## Station Overview, ARA Trigger & Digitizer

- Station geometry
- Triggering Overview
- Trigger Simulation
- Geometrical constraints
- Trigger rates
- Digitization &
- Data rates





Gary S. Varner ARA Workshop in Honolulu, 17-AUG-10

## **Basic Station Geometry -- Initial**

ARA Station & Antenna Cluster



## **ARA Readout Electronics**



- Defer general discussion of architecture
  - Trigger update
  - ASIC (IRS) update

## **Basic Station Geometry -- Revised**

ARA Station & Antenna Cluster



# ARA Readout Electronics: Triggering



• Maximize local and global sensitivity

- Station (few 100ns window) [local]
- Array prompt (10's of us) [global, subthreshold]
- High level (100's of seconds) [global, WF low threshold]

## **Geometric Considerations**



## Single Antenna "singles" rates

• Raw rates



## Station coincidence

• 5 m "tight" spacing (50ns window)



## Station coincidence



# Additional constraint: causality Trigger Model Arriving radio front 10-?? m 200 m

Use temporal/spatial constraints to reduce incoherent thermal accidentals and reject pathological directions (e.g. surface noise)

Implemented as a 2D sliding window

## Simplified coordinates









#### 

Arriving radio front









Combinatorics are enormous (C[512,5]=512!/(5!\*(512-5)!))

## How to implement?

- 1. Track "road" search? (computationally intensive)
- 2. Step time thread logic
- 3. Fit to plane wave (again CPU heavy)
- 4. Brute force pattern match?
  - $2^{(16+32)} \sim 280$  Terabits (very sparse)

Direct logic search – programmable logic good at this

Use "5<sup>th</sup>" (last hit as seed)

## Divide up sky into arrival directions



Many downgoing directions pathological With quantization, something like Something like 5°  $\theta$  36 Something like 10°  $\phi$  36 1296 equations



## Example – at threshold nu signal

#### Hit search seed



Term of equation:

Hit = S1A3[0]\*S2A1[1]\*S3A4[19]\*S4A1[9]\*S4A2[10]

Build terms from MC

## Since degenerate – some OR terms

#### Hit search seed



Hit = S1A3[0]\*S2A1[1]\*S3A4[19]\*S4A1[9]\*(S4A2[10]+S4A2[9])

Needs detailed study, but can guesstimate:

16 ant seeds \* (16 theta \* 8 phi) \* 32 patterns ~ 65k terms

## Thermal Noise (~3.x sigma)



#### Physically impossible



Hit predicts allowed other times

Combinatorics are enormous

One way to think of this: can tolerate a larger number of spurious hits → Effectively raise coincidence level in the window

## Station coincidence



Looks promising – Lisa to continue...

## **ARA Readout Electronics: ASIC**



- Build on experience with "next generation" ASICs
  - Deeper storage depth, higher bandwidth?
  - Fewer timing alignment constants

## Ice Radio Sampler (IRS)

- Actually a fairly generic part
  - Follow-on evaluation of deeper storage [TARGET, others] (LABRADOR technology now >half decade old)
  - "2 stage" transfer mechanism (reduced calibration)
  - No amplifier on the input
  - Self-trigger capability (not useful this application)

## Collaborative effort with NTU

## Ice Radio Sampler (IRS) Specifications

| 32768        | samples/chan (16-32us trig latency) |
|--------------|-------------------------------------|
| 8            | channels/IRS ASIC                   |
| 8            | Trigger channels                    |
| ~9           | bits resolution (12-bits logging)   |
| 64           | samples convert window (~32-64ns)   |
| 1 <b>-</b> 2 | GSa/s                               |
| 1            | word (RAM) chan, sample readout     |
| 16           | us to read all samples              |
| 100's        | Hz sustained readout (multibuffer)  |

- Strictly only 5 channels necessary
  - 4x antenna, 1x reference channels
  - Could interleave for twice depth, or multiple reference channels





# **IRS Single Channel**

• Sampling: 128 (2x 64 separate transfer lanes

Recording in one set 64, transferring other ("ping-pong")

• Storage: 64 x 512 (512 = 8 \* 64)

• Wilkinson (32x2): 64 conv/channel



#### 2 stage sampling speed sim

Sampling Simulation with full parasitic Extraction



"RCObias"  $\rightarrow$  VadjP1,2 = RCObias; VadjN1,2 = VDD-RCObias

#### sampling speed measurement



#### Measurement via RF sine



Samples much faster, but at higher sampling rate Write strobe width problem

Measurements by Chih-Ching

#### Measurement via RF sine





#### Measurement via RF sine



Samples much faster, but at higher sampling rate Write strobe width problem (know how to fix)

#### Linearity Calibration



Comparator bias parameters <u>NOT</u> optimized

#### Noise Measurement



## 100MHz Signal IRS CH0 readout with cal by signal generator



Need dT calibrations

## Conversion/readout speed

- Assume 8 channel (5 needed)
  - 5us/ADC cycle (8\*64 samples/channel in parallel)
  - Transfer at 50MHz (20ns/sample) to FPGA
  - 1 conversion cycle ~ 5us (ADC) + 10us (transfer)
  - 256ns window (512 samples @ 2GSa/s) = 8 conv cycles
  - Total ~ 120us [CF: 1kHz trigger]
  - <u>Deadtimeless:</u> 256ns (512 samples) of 16us (32k samples) held
    sampling continues on others

## Station Data Reduction (self-trigger)



## ARA Readout Electronics – system discussion



1-of-N Stations

- Uplink bandwidth (~1Mbit/s [wireless])
  - Multi-tier trigger
  - Deeper sampling allows for "array" trigger (subthreshold)

# IRS → AARDVARC Specifications ?

| 262144 | samples/chan (130us trig latency)  |
|--------|------------------------------------|
| 1      | channel/ASIC                       |
|        | Trigger channels                   |
| ~9     | bits resolution (12-bits logging)  |
| 64     | samples convert window (32ns)      |
| 2      | GSa/s                              |
| 1      | word (RAM) chan, sample readout    |
| <10    | us to read all window samples      |
| 10k    | Hz sustained readout (multibuffer) |

- Avoids issue of channel-channel cross-talk
  - Slave sampling all ASICs together
  - Plenty depth for multi-hit buffering

# Summary

- Station design evolving
  - Build sample station for firmware/cal testbed development
  - Initially test with thermals (servo-loop software/firmware)
- Key technology decisions
  - Tunnel diode versus RF power mon
  - IRS  $\rightarrow$  AARDVARC
  - Data and fast trigger links
- Proposed architecture
  - Rather flexible
  - Optimize as we go

## Back-up slides





## Askaryan Radio Array



## Buffered LABRADOR (BLAB1) ASIC

• 10 real bits of dynamic range, single-shot



## Wilkinson Clock Generation



## Wilkinson Recording

NET DE SSAMM MINET DEL MINET DEL



#### Wilkinson speed measurement



**Output Bus Settling Time** 



~100MHz bus operation should be possible

#### Diode detector Response



## Log-amp, tunnel diode test



- Can fast log-amps give same SNR as TD trigger?
- Log-amp: V proportional to power
- Uses multi-stage switching to get wide "linear" dynamic range, good stability
- Tunnel-diode: square-law detector with long history in radio astronomomy & physics
  - But they are fussy to use!

#### Log-amp vs. tunnel diode SNR test



- Look at Vpeak to Vrms ratio for each device
- Log-amp:
  - saturation evident
  - Loss of SNR fidelity below SNR~3
- TD: square-law behavior evident
- Conclusions: log-amps may be problematic
- We really need a true trigger efficiency test

## Design Basis: Buffered LABRADOR (BLAB1) ASIC



- Single channel
- 64k samples deep, same SCA technique as LAB, no ripple pointer
- Multi-MSa/s to Multi-GSa/s
- 12-64us to form Global trigger

Arranged as 128 x 512 samples Simultaneous Write/Read

3mm x 2.8mm, TSMC 0.25um

#### **BLAB1** Architecture



## **BLAB1 Sampling Speed**

Can store 13us at 5GSa/s (before wrapping around)





- A few fixes (lower power, higher BW)
- Multi-channel desired for BLAB2

## **IRS Input Coupling**



- Input bandwidth depends on 2x terms
  - $f3dB[input] = [2^*\pi^*Z^*C_{tot}]^{-1}$
  - $f3dB[storage] = [2^*\pi^*R_{on}^*C_{store}]^{-1}$

## **IRS Input Coupling**





• Role of inductance

## Sample Cell

#### Sampling Cell (IRS\_sample\_cell)



• Main element is buffer amp (OTA)

- Relatively low current (10's uA) operation possible



## Constraint: kTC Noise

#### Desire small C for better Input Coupling



# Storage Cell



- Diff. Pair as comparator
  - Only power on selected block





Sample channel-channel variation ~ fA leakage typically

## **Temperature Dependence**

