5	0	RO	Unused
6	MR_WR_TC	RO	Master (DMA) Write Transfer Complete
7	MR_RD_TC	RO	Master (DMA) Read Transfer Complete
8	TXBFn_EF	RO	TX Buffer_n Empty Flag, an OR of all
0	DYPEn MDCVD	PO	DOM message buffer empty flags
,	KADI'II_WIKC VD	KO	At least one DOM message buffer RXBEn is containing a
			complete message
10	TCALn_RDY	RWC	The time calibration for a selected DOM (see CTRL reg.) is
			ready, the time calibration data can be taken from TCBUF.
11		DIVG	For status you can also use the DOMC reg., bits 2431.
11	PPS_DET	RWC	Pulse Per Second Detected, for synchronization and test
12	TSTRG 10x	RO	Ten time strings are available for readout.
13	TSTRG 1x	RO	One time string (at least) is available for readout.
14	TSTRG F FF	RO	Time String Fifo Full Flag.
		_	Eleven time strings are available for readout.
15	0	RO	Unused
16	GLOBAL_INT	RO	This is an OR of all enabled interrupt sources (see INTEN
			reg.), gets cleared by clearing the interrupt causing status
			bits or by disabling the appropriated interrupt-enable bits.
			will occur.
1723	0	RO	unused
24	PPS_MISSED	RWC	Pulse Per Second missed . Write a "1" clears the bit.
25	SOH_MISSED	RWC	SOH (GPS time string) missed . Write a "1" clears the bit.
2631	0	RO	unused

Bit	Signal	Attribute	Description
03	CBL_PLGD_03	RO	Cable (wire pair) 03 has been plugged
47	WP_PON_RDY_03	RO	wire pair_03, power on OR off is ready. AND these bits with CTRL bits 03 to know about the power on / off status
811	WP_UNPLGD_03	RWC	wire pair_03, cable was unplugged under power
1215	CARD_ID_03	RO	Read back of the CARD_ID hex switch, IMPORTANT !!! Don't do this while programming the FLASH !!!
1619	WP_CUR_BL_03	RWC	wire pair_03, current is BELOW the limits, the current was smaller than the programmed value, see CURL reg.#13
2023	WP_CUR_AL_03	RWC	wire pair_03, current is ABOVE the limits, the current was bigger than the programmed value, see CURL reg.#13
2427	WP_VOLT_BL_03	RWC	wire pair_03, voltage is BELOW the limits, the voltage was smaller than the programmed value, see CURL reg.#13
2831	WP_VOLT_AL_03	RWC	wire pair_03, voltage is ABOVE the limits, the voltage was bigger than the programmed value, see CURL reg.#13

#2 DSTAT @ 08h Detailed Status Register

power on state: **0000:0003**h

#3 TTSIC @ 0ch Tx Transfer Status & Interrupt Ctrl. Reg. power on state: 0000:0F0Fh

Bit	Signal	Attribute	Description
07	TX_EF_07	RO	Tx buffer empty flag of DOM_n
			At least 250 32 bit words can be written to.
			These bits cause an interrupt , if the appropriate interrupt
			enables bits were set
815	TX_AEF_07	RO	Tx buffer almost empty flag of DOM_n,
			Max. 150 32 bit words can be written to,
1623	TX_AFF_07	RO	Tx buffer almost full flag of DOM_n.
			At least 252 32bit words are in the Tx buffer, ,
2431	TX_INT_EN_07	RW	Tx interrupt enable for DOM_n to get an interrupt when
			$TX_EF_x = 1$

#4 RTSIC @ 10h Rx Transfer Status & Interrupt Control Reg. power on state: 0000:000Fh

Bit	Signal	Attribute	Description
07	RX_EF_07	RO	Rx buffer empty flag of DOM_n
815	RX_AFF_07	RO	Rx buffer almost full flag of DOM_n,
			Rx buffer of DOM_n contains 103256 32bit words,
1623	RX_MRCVD_07	RWC	At least one complete Message has been received, coming
			from DOM_n, these bits cause an interrupt , if the
			appropriate interrupt enables bits were set.
			Every Rx buffer has a message-received-counter. The
			incoming message does a counting up.
			Writing a one to RX_MRCVD_x (software acknowledge)
			is needed to count down As long as the counter is not zero
			the bit RX_MRCVD_x remains set.
2431	RX_INT_EN_07	RW	Rx interrupt enable for DOM_n to get an interrupt when
			$RX_MRCVD_x = 1$

#5 INTEN @ 14h	Interrupt Enable Register
----------------	---------------------------

power on state: 0000:0000h

Bit	Signal	Attribute	Description
0	Х	RW	reserved
1	Х	RW	reserved
2	INT_ON_CBL_STAT	RW	Cable status changed, at least one cable has been plugged or unplugged
3	INT_ON_WP_POW_FAILED	RW	at least one of the power switch error conditions is true, see DSTAT bits 811, 1631, implemented for com_102j and later
4	INT_ON_HW_TIMEOUT	RW	Interrupt on hardware timeout
5	Х	RW	reserved
6	INT_ON_MR_WR_TC	RW	Master (DMA) Write Transfer Complete
7	INT_ON_MR_RD_TC	RW	Master (DMA) Read Transfer Complete
8	INT_ON_TXBFn_EF	RW	TX Buffer_n Empty Flag, At least one DOM message buffer TXBFn is empty. While this is a global Tx-Interrupt enable bit, individual enables are available at the TTSIC reg
9	INT_ON_RXBFn_MRCVD	RW	RX Buffer_n Message Received Flag At least one DOM message buffer RXBFn is containing a complete message. While this is a global Rx-Interrupt enable bit, individual enables are available at the RTSIC reg
10	INT_ON_TCALn_RDY	RW	The time calibration for a selected DOM (see TCSIC reg.) is ready, the time calibration data can be taken from TCBUF, addressed by CTRL_bit1412
11	х	RW	reserved
12	INT_ON_TSTRG_10x	RW	Ten time strings can get read out now.
13	INT_ON_TSTRG_1x	RW	One time string can get read out now.
1415	х	RW	Reserved
16	GLOBAL_INT_EN	RW	If set and GLOBAL_INT (GSTAT_bit16) is on an interrupt will occur.
1731	X	RW	reserved

#6 DOMS @ 18h DOM S

DOM Status register

power on state: 0000:0000h

Bit	Signal	Attribute	Description
07	DOM_DET_07	RO	DOM 07 detected
815	DOM_TOUT_07	RWC	Hardware timeout detected, DOM 07 were not responding within 4.1 sec, gets cleared as well by DOMC-bits 70 or 158
1623	DOM_BFULL_07	RO	DOM 07 Rx Buffer has filled up,
2431	DOM_NOT_CFG_BOOT_07	RO	DOM 07, DOM are not in CONFIGBOOT.

#7	MRAR @ 1Ch	Master Read Address Register	power on state:	0000:0000h
----	------------	------------------------------	-----------------	------------

Bit	Signal	Attribute	Description
0	0	RO	32 bit boundary required
1	0	RO	
231	MRAR_231	RW	Used for Bus Master (DMA) Read operations,
			Memory buffer -> DOM message buffer,
			Points to the first 32 bit memory word to be transferred to
			the selected (MRTC reg. bit 2426) DOM message buffer.

#8 MRTC @ 20h Master Read Transfer Count power on state: 0000:0000h

Bit	Signal	Attribute	Description
01	MRTC_10	RW	Can be used, but a 4 byte boundary is preferred
219	MRTC_219	RW	Used for Bus Master (DMA) Read operations, Memory buffer -> DOM message buffer, Amount of 32 bit memory words to be transferred to the selected (bit 2426) DOM message buffer.
2023	0	RO	Reserved
2426	RXBF_02	RW	DOM message buffer number the transfer is associated with
2731	0	RO	Reserved

#9 MWAR @ 24h Master Write Address Register power on state: 0000:0000h

Bit	Signal	Attribute	Description
0	0	RO	32 bit boundary required
1	0	RO	
231	MWAR_231	RW	Used for Bus Master (DMA) Write operations, DOM message buffer -> Memory buffer , 32 bit memory address, the data from the selected DOM (MWTC reg., bit2426) message buffer have to be written to

#10 MWTC @ 28h Master Write Transfer Count power on state: 0000:0000h

Bit	Signal	Attribute	Description
0	0	RO	32 bit boundary required
1	0	RO	
219	MWTC_219	RW	Used for Bus Master (DMA) Write operations, DOM message buffer -> Memory buffer , Amount of 32 bit memory words to be transferred from the selected (bit2426) DOM message buffer.
2023	0	RO	Reserved
2426	TXBF_02	RW	DOM message buffer number the transfer is associated with
2731	0	RO	Reserved

UTC Read #0

				-	
]	Bit	Signal		Attribute	Description
0	31	UTC_TIME_031	3)	RO	DOR Timer (later UTC time), lower 32 bits,50ns ticks. CTRL reg. bit10 (TIMER SNAP) must be used before

#12 UTCRD1 @ 30h UTC Read #1

UTCRD0 @ 2Ch

#11

power on state: 0000:0000h

power on state: 0000:0000h

Bit	Signal		Attribute	Description
031	UTC_TIME_3263	3)	RO	DOR Timer (later UTC time), upper 32 bits,50ns ticks

3) counts up immediately after FPGA load

#13 CU	URL @ 34h	Current Limits	power on state: E19E:8C14h
--------	-----------	----------------	----------------------------

Bit	Signal	Attribute	Description
07	CUR_MIN_07	RW	DOM power, minimum current in mA,
			When DOMs are powered on and the current is smaller, an
			status bit get set. See DSTAT reg. and GSTAT reg
			The appropriate channel gets shut down.
			recommended range 20mA25mA,
			default value = 20mA,
815	CUR_MAX_07	RW	DOM power, maximum current in mA,
			When DOMs are powered on and the current is bigger, an
			status bit get set. See DSTAT reg. and GSTAT reg
			The appropriate channel gets shut down.
			recommended range 100mA200mA,
			default value = 200mA ,
			IMPORTANT !!!!
			A short term (max 100sec) of up to 255mA is allowed.
			But permanently using more than 200mA could damage
			the inductances L100, L101, L200 L401 !
1623	VOLT_MIN_07	RW	DOM power, minimum voltage * 2.25 in V,
			When DOMs are powered on and the voltage is lower, an
			status bit get set. See DSTAT reg. and GSTAT reg
			The appropriate channel gets shut down.
			recommended range 60V70V,
			default value = $70V$,
2431	VOLT_MAX_07	RW	DOM power, maximum voltage * 2.25 in V,
			When DOMs are powered on and the voltage is bigger, an
			status bit get set. See DSTAT reg. and GSTAT reg
			The appropriate channel gets shut down.
			recommended range 96V110V,
			default value = $100V$,

Bit	Signal	Attribute	Description
011	DCUR_VAL_011	RO	DOM (wire pair) current value
			current (mA) = DCUR_VAL_110 / 2
			Use the bit1213 to select the wire pair
1213	DCUR_SEL_01	RW	Wire pair, the current to measure from
14	0	RO	unused
15	0	RO	unused
1627	DVOL_VAL_011	RO	DOM voltage value
			voltage (V) = DVOL_VAL_110 / 36 (exactly 35.64) Use the bit2829 to select the wire pair
2829	DVOL_SEL_01	RW	Wire pair, the voltage to measure from
3031	0	RO	unused

#14 **DCUR** @ 38h **DOM Current**

power on state: 0000:0000h

FLASH @ 3Ch

#15

FLASH access register power on state: xx00:0000h

Bit	Signal	Attribute	Description
0	FL_ADR1	RW	FLASH address -1, (identical to DQ15)
119	FL_ADR _018	RW	FLASH address bus
20	FL_WE	WO	FLASH write enable, read back value is zero, if set, FL_DATA_07 are written to FL_ADR-118
21	FL_ADR_19	RW	DOR_rev1 - only
22	FL_RESET	RW	FLASH reset is on if FL_RESET==1
23	FL_RESET_VID	RW	Enforces +12V (VID) at the reset pin, if FL_RESET==0. This bit allows sector protect / unprotect operations, if jumper J3 is set.
2431	FL_DATA_07	RW	FLASH data bus, accessing this register set the FLASH always into byte mode. A write operation takes one cycle; a read operation might need two cycles, if the address has to be written before.

#16...19 MBF0...3 @ 40..4Ch Rx/Tx Message Buffer 0...3

power on state: 00000000h

power on state: 00000000h

Bit	Signal	Attribute	Description
031	MBFn _031	R/W	Read selects the Rx FIFO of DOM_n,
			Write selects the Tx FIFO of DOM_n,

#20...23 MBF0...7 @ 50..5Ch Rx/Tx Message Buffer 4...7

Bit	Signal	Attribute	Description
031	MBFn _031	R/W	Reserved, not yet implemented.

#24	DOMC @ 60h	DOM Control
		DOM CONTON

power on state: 0000:0000h

Bit	Signal	Attribute	Description
07	DOM_SYS_RES_07	RW10	DOM Mainboard System Reset (Softreset). Read / Write_1_Only (cannot be cleared by writing a zero) Get blocked if the DOM is in CONFIGBOOT, see DOMS bits 2431. The appropriate Tx-and RxFIFO of MBF_n get cleared as well.When ready the DOM replys with an IDLE command. Gets cleared by: IDLE command received, Appropriate WP_RES_x, see CTRL reg. 47, DOM_COM_RES_x,
815	DOM_COM_RES_07	RW10	DOM Mainboard Comunication Module Reset . Read / Write_1_Only (cannot be cleared by writing a zero) The appropriate Tx-and RxFIFO of MBF_n get cleared as well.When ready the DOM replys with an IDLE command. Gets cleared by: IDLE command received, Appropriate WP_RES_x, see CTRL reg. 47, Hardware timout (after 4.1 sec.)
1623	DOM_ID_REQ_07	RW10	DOM Mainboard ID Request Read / Write_1_Only (cannot be cleared by writing a zero) When ready the appropriate DOMID reg. contains the 6 byte DOM mainboard ID. Gets cleared by: DOM-ID received, Appropriate WP_RES_x, see CTRL reg. 47, DOM_SYS_RES_x. DOM_COM_RES_x,
2431	DOM_TCAL_REQ_07	RW10	TCAL Request Read / Write_1_Only (cannot be cleared by writing a zero) To enforce a time calibration. When ready the appropriate TCAL buffer (TCBUF) contains the TCAL data packet. Get blocked if the DOM is in CONFIGBOOT, see DOMS bits 2431. Gets cleared by: TCAL packet received, Appropriate WP_RES_x, see CTRL reg. 47, DOM_SYS_RES_x. DOM_COM_RES_x,

Communication Errors

Bit	Signal	Attribute	Description
015	COMM_ERR_015	RO	Amount of received corrupt control or data messages.
			Get cleared by:
			- CERR_2931, DOMC_07, DOMC_815, CTRL_47
1627	COMM_DEBUG_012	RO	dependend on the firmware revision, debugging
			information per DOM
28	DOMb_notDOMa	RW	DOM select, '0' = DOMa, '1'=DOMb
2930	WIRE_SEL_01	RW	To select wire pairs 03
31	COMM_ERR_CLR	WO	Communication Error Clear for the selected DOM
			(bit3028), a single write clears the selected error counter

#26 TCSIC @ 68h TCAL Status & Interrupt Ctrl. Reg. power on state: 0000:000Fh

Bit	Signal	Attribute	Description
07	TC_EF_07	RO	TCAL buffer empty flag of DOM_n
810	TC_BUF_SEL_02	RW	to select the TCAL data buffer,
			mirrored (!!!) CTRL bits 1214
11	TC_BUF_SEL_ENA	RW	if set TC_BUF_SEL_02 are being used, else CTRL bits
			1214 are valid
1215	0	RO	unused
1623	TC_PRCVD_07	RWC	TCAL Packet Received for DOM_n
2431	TC_INT_EN_07	RW	TCAL interrupt enable for DOM_n

#27 TCBUF

#25

CERR @ 64h

@ 6Ch TCAL data Buffer

power on state: 0000:0000h

power on state: 0000:0000h

Bit	Signal	Attribute	Description
031	TC_DATA _031	RO	TCAL data, see format description, select the DOM by using CTRL reg., bits 1412

#28 TSTRG

@ 70h Time String buffer

power on state: **0000:0000**h

Bit	Signal	Attribute	Description
07	TSTRG_F_DATA[07]	RO	Time String Fifo Data
2431	0	RO	unused

@ 74h DOM-ID Register #29 DOMID

power on state: 0000:0000h

Bit	Signal	Attribute	Description	
07	DOM_ID_07	RO	DOM-ID, byte0 / 3	
815	DOM_ID_815	RO	DOM-ID, byte1 / 4	
1623	DOM_ID_1623	RO	DOM-ID, byte2 / 5	
24	DOM_ID_UPPER	RW	Bits 023 represent the Upper 3 bytes, else lower	
2527	DOM_07	RW	DOM_07, the ID is read from	
2831	0	RO	unused	

Bit	Signal	Attribute	Description	
			if CTRL_bit21=0 (CPAR_RD_EN): DCOM firmware rev.,	
			f CTRL_bit21=1 (CPAR_RD_EN):	
			DOR comm. parameters, see below	
015	DC_REV_015	RW	16 bit number, this revision must be the same used at the	
			DOM;	
1631	0	RO	unused	

#30 DCREV_read @ 78 DOM Comm. Module Revision power on state: 0000:xxxxh

#30 DCREV_write @ 78 DOR Comm. Parameters

Bit	Signal	Attribute	Description	
07	COMM_THRESH_07	WO	length of the lowgoing edge of the comm. Signal after 4	
			clocks (200ns) in multiples of 0.4 mV (cable signal)	
			or 2mV (comm. ADC input);	
			Power up value dependend on the firmware revision;	
1213	DAC_MAX_01	WO	03,	
			initial comm_DAC_amplitude	
			$= 128 + dac_max[]*32 + 31;$	
			can get changed if CTRL_bit15 = 1;	
			Power up value dependend on the firmware revision,;	
1623	REC_DELAY_07	WO	1255,	
			multiples of 50ns to fade out reflections from the last DOR-	
			send, seen by the DOR receiver stage;	
			receiver_enable_delay = shortest_cable_length (m) / 5 + 10	
			Power up value dependend on the firmware revision;	
2431	SEND_DELAY_07	WO	1255,	
			multiples of 50ns to fade out reflections from the last	
			DOM-send, seen by the DOM receiver stage;	
			Power up value dependend on the firmware revision;	

#31 FREV_read @ 7c DOR Firmware Revision power on state: xxxx:xxxh

Bit	Signal	Attribute	Description	
			if CTRL_bit21=0 (CPAR_RD_EN): firmware revsion,	
			if CTRL_bit21=1 (CPAR_RD_EN):	
			bit90= CLEV_MIN, bit2112 (!!!)=CLEV_MAX	
07	CHAR_TAG_ID_07	RO	Character tag	
815	SUB_MINOR_ID_07	RO	099	
1623	MINOR_ID_07	RO	099	
2431	PCI_CTRL_FREV_07	RO	0255, these bits are located in the PCI_CTRL FPGA	

Bit	Signal	Attribute	Description	
09	CLEV_MIN_09	WO	Lower limit, gets compared to the comm. ADC output,	
			typical value = 800960;	
			Power up value dependend on the firmware revision,	
1011		RO	unused	
12	DEBUG_LEDS_0	WO	first row, green LED (wire pair #0 range)	
13	DEBUG_LEDS_1	WO	first row, yellow LED	
14	DEBUG_LEDS_2	WO	second row, green LED	
15	DEBUG_LEDS_3	WO	second row, green LED	
1625	CLEV_MAX_09	WO	Upper limit, gets compared to the comm. ADC output,	
			typical value = 810970 ;	
			Power up value dependend on the firmware revision,	
2617		RO	unused	
28	DEBUG_LEDS_4	WO	third row, green LED (wire pair #0 range)	
29	DEBUG_LEDS_5	WO	third row, yellow LED	
30	DEBUG_LEDS_6	WO	fourth row, green LED	
31	DEBUG_LEDS_7	WO	fourth row, green LED	

#31 FREV_write @ 7c Limits for the comm. level adaption power on state: xxxx:xxxxh

Debug (Shadow) Register Space, for accessing Ctrl-bit22 must be set

#3 DBCS @ 0ch Debug Control & Status

power on state: **0000:0000**h

Bit	Signal	Attribute	Description	
0	CDLT_GO	RWSC	1K Byte comm. DAC look up table burst start, ready when	
			bit returned to zero	
1	CDLT_RES	RW	Resets the look up table write-address and read-address	
			counters	
23	0	RO	unused	
45	CDWP_SEL_01	RW	Comm. DAC (wire pair $=$ = noise channnel) select,	
67	0	RO	unused	
8	WF_RECORD	RWSC	Starts the waveform recorder. Gets cleared if the waveform	
			read buffer is full. The waveform buffer address gets reset	
			automatically before the recording starts.	
			Don't try to read, before WF_RECORD went low !	
9	0	RO	reserved	
10	WF_ADR_RES	RW	Resets the waveform buffer address counter	
11	WF_SEL	RW	Waveform select, 0 -> wire pair #0,1; 1-> wire pair #2,3	
12	0	RO	Reserved	
1315	0	RO	Reserved	
16	STM_FIFO_EF	RO	wire pair #0 states recording Fifo is empty	
17	STM_FIFO_FF	RO	wire pair #0 states recording Fifo is full, 1000 words can	
18	STM_FIFO_CLR	RW	clears wire pair #0 states recording Fifo	
19	0	RO	Reserved	
20	STM_ADV_ON_WP	RW	recording if wire pair control state has been changed	
21	STM_ADV_ON_RX	RW	recording if rx buffer write control state has been changed	
22	STM_HLT_ON_TOUT_A	RW	recording stops, if DOM_A timeout has been detected	
23	STM_HLT_ON_TOUT_B	RW	recording stops, if DOM_B timeout has been detected	
2431	0	RO	Reserved	

#4 CDLT @ 10h Communication DAC Look up Table power on state: 0000:0000h

Bit	Signal	Attribute	Description
07	CDLT_DATA_70	RW	1K Byte comm. DAC look up table
318	0	RO	unused

#6 WFRB @ 18h Waveform Read Buffer

power on state: 0000:0000h

Bit	Signal	Attribute	Description
09	WP0_WF_90	RO	Wire pair #0 or # 2, 256Kx10bit recorded comm. ADC waveform, the read address counter gets incremented per read
1015	0	RO	unused
1625	WP1_WF_90	RO	Wire pair #1 or # 3, 256Kx10bit recorded comm. ADC waveform
2631	0	RO	unused

#11 STMF @ 2ch State Machine Fifo power on state: 0000:0000h Depending on bits 20..23 of DBCS the states of the wire pair #0 control state machine and / or the states of the Rx buffer- write control state machine get recorded continously. The recording stops in case of a selected halt condition (see DBCS).

20 WP_CTRL_SV_20 RO POFFA 001 1 A_AVAL 000 0 0 0 0 0 CLR_CRESA 100 4 0 0 2 0
A_AVAL 000 0 CLR_CRESA 100 4 CRES_RDYA 010 2 CRESA 110 6 TOUT_A 101 5
CLR_CRESA 100 4 CRES_RDYA 010 2 CRESA 110 6 TOUT_A 101 5
CRES_RDYA 010 2 CRESA 110 6 TOUT_A 101 5
CRESA 110 6 TOUT_A 101 5
TOUT_A 101 5 7.2 WP CTPL SV 7.2 PO IDL AP 00010 2
7.2 WD CTDL SV 7.2 DO IDL AD 00010 2
/
CRESACKWT 00000 0
CRESET 10000 16
DBUFCHK 01000 8
DBUFWT 11000 24
DRBT CRES 00100 4
DRBT IDLE WT 10100 20
ID REC 01100 12
ID REO 11100 28
RACKWT 10010 18
RDREO 01010 10
REC IDLE 11010 26
SND IDLE 00110 6
SRES WT 10110 22
SRESET 01110 14
TC RDAT 11110 30
TC WAIT1 00001 1
TCALIB 10001 17
TCPULSND 01001 9
TCPULSREC 11001 25
TCWFMCPY 00101 5
WACKWT 10101 21
WDAT 01101 13
8 WP CTRL SV 8 RO DOMBUF A 0 0
NODOMBUE A 1 1
9 WP CTRL SV 9 RO DOMBLIE B 0 0
NODOMBUE B 1 1
12 10 WP CTRL SV 12 10 RO PRIO A 000 0
PRIO B 100 4
RUN A 010 2
RUN B 110 6
SEL A 001 1
SEL_A 001 1 SEL B 101 5
15 13 WP CTRL SV 15 13 RO POFER 001 1
$\begin{bmatrix} 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $
CRES RDVR 010 2
CRES_RDID 010 2 CRESR 110 6
TOUT R 101 5
17 16 WP CTRL SV 17 16 RO WPA 10 2
$\begin{bmatrix} 17.10 \\ WL = 0 \\ RDA \end{bmatrix} = \begin{bmatrix} 10 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$
WTA 01 1

1918	WP_CTRL_SV_1918	RO	WRB	10	2
			RDB	00	0
			WTB	01	1
2420	RX FWR SV 40	RO	BYTE0	00000	0
			BYTE0 TCAL	10000	16
			BYTE1	01000	8
			BYTE2	11000	24
			BYTE3	00100	4
			CLR BYTES	10100	20
			CPY BYTE0	01100	12
			CTRL EOF WT	11100	28
			CTRL OK	00010	2
			DAT OK	10010	18
			DCMD SE01	01010	10
			LAT WADR	11010	26
			LENO	00110	6
			MTYPE LEN1	10110	22
			PIDL	01110	14
			PTYPE SEO0	11110	30
			RXTIME H	00001	1
			RXTIME L	10001	17
			RxWFM CPY	01001	9
			RxWFM WT	11001	25
			STF WAIT	00101	5
			TCAL HDR	10101	21
			TCWF CLR.	01101	13
			TXTIME H	11101	29
			TxTIME L	00011	3
			WFM RDY	10011	19
			WR HOLD	01011	11
			WRITE	11011	27
2625	RX FWR SV 65	RO	REC DOM ID	01	1
			DOM ID0	00	0
			DOM ID1	10	2
3026	RX FWR SV 107	RO	REC IDLE	1110	14
		_	CTRERR	0000	0
			CTR MSG	1000	8
			DATERR	0100	4
			DATMSG	1100	12
			DATA OK	0010	2
			ID ERR	1010	10
			ID_MSG	0110	6
			SEO1	0001	1
			TCAL ERR	1001	9
			TCALMSG	0101	5

Revision History

Revision	Changes
2.8	Reg. #0 (CTRL), bit 11=DCUR_CONT, removed. Current / voltage get measured ALWAYS
	now
	Reg. #1 (GSTAT), bit 3, new
	Reg. #2 (DSTAT), bits 811, 1631 new / changed
	Reg. #13 (CURL), in use now, set max./min. current and max./min. voltage
	Reg. #14 (DCUR), bit 15=START_notRDY, removed, not needed anymore
	Reg. #31 (FREV), bits 3124 = pci control FPGA revision
2.9	Reg. #14 (DCUR), document correction, it is NOT a Fifo
3.0	Reg. #0 (CTRL), bit 23=GLOBAL_RES, new (pci_009 and later)
	Reg. #5 (INTEN), bit 3, new (com_102j and later)
3.1	Reg. #26 (TCSIC), bits 811 new defined, TCSIC bits 811 = mirrored CTRL bits 1214
3.2	Reg. #1 (GSTAT), bits 24,25 new defined
	Reg. #25 (CERR), bits 1627 new defined
3.3	see figure 3, TCAL cycle symplified, extra DRREQ within the TCAL cycle removed,
	Reg. #0 (CTRL) new: bit 11 = DBG_REG_SEL
	Reg. #1 (GSTAT) new: bit 4 = HW_TIMEOUT, bit 5 = DOM_REBOOT
	Reg. #5 (INTEN) new: bit 4 = INT_ON_HW_TIMEOUT, bit 5 =
	INT_ON_DOM_REBOOT
	Reg. #6 (DOMS) bits 815 RWC now, bits 2431 DOM_REBOOT now
3.4	Reg. #6 (DOMS) bits $2431 = DOM_NOT_CFG_BOOT_07$ now
	Reg. #24 (DOMC) check description of bits 07, 2431
	Reg. #1 (GSTAT), bit 5 = DOM_REBOOT removed
	Reg. #5 (INTEN), bit 5 = INT_ON_DOM_REBOOT removed
	for upgoing messages headers, the sequence number field bit $12 = NOT_CONFIGBOOT$ now
	Reg. #25 (CERR), see description
	Snadow register added (firmware rev. 104p), see Reg. #11 (STMF),
	see Reg. #5 (DBCS), new bils 1025
	see Figure 5, TCAL – KX time sample point description changed.
	"Rx_time sample point at ADC[n] > ADC[n-1] " was ">= " before
3.4a	Reg. #0 (CTRL) new: bit $11 = ENC$ 8B10B DIS: bit $21 = CPAR$ RD EN