Belle Monolithic Thin Pixel Upgrade

Gary S. Varner
University of Hawai‘i, Manoa
Super B-Factory Workshop
January 2004
Univ. of Hawaii
Motivation

- Upgrade Advocacy (March 1997 Varner & Sahu\(^{(a)}\))
 - Simplistic evaluation of the raw contributions to vertexing
 - Argued for improvement

- Now update with valuable experience of excellent machines
 - Occupancy
 * Current robustness is marginal. At 20x background, even with segmentation ("striplet") and shorter shaping/pipelined readout – a concern
 - Improvement
 - Have been discussing in context of a ×2 improvement
 - One of the few areas in which the detector can be improved to exploit Super B statistics

Momentum Toward APS upgrade

- There has been much Active Pixel Sensor progress recently:
 - LEPSI/TESLA(MIMOSA) & LBNL/STAR prototypes
 - Hawaii has been evaluating STAR prototype
 - RAL (APV25) also getting into the act
 - Hawaii has made 2 prototypes (CAP1,CAP2) for B-factory
 - Will explain more about today
 - Beam test of Belle pixel proto sometime in 2004
 - There has been R&D into using hybrid pixels
 - Due to limited time won’t cover
 - Simulation results show limited benefit – if too thick
 - In the spirit of “adiabatic” improvements, we may not have to wait for a “Super B shutdown”, can replace SVD inner layer with pixels – schedule dependent, we have experience
 - Quite low cost, most hard work done by industry
A Truly Attractive Proposition

CMOS Monolithic Active Pixel Sensors (MAPS) principle

“From digital cameras to particle tracking device”

W. Dulinski [LEPSI]

- The active volume (epi-layer, ~10 μm thick) is underneath the readout electronics, providing 100% fill factor
- The charge generated by ionization is collected by the n-well/p-epi diode
- Charge collection is achieved by the thermal diffusion

The device can be fabricated using a standard, cost effective and easily available twin-tub CMOS process on epi substrate. No post-processing (e.g. bump-bonding)!

System-on a chip approach possible
Promising Results

CMOS MAPS particle tracking performance (20 μm pitch)

ENC ~10 electrons: S/N>30
Efficiency (5σ seed cut): $\varepsilon_{\text{MIP}} > 99 \%$
Spatial resolution: $\sigma = 1.4 \mu m$

Demonstrated on several devices in various submicron CMOS processes:

AMS 0.6 μm, 14 μm epi
Alcatel 0.35 μm, 4 μm api
AMS 0.35 μm, no(!) epi
... +UH, RAL
TSMC 0.25 μm, 8 μm epi (LBL team)

W. Dulinski [LEPSI]
MIMOSA4
Other Experiments Considering

STAR \(\mu \) vertex detector
1. First upgrade (x4 present luminosity, 2006):
 10 – 20 ms readout (integration) time
2. Second upgrade (x40 present luminosity, 2008):
 2 – 5 ms readout (integration) time

Super-Belle: 10\(\mu \)s?

TESLA Vertex Detector
1. Outer layers readout time: 100 - 200 \(\mu \)s
2. Innermost layer readout time: 25 - 50 \(\mu \)s

*NLC/JLC: t\sim10\) ms
Continuous Acquisition Pixel

- Conceptually Simple
 - Analog reset, sample & then sample continuously
 - Row-wise analog shift out as fast as possible:
 - Consider 22.5μm pitch output w/ 4:1 AMUX
 - 100MSa/s output (e.g. 8-bit ADC on output)
 - 10μs for 1k columns (# row independent)
 - Possibility of passing signals through to allow joining to form ladders

High-speed

Standard APS pixel

Pixel Array: Column select – ganged row read

ADC

Low power – only significant draw at readout edge
Correlated Double Sampling

Data processing: (Digital) Correlated Double Sampling

Useful signal on top of Fixed Pattern DC level
Fixed Pattern dispersion: ~100 mV
Typical signal amplitude: ~1mV

W. Dulinski [LEPSI]
MIMOSA4

(frame2 - frame1) subtraction

Pedestal (dark current) subtraction

Hit candidates!

Gary S. Varner, Super B 2004, Super-Belle Pixel
CAP1 Concept

- **Automatic CDS – always sampling**
 - When receive L1 trigger:
 * sift data in sync pipe and provide the difference in value for orbit with trigger and preceding orbit
 - Analog reset
 - If reset once every 100 orbits, 1% “deadtime”
 - 1µs “reset” and 10µs to obtain a baseline sample
 - Possibly even less, depending upon dynamic range and background
 - Can build “intelligence” into reset
 - Minimization of leakage current important
 - Relatively simple to fabricate
CAP1 Prototype

- TSMC 0.35μm Process

Column Ctrl Logic

13x48 (22.5μm² pixels)

~6k pixels

1.8mm

High speed framing:
- Target 10μs latency
- Pipelined readout

Submitted 10/6
Received recently

“slow” readout resolution ~ 2μm
At higher readout speeds?
CAP2 Concept

• CAP1 architecture difficulties:
 – Significant strain on analog output transfer:
 • <10ns settling time difficult
 (will test, but SPICE simulation shows very marginal for full-sized detector)
 – Data volume reduction
 • Better if can provide true on-detector pipelining
 • Reduce power if constrict data flow to L1/L2 accepted events (100kHz → 10kHz or 1kHz):
 40GSa/s → 4GSa/s or 0.4GSa/s

Possible to put a small pipeline in each pixel?
Octal-pipeline (in $22.5\mu m^2$ pixel)

Yes!
Random access, decoupled
Read/Write

Storage cell
CAP2 Prototype

- TSMC 0.35µm Process

- 8-deep storage
 - Target 50µs latency
 - Triggered readout

132x48 (22.5µm² pixels)

~6k pixels

Column Ctrl Logic

UH Design

Submitted 10/27
Received last week

Gary S. Varner, Super B 2004, Super-Belle Pixel
Prototype Test Bench

For those interested, Will give a tour of the ID Lab before lunch Today
Straw-Man Channel Count

Half-ladders:

- Active area = 29.8mm x 6.6mm
 - 1324 x 293 = 388k channels
 - 2 layers * 20 HL = 15.5M pixels

- Active area = 42.3mm x 8mm
 - 1880 x 356 = 669k channels
 - 2 layers * 24 HL = 32M pixels

10-fold symmetry

12-fold symmetry

Active area = 29.8mm x 6.6mm
Occupancy Scaling

• Work from following assumptions:
 – Super-B canonical x20 background increase
 – Assume 10% Layer 1 occupancy as “current”
 – Strip area (L1) = 85mm x 50µm = 4.25M µm²
 – Pixel spatial reduction:
 – Pixel area = 22.5µm x 22.5µm = 506 µm²
 – Reduction factor ~8400
 – Pixel temporal loss:
 – 0.5µs SVD vs. 10µs PVD (could be improved)
 – Increase factor ~ 20
 – Grand total:
 – 10% * 20 * 8400⁻¹ * 20
 – Can expect ~ 0.5% occupancy
Event size

- Conservatively take 1% as Occupancy

R = 1cm case

Active area = 29.8mm x 6.6mm

1324 x 293 = 388k channels

2 layers * 20 HL = 15.5M pixels

155k Pixels

- 1 Byte/pixel (8bit ADC) sufficient
- However, need ~25 bits of address info
- 4 Bytes/pixel → 620kB/event
- Can reduce with clustering/track matching?
Thin is In

1. Thinning the substrate to 50 μm (or less)
2. Low mass (air?) cooling: keeping down the power dissipation (~100 mW/cm²)

LBNL old wafer

Thinned and polished CMOS wafers (50 μm), a standard industrial process

Starting to play with Samples @ UH

Gary S. Varner, Super B 2004, Super-Belle Pixel
Detector Layout Concept

Significant Design Issues
But starting

Courtesy of Marc Rosen
Summary

• Immediate Pixel Plans:
 – 2x prototypes fabricated by UH, full-size prototype in 2004 (after beam test)
 • SNR degradation at higher readout speeds
 • Leakage current @ large irradiation
 – Much effort required:
 • Enormous data volumes/bandwidth requirement
 • Support, stability and cooling of thin detector – without adding significant mass
 – Large data reduction possible – algorithms?
 – High speed test bench

• Longer-term R&D:
 – Possible BiCMOS (IBM SiGe) implementation of HS readout
Back-up slides
Yes! In fact not unique (RAL)

Design for science-grade MAPS

Where we come from

Consumer MAPS.
3 transistors
Simple, but high noise, no data processing, ...

Where we went from 2001 till now

1st science-grade MAPS

4 transistors
Reduce kTC and fixed pattern noise, but still relatively slow and no data processing

Where we want to go

Flexible Active Pixel Sensors

8 transistors + memory cells with storage and selection transistor
Very high speed, analogue data processing, reduced noise, necessary for particle physics applications
One Operating Mode

Sample n

Sample n+1 (presample)

Sample n+2

Sample n+3

Sample n+4

Sample n+5

Abort Gap

Orbit

Pixel Reset

Electrode[V]

MIP passage

Optional re-use if data not needed

L0 latency

100ns

10us

500ns

100ns (during abort gap; after reset)
Event size

- Conservatively take 1% as Occupancy

Active area = 42.3mm x 8mm

1880 x 356 = 669k channels
2 layers * 24 HL = 32M pixels

Active area = 29.8mm x 6.6mm

1324 x 293 = 388k channels
2 layers * 20 HL = 15.5M pixels

- 1 Byte/pixel (8bit ADC) sufficient
- However, need ~25 bits of address info
- 4 Bytes/pixel \(\rightarrow\) 620-1280kB/event
- Can reduce with clustering/track matching?
Required Transfer Rates

- **CAP1 architecture (if 10µs max. latency):**
 - 15mm radius:
 - 67 Gpixels/s
 - ~1Gpixel/s/pin
 - 10mm radius
 - 39 Gpixels/s
 - ~0.5Gpixel/s/pin

- **CAP2 architecture (>= 100µs max. latency):**
 - 15mm radius:
 - 6.7 Gpixels/s
 - ~100Mpixel/s/pin
 - 10mm radius
 - 3.9 Gpixels/s
 - ~50Mpixel/s/pin

Two ways around:
- Multi-orbit
- “Tiling”

Real max. latency
Set by <L1/L2> rate
The Bottleneck

- Not trivial, but probably possible to:
 - Sample with adequate SNR
 - Read data off pixel with small enough latency
 - Provide periodic analog resets without incurring deadtime

- However:
 - Not easy to get this torrent to the electronics hut
 - Exploring 2 different fiber optics schemes
 - Custom SiGe mixer/modulator may be a solution

- Looks like can fit everything in one COPPER crate:
 - 1 high-speed fiber/half ladder
 - 1 high-speed fiber/FINESSE
 - Each FINESSE does all CDS/offset calculations
 - CPU does clustering?
Mechanics

Mechanical concepts of STAR Micro vertex upgrade using ultra-thin CMOS MAPS *

Tension concept

Self supporting Venetian blade concept

* Curtsey to Howard Wieman, LBL, STAR group