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bookbook passingpassing

This	book	teaches	the	reader	about	Python	networking	in	Linux,	using	Erle	Robotics	autopilots.	Erle	Robotics	creates
small-size	Linux	computers	for	making	drones.

With	Python	networking	we	refer	to	how	ussing	this	programming	language	to	control	the	incoming/outcoming	connections,
to	use	different	protocols	such	as	IP.

For	years	we've	been	working	in	the	robotics	field,	particularly	with	drones.	We	have	passed	through	different	Universities
and	research	centers	and	in	all	these	places	we	actually	found	that	most	of	the	drones	are	black	boxes	(check	out	our
60s	pitch).	Not	meant	to	be	used	for	learning,	research.	The	software	they	use	is	in	most	of	the	cases	unknown,	closed
source	or	not	documented.	Given	these	conditions,	how	are	we	going	to	educate	the	next	generations	on	this
technologies?	How	do	you	get	started	programming	drones	if	you	don't	have	$1000+	budget?	Which	platform	allows	me	to
get	started	with	drones	without	risking	a	hand?

We	are	coming	up	with	an	answer	to	all	these	questions,	our	technology:	Erle.

Erle	Robotics:	Python	Networking	Programming

Book

About

https://www.gitbook.io/book/erlerobotics/erle-robotics-introduction-to-networking-in-linux/activity
http://erlerobot.com/
https://www.youtube.com/watch?v=tKAqjyXaC18


Inspired	by	the	BeagleBone	development	board,	we	have	designed	a	small	computer	with	about	36+	sensors,	plenty	of	I/O
and	processing	power	for	real-time	analysis.	Erle	is	the	enabling	technology	for	the	next	generation	of	aerial	and	terrestrial
robots	that	will	be	used	in	cities	solving	tasks	such	as	surveillance,	enviromental	monitoring	or	even	providing	aid	at
catastrophes.

Our	small-size	Linux	computer	is	bringing	robotics	to	the	people	and	businesses.

This	book	has	been	based	on	diferent	Linux	documentation	avaliable	on	the	internet.	Refer	to	the	sources	for	the
corresponding	licenses:

Python	Documentation
Python	Standard	Library
Python	Package	Index

All	Python	releases	are	Open	Source	(see	link	for	the	Open	Source	Definition).

Foundations	of	Python	Network	Programming	by	Brandon	Rhodes	and	John	Goerzen

Unless	specified,	this	content	is	licensed	under	the	Creative	Commons	Attribution-NonComercial-Share	Alike	3.0	Unported
License.	To	view	a	copy	of	this	license,	visit	http://creativecommons.org/licenses/by-sa/3.0/	or	send	a	letter	to	Creative
Commons,	171	Second	Street,	Suite	300,	San	Francisco,	California,	94105,	USA.

All	derivative	works	are	to	be	attributed	to	Silvia	Núñez	Rivero	of	Erle	Robotics	S.L..

For	any	questions,	concerns,	or	issues	submit	them	to	support	[at]	erlerobot.com.

License

https://docs.python.org/2/contents.html
https://docs.python.org/2/library/
https://pypi.python.org/pypi/pip
http://opensource.org/
http://creativecommons.org/licenses/by-sa/3.0/


This	chapter	is	about	network	programming	with	the	Python	language:	about	accomplishing	a	specific	set	of	tasks	that	all
involve	a	particular	technology—computer	networks—using	a	general-purpose	programming	language	that	can	do	all	sorts
of	things.

For	now	on,	we	will	use	frecuently:

Python	Standard	Library	documentation
Python	Package	Index

Introduction	to	Client/Server	Networking

http://docs.python.org/library/
http://pypi.python.org/


A	common	situation	is	that	you	find	a	Python	package	that	sounds	like	it	might	already	do	exactly	what	you	want,	and	that
you	want	to	try	it	out	on	your	system.	For	this	you	should	be	introduce	to	very	best	Python	technology	for	quickly	trying	out
a	new	library:virtualenv

In	the	old	days,	installing	a	Python	package	was	a	gruesome	and	irreversible	act	that	required	administrative	privileges	on
your	machine	and	left	your	system	Python	install	permanently	altered.

Careful	Python	programmers	do	not	suffer	from	this	situation	any	longer.	Many	of	them	install	only	one	Python	package
system-wide:	virtualenv.	Once	virtualenv	is	installed,	you	have	the	power	to	create	any	number	of	small,	self-contained
“virtual	Python	environments”	where	packages	can	be	installed,	un-installed,	and	experimented	with	without	contaminating
your	system-wide	Python.	When	a	particular	project	or	experiment	is	over,	you	simply	remove	its	virtual	environment
directory,	and	your	system	is	clean.

Virtualenv



This	is	the	oficial	website	of	virtualenv,	where	you	can	find	infromation	about	the	installation	and	the	usage.

If	you	are	connected	to	the	Internet	from	Erle(by	using	a	wireless	nado	usb)	then	you	only	need	to	type:

root@erlerobot:~#		pip	install	virtualenv

If	not	the	process	must	be	a	bit	more	tedious:

First	of	all	yu	need	to	download	the	virtualenv	from	here	Download	the	file	called		virtualenv-1.11.6.tar.gz	(md5,	pgp)	to
your	Pc.	Then	copy	it	to	Erleboar,	you	can	find	in	this	tutorial	how	to	do	it.	Once	you	have	copied	it,	type	:

root@erlerobot:~#		tar	xvfz	virtualenv-1.11.6.tar.gz

root@erlerobot:~#	cd	virtualenv-1.11.6

root@erlerobot:~#	python	setup.py	install

Congratulations	you	are	now	ready	to	use	it!

Installing	virtualenv	in	Erle

https://virtualenv.pypa.io/en/latest/virtualenv.html#installation
http://pypi.python.org/pypi/virtualenv
http://erlerobotics.gitbooks.io/erle_gitbook_unixintroduction/annex_iii_network_connection_with_erle/README.html


We	are	now	going	to	use	virtualenv	to	create	a	new	environment	and	intall	the		googlemaps	package	on	it.	You	can	read
more	about	this	package	here.

Now	you	type	the	following:

root@erlerobot:~#	virtualenv	--no-site-packages	gmapenv

New	python	executable	in	gmapenv/bin/python

Installing	setuptools,	pip...done.

root@erlerobot:~#

root@erlerobot:~#	cd	gmapenv

root@erlerobot:~/gmapenv#	ls

bin		include		lib		local

root@erlerobot:~/gmapenv#	.	bin/activate

(gmapenv)root@erlerobot:~/gmapenv#	python	-c	'import	googlemaps'

Traceback	(most	recent	call	last):

		File	"<string>",	line	1,	in	<module>

ImportError:	No	module	named	googlemaps

(gmapenv)root@erlerobot:~/gmapenv#

As	you	can	see,	the	googlemaps	package	is	not	yet	available.	To	install	it,	use	the	pip	command	that	is	inside	your
virtualenv	and	that	is	now	on	your	path	thanks	to	the	activate	command	that	you	ran:

(gmapenv)root@erlerobot:~/gmapenv#		pip	install	googlemaps

Downloading/unpacking	googlemaps

Downloading	googlemaps-1.0.2.tar.gz	(60Kb):	60Kb	downloaded

Running	setup.py	egg_info	for	package	googlemaps

Installing	collected	packages:	googlemaps

Running	setup.py	install	for	googlemaps

Successfully	installed	googlemaps

Cleaning	up...

The	python	binary	inside	the	virtualenv	will	now	have	the	googlemaps	package	available:

(gmapenv)root@erlerobot:~/gmapenv#	python	-c	'import	googlemaps'

When	you	install	a	packet,	you	should	be	carefull:	it	must	be	suitable	for	Erle	architecture.

Create	a	virtual	environment	to	test	packages

http://pypi.python.org/pypi/googlemaps/


We	will	use	sockets	a	lot	in	future	chapters.Thus,	this	chapter's	aim	is	to	introduce	you	the	basic	concepts	of	socket.

Introduction	to	socket



Rather	than	trying	to	invent	its	own	API	for	doing	networking,	Python	made	an	interesting	decision:	it	simply	provides	a
slightly	object-based	interface	to	all	of	the	normal,	gritty,	low-level	operating	system	calls	that	are	normally	used	to
accomplish	networking	tasks	on	POSIX-compliant	operating	systems.

So,	Python	exposes	the	normal	POSIX	calls	for	raw	UDP	and	TCP	connections	rather	than	trying	to	invent	any	of	its	own.
And	the	normal	POSIX	networking	calls	operate	around	a	central	concept	called	a	socket.

That	means	that	communication	between	different	entities	on	a	network	is	based	on	the	classic	concept	Python	sockets.
Sockets	are	an	abstract	concept	that	designates	the	end	point	of	a	connection.	The	programs	use	sockets	to	communicate
with	other	programs,	which	may	be	located	on	different	computers.	A	socket	is	defined	by	the	IP	address	of	the	machine,
the	port	on	which	it	listens,	and	the	protocol	used.

Moreover,	if	you	have	ever	worked	with	POSIX	before,	you	will	probably	have	run	across	the	fact	that	instead	of	making
you	repeat	a	file	name	over	and	over	again,	the	calls	let	you	use	the	file	name	to	create	a	“file	descriptor”	that	represents	a
connection	to	the	file,	and	through	which	you	can	access	the	file	until	you	are	done	working	with	it.	Sockets	provide	the
same	idea	for	the	networking	realm:	when	you	ask	for	access	to	a	line	of	communication—like	a	UDP	port,	as	we	are	about
to	see—you	create	one	of	these	abstract	“socket”	objects	and	then	ask	for	it	to	be	bound	to	the	port	you	want	to	use.	If	the
binding	is	successful,	then	the	socket	“holds	on	to”	that	port	number	for.

You	should,	as	well,	be	aware	of	that	part	of	the	trouble	with	understanding	these	things	is	that	“socket”	can	mean	a
number	of	subtly	different	things,	depending	on	context.	So	first,	let’s	make	a	distinction	between	a	“client”	socket	-	an
endpoint	of	a	conversation,	and	a	“server”	socket,	which	is	more	like	a	switchboard	operator.	The	client	application	(your
browser,	for	example)	uses	“client”	sockets	exclusively;	the	web	server	it’s	talking	to	uses	both	“server”	sockets	and	“client”
sockets.

From	Python	documentation	we	can	extract	more	info	about	socket	module.

What	is	socket?

https://docs.python.org/2/library/socket.html?highlight=socket#socket


Roughly	speaking,	when	you	clicked	on	the	link	that	brought	you	to	this	page,	your	browser	did	something	like	the
following:

#create	an	INET,	STREAMing	socket

s	=	socket.socket(

				socket.AF_INET,	socket.SOCK_STREAM)

#now	connect	to	the	web	server	on	port	80

#	-	the	normal	http	port

s.connect(("www.mcmillan-inc.com",	80))

When	the	connect	completes,	the	socket	s	can	be	used	to	send	in	a	request	for	the	text	of	the	page.	The	same	socket	will
read	the	reply,	and	then	be	destroyed.	That’s	right,	destroyed.	Client	sockets	are	normally	only	used	for	one	exchange	(or	a
small	set	of	sequential	exchanges).

What	happens	in	the	web	server	is	a	bit	more	complex.	First,	the	web	server	creates	a	“server	socket”:

#create	an	INET,	STREAMing	socket

serversocket	=	socket.socket(

				socket.AF_INET,	socket.SOCK_STREAM)

#bind	the	socket	to	a	public	host,

#	and	a	well-known	port

serversocket.bind((socket.gethostname(),	80))

#become	a	server	socket

serversocket.listen(5)

A	couple	things	to	notice:	we	used		socket.gethostname()		so	that	the	socket	would	be	visible	to	the	outside	world.	If	we	had
used		s.bind(('localhost',	80))		or		s.bind(('127.0.0.1',	80))		we	would	still	have	a	“server”	socket,	but	one	that	was	only
visible	within	the	same	machine.		s.bind(('',	80))		specifies	that	the	socket	is	reachable	by	any	address	the	machine
happens	to	have.

A	second	thing	to	note:	low	number	ports	are	usually	reserved	for	“well	known”	services	(HTTP,	SNMP	etc).	If	you’re
playing	around,	use	a	nice	high	number	(4	digits).

Finally,	the	argument	to	listen	tells	the	socket	library	that	we	want	it	to	queue	up	as	many	as	5	connect	requests	(the	normal
max)	before	refusing	outside	connections.	If	the	rest	of	the	code	is	written	properly,	that	should	be	plenty.

Now	that	we	have	a	“server”	socket,	listening	on	port	80,	we	can	enter	the	mainloop	of	the	web	server:

while	1:

				#accept	connections	from	outside

				(clientsocket,	address)	=	serversocket.accept()

				#now	do	something	with	the	clientsocket

				#in	this	case,	we'll	pretend	this	is	a	threaded	server

				ct	=	client_thread(clientsocket)

				ct.run()

There’s	actually	3	general	ways	in	which	this	loop	could	work	-	dispatching	a	thread	to	handle	clientsocket,	create	a	new
process	to	handle	clientsocket,	or	restructure	this	app	to	use	non-blocking	sockets,	and	mulitplex	between	our	“server”
socket	and	any	active	clientsockets	using	select.	The	important	thing	to	understand	now	is	this:	this	is	all	a	“server”	socket
does.	It	doesn’t	send	any	data.	It	doesn’t	receive	any	data.	It	just	produces	“client”	sockets.	Each	clientsocket	is	created	in
response	to	some	other	“client”	socket	doing	a		connect()		to	the	host	and	port	we’re	bound	to.	As	soon	as	we’ve	created
that	clientsocket,	we	go	back	to	listening	for	more	connections.	The	two	“clients”	are	free	to	chat	it	up	-	they	are	using	some
dynamically	allocated	port	which	will	be	recycled	when	the	conversation	ends.

Creating	a	Socket



The	first	thing	to	note,	is	that	the	web	browser’s	“client”	socket	and	the	web	server’s	“client”	socket	are	identical	beasts.
That	is,	this	is	a	“peer	to	peer”	conversation.	Or	to	put	it	another	way,	as	the	designer,	you	will	have	to	decide	what	the	rules
of	etiquette	are	for	a	conversation.	Normally,	the	connecting	socket	starts	the	conversation,	by	sending	in	a	request,	or
perhaps	a	signon.	But	that’s	a	design	decision	-	it’s	not	a	rule	of	sockets.

Now	there	are	two	sets	of	verbs	to	use	for	communication.	You	can	use		send()		and		recv()	,	or	you	can	transform	your
client	socket	into	a	file-like	beast	and	use		read()		and		write()	.	I’m	not	going	to	talk	about	it	here,	except	to	warn	you	that
you	need	to	use	flush	on	sockets.	These	are	buffered	“files”,	and	a	common	mistake	is	to	write	something,	and	then	read
for	a	reply.	Without	a	flush	in	there,	you	may	wait	forever	for	the	reply,	because	the	request	may	still	be	in	your	output
buffer.

Now	we	come	to	the	major	stumbling	block	of	sockets	-		send()		and		recv()		operate	on	the	network	buffers.	They	do	not
necessarily	handle	all	the	bytes	you	hand	them	(or	expect	from	them),	because	their	major	focus	is	handling	the	network
buffers.	In	general,	they	return	when	the	associated	network	buffers	have	been	filled	(send)	or	emptied	(recv).	They	then
tell	you	how	many	bytes	they	handled.	It	is	your	responsibility	to	call	them	again	until	your	message	has	been	completely
dealt	with.

When	a		recv()		returns	0	bytes,	it	means	the	other	side	has	closed	(or	is	in	the	process	of	closing)	the	connection.	You	will
not	receive	any	more	data	on	this	connection.

A	protocol	like	HTTP	uses	a	socket	for	only	one	transfer.	The	client	sends	a	request,	then	reads	a	reply.	That’s	it.	The
socket	is	discarded.	This	means	that	a	client	can	detect	the	end	of	the	reply	by	receiving	0	bytes.

But	if	you	plan	to	reuse	your	socket	for	further	transfers,	you	need	to	realize	that	there	is	no	EOT	on	a	socket.	I	repeat:	if	a
socket		send()		or		recv()		returns	after	handling	0	bytes,	the	connection	has	been	broken.	If	the	connection	has	not	been
broken,	you	may	wait	on	a		recv()		forever,	because	the	socket	will	not	tell	you	that	there’s	nothing	more	to	read	(for	now).
Now	if	you	think	about	that	a	bit,	you’ll	come	to	realize	a	fundamental	truth	of	sockets:	messages	must	either	be	fixed
length	(yuck),	or	be	delimited	(shrug),	or	indicate	how	long	they	are	(much	better),	or	end	by	shutting	down	the	connection.
The	choice	is	entirely	yours,	(but	some	ways	are	righter	than	others).

Assuming	you	don’t	want	to	end	the	connection,	the	simplest	solution	is	a	fixed	length	message:

class	mysocket:

				'''demonstration	class	only

						-	coded	for	clarity,	not	efficiency

				'''

				def	__init__(self,	sock=None):

								if	sock	is	None:

												self.sock	=	socket.socket(

																socket.AF_INET,	socket.SOCK_STREAM)

								else:

												self.sock	=	sock

				def	connect(self,	host,	port):

								self.sock.connect((host,	port))

				def	mysend(self,	msg):

								totalsent	=	0

								while	totalsent	<	MSGLEN:

												sent	=	self.sock.send(msg[totalsent:])

												if	sent	==	0:

																raise	RuntimeError("socket	connection	broken")

												totalsent	=	totalsent	+	sent

				def	myreceive(self):

								chunks	=	[]

								bytes_recd	=	0

								while	bytes_recd	<	MSGLEN:

												chunk	=	self.sock.recv(min(MSGLEN	-	bytes_recd,	2048))

												if	chunk	==	'':

																raise	RuntimeError("socket	connection	broken")
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												chunks.append(chunk)

												bytes_recd	=	bytes_recd	+	len(chunk)

								return	''.join(chunks)

The	sending	code	here	is	usable	for	almost	any	messaging	scheme	-	in	Python	you	send	strings,	and	you	can	use		len()	
to	determine	its	length	(even	if	it	has	embedded	\0	characters).	It’s	mostly	the	receiving	code	that	gets	more	complex.

The	easiest	enhancement	is	to	make	the	first	character	of	the	message	an	indicator	of	message	type,	and	have	the	type
determine	the	length.	Now	you	have	two	recvs	-	the	first	to	get	(at	least)	that	first	character	so	you	can	look	up	the	length,
and	the	second	in	a	loop	to	get	the	rest.	If	you	decide	to	go	the	delimited	route,	you’ll	be	receiving	in	some	arbitrary	chunk
size,	(4096	or	8192	is	frequently	a	good	match	for	network	buffer	sizes),	and	scanning	what	you’ve	received	for	a	delimiter.

One	complication	to	be	aware	of:	if	your	conversational	protocol	allows	multiple	messages	to	be	sent	back	to	back	(without
some	kind	of	reply),	and	you	pass	`recv()^	an	arbitrary	chunk	size,	you	may	end	up	reading	the	start	of	a	following
message.	You’ll	need	to	put	that	aside	and	hold	onto	it,	until	it’s	needed.

Prefixing	the	message	with	it’s	length	(say,	as	5	numeric	characters)	gets	more	complex,	because	(believe	it	or	not),	you
may	not	get	all	5	characters	in	one	recv.	In	playing	around,	you’ll	get	away	with	it;	but	in	high	network	loads,	your	code	will
very	quickly	break	unless	you	use	two	recv	loops	-	the	first	to	determine	the	length,	the	second	to	get	the	data	part	of	the
message.	Nasty.	This	is	also	when	you’ll	discover	that	send	does	not	always	manage	to	get	rid	of	everything	in	one	pass.
And	despite	having	read	this,	you	will	eventually	get	bit	by	it!

We	will	discuss	the	issue	of	framming(delimiting	messages)	in	later	chapter:	Network	data	and	Network	errors



Strictly	speaking,	you’re	supposed	to	use		shutdown		on	a	socket	before	you	close	it.	The		shutdown		is	an	advisory	to	the
socket	at	the	other	end.	Depending	on	the	argument	you	pass	it,	it	can	mean	“I’m	not	going	to	send	anymore,	but	I’ll	still
listen”,	or	“I’m	not	listening,	good	riddance!”.	Most	socket	libraries,	however,	are	so	used	to	programmers	neglecting	to	use
this	piece	of	etiquette	that	normally	a	close	is	the	same	as		shutdown()	;		close()	.	So	in	most	situations,	an	explicit
shutdown	is	not	needed.

One	way	to	use		shutdown		effectively	is	in	an	HTTP-like	exchange.	The	client	sends	a	request	and	then	does	a
	shutdown(1)	.	This	tells	the	server	“This	client	is	done	sending,	but	can	still	receive.”	The	server	can	detect	“EOF”	by	a
receive	of	0	bytes.	It	can	assume	it	has	the	complete	request.	The	server	sends	a	reply.	If	the	send	completes	successfully
then,	indeed,	the	client	was	still	receiving.

Python	takes	the	automatic	shutdown	a	step	further,	and	says	that	when	a	socket	is	garbage	collected,	it	will	automatically
do	a	close	if	it’s	needed.	But	relying	on	this	is	a	very	bad	habit.	If	your	socket	just	disappears	without	doing	a	close,	the
socket	at	the	other	end	may	hang	indefinitely,	thinking	you’re	just	being	slow.	So,	it	is	very	recommendable	close	your
sockets	when	you’re	done.

Disconnecting



In	Python,	you	use		socket.setblocking(0)		to	make	it	non-blocking.	You	do	this	after	creating	the	socket,	but	before	using	it.
(Actually,	if	you’re	nuts,	you	can	switch	back	and	forth.)

The	major	mechanical	difference	is	that		send()	,		recv()	,	connect	and	accept	can	return	without	having	done	anything.	You
have	(of	course)	a	number	of	choices.	You	can	check	return	code	and	error	codes	and	generally	drive	yourself	crazy.	Your
app	will	grow	large,	buggy	and	suck	CPU.	So	let’s	skip	the	brain-dead	solutions	and	do	it	right.Use	select.

ready_to_read,	ready_to_write,	in_error	=	\

															select.select(

																		potential_readers,

																		potential_writers,

																		potential_errs,

																		timeout)

																		`

You	pass	select	three	lists:	the	first	contains	all	sockets	that	you	might	want	to	try	reading;	the	second	all	the	sockets	you
might	want	to	try	writing	to,	and	the	last	(normally	left	empty)	those	that	you	want	to	check	for	errors.	You	should	note	that	a
socket	can	go	into	more	than	one	list.	The	select	call	is	blocking,	but	you	can	give	it	a	timeout.	This	is	generally	a	sensible
thing	to	do	-	give	it	a	nice	long	timeout	(say	a	minute)	unless	you	have	good	reason	to	do	otherwise.

In	return,	you	will	get	three	lists.	They	contain	the	sockets	that	are	actually	readable,	writable	and	in	error.	Each	of	these
lists	is	a	subset	(possibly	empty)	of	the	corresponding	list	you	passed	in.

If	a	socket	is	in	the	output	readable	list,	you	can	be	as-close-to-certain-as-we-ever-get-in-this-business	that	a	recv	on	that
socket	will	return	something.	Same	idea	for	the	writable	list.	You’ll	be	able	to	send	something.	Maybe	not	all	you	want	to,
but	something	is	better	than	nothing.	(Actually,	any	reasonably	healthy	socket	will	return	as	writable	-	it	just	means
outbound	network	buffer	space	is	available.)

If	you	have	a	“server”	socket,	put	it	in	the		potential_readers		list.	If	it	comes	out	in	the	readable	list,	your	accept	will	(almost
certainly)	work.	If	you	have	created	a	new	socket	to	connect	to	someone	else,	put	it	in	the		potential_writers		list.	If	it
shows	up	in	the	writable	list,	you	have	a	decent	chance	that	it	has	connected.

One	very	nasty	problem	with	select:	if	somewhere	in	those	input	lists	of	sockets	is	one	which	has	died	a	nasty	death,	the
select	will	fail.	You	then	need	to	loop	through	every	single	damn	socket	in	all	those	lists	and	do	a		select([sock],[],[],0)	
until	you	find	the	bad	one.	That	timeout	of	0	means	it	won’t	take	long,	but	it’s	ugly.

Actually,	select	can	be	handy	even	with	blocking	sockets.	It’s	one	way	of	determining	whether	you	will	block	-	the	socket
returns	as	readable	when	there’s	something	in	the	buffers.	However,	this	still	doesn’t	help	with	the	problem	of	determining
whether	the	other	end	is	done,	or	just	busy	with	something	else.

Portability	alert:	On	Unix,	select	works	both	with	the	sockets	and	files.	Don’t	try	this	on	Windows.	On	Windows,	select	works
with	sockets	only.

Non	-	blocking	sockets



The	two	principal	approaches	when	building	a	top	IP	are:	UPD	and	TCP.

The	vast	majority	of	applications	today	are	built	atop	TCP,	the	Transmission	Control	Protocol,	which	offers	ordered	and
reliable	data	streams	between	IP	applications.
A	few	protocols,	usually	with	short,	self-contained	requests	and	responses,	and	simple	clients	that	will	not	be	annoyed
if	a	request	gets	lost	and	they	have	to	repeat	it,	choose	UDP,	the	User	Datagram	Protocol.

This	two	methods	are	described	in	depth	along	this	chapter,	but	for	now	have	take	a	quick	look	to	the	differences	between
this	two.

UDP	and	TCP



We	are	going	to	review	a	bit	about	this	two	topics:

The	IP	protocol	assigns	an	IP	address—which	traditionally	takes	the	form	of	a	four-octet	code,	like	18.9.22.69—to	every
machine	connected	to	an	IP	network.	In	fact,	it	does	a	bit	more	than	this:	a	machine	with	several	network	cards	connected
to	the	network	will	typically	have	a	different	IP	address	for	each	card,	so	that	other	hosts	can	choose	the	network	over
which	you	want	to	contact	the	machine.	But	even	if	an	IP-connected	machine	has	only	one	network	card,it	also	has	at	least
one	other	network	address:	the	address	127.0.0.1	is	how	machines	can	connect	to	themselves.	It	serves	as	a	stable	name
that	each	machine	has	for	itself,	that	stays	the	same	as	network	cables	are	plugged	and	unplugged	and	as	wireless	signals
come	and	go.	And	these	IP	addresses	allow	millions	of	different	machines,	using	all	sorts	of	different	network	hardware,	to
pass	packets	to	each	other	over	the	fabric	of	an	IP	network.

But	with	UDP	and	TCP	we	now	take	a	big	step,	and	stop	thinking	about	the	routing	needs	of	the	network	as	a	whole	and
start	considering	the	needs	of	specific	applications	that	are	running	on	a	particular	machine.	And	the	first	thing	we	notice	is
that	a	single	computer	today	can	have	many	dozens	of	programs	running	on	it	at	any	given	time—and	many	of	these	will
want	to	use	the	network	at	the	same	moment.	You	might	be	checking	e-mail	with	Thunderbird	while	a	web	page	is
downloading	in	Google	Chrome,	or	installing	a	Python	package	with	pip	over	the	network	while	checking	the	status	of	a
remote	server	with	SSH.	Somehow,	all	of	those	different	and	simultaneous	conversations	need	to	take	place	without
interfering	with	each	other.	This	problem	is	known	as	need	for	multiplexing:	the	need	for	a	single	channel	to	be	shared
unambiguously	by	several	different	conversations.

You	also	should	remember	that	when	a	program	on	your	computer	sends	or	receives	data	over	the	Internet	it	sends	that
data	to	an	ip	address	and	a	specific	port	on	the	remote	computer,	and	receives	the	data	on	a	usually	random	port	on	its

Addresses	and	port	numbers



own	computer.	If	it	uses	the	TCP	protocol	to	send	and	receive	the	data	then	it	will	connect	and	bind	itself	to	a	TCP	port.	If	it
uses	the	UDP	protocol	to	send	and	receive	data,	it	will	use	a	UDP	port.



Now,	we	are	going	to	centre	in	UDP	(User	Datagram	Protocol).

UDP



The	UDP	scheme	is	really	quite	simple;	an	IP	address	and	port	are	all	that	is	necessary	to	direct	a	packet	to	its	destination.

Imagine,	for	example,	that	you	set	up	a	DNS	server	(Chapter	4)	on	one	of	your	machines,	with	the	IP	address	192.168.1.9.
To	allow	other	computers	to	find	the	service,	the	server	will	ask	the	operating	system	for	permission	to	take	control	of	the
UDP	port	with	the	standard	DNS	port	number	53.	Assuming	that	no	process	is	already	running	that	has	claimed	that	port
number,	the	DNS	server	will	be	granted	that	port.

Next,	imagine	that	a	client	machine	with	the	IP	address	192.168.1.30	on	your	network	is	given	the	IP	address	of	this	new
DNS	server	and	wants	to	issue	a	query.	It	will	craft	a	DNS	query	in	memory,	and	then	ask	the	operating	system	to	send	that
block	of	data	as	a	UDP	packet.	Since	there	will	need	to	be	some	way	to	identify	the	client	when	the	packet	returns,	and
since	the	client	has	not	explicitly	requested	a	port	number,	the	operating	system	assigns	it	a	random	one—say,	port	44137.

The	packet	will	therefore	wing	its	way	toward	port	53	with	labels	that	identify	its	source	as	the	IP	address	and	UDP	port
numbers	(here	separated	by	a	colon):

192.168.1.30:44137

And	it	will	give	its	destination	as	the	following:

192.168.1.9:53

This	destination	address,	simple	though	it	looks—just	the	number	of	a	computer,	and	the	number	of	a	port—is	everything
that	an	IP	network	stack	needs	to	guide	this	packet	to	its	destination.	The	DNS	server	will	receive	the	request	from	its
operating	system,	along	with	the	originating	IP	and	port	number.	Once	it	has	formulated	a	response,	the	DNS	server	will
ask	the	operating	system	to	send	the	response	as	a	UDP	packet	to	the	IP	address	and	UDP	port	number	from	which	the
request	originally	came.	The	reply	packet	will	have	the	source	and	destination	swapped	from	what	they	were	in	the	original
packet,	and	upon	its	arrival	at	the	source	machine,	it	will	be	delivered	to	the	waiting	client	program.

How	UDP	works?



So,	The	User	Data	Protocol,	UDP,	lets	user-level	programs	send	individual	packets	across	an	IP	network.	Typically,	a	client
program	sends	a	packet	to	a	server,	which	then	replies	back	using	the	return	address	built	into	every	UDP	packet.	You
might	think	that	UDP	would	be	very	efficient	for	sending	small	messages.	Actually,	UDP	is	efficient	only	if	your	host	ever
only	sends	one	message	at	a	time,	then	waits	for	a	response.

There	are	two	good	reasons	to	use	UDP:

Because	you	are	implementing	a	protocol	that	already	exists,	and	it	uses	UDP.

Because	unreliable	subnet	broadcast	is	a	great	pattern	for	your	application,	and	UDP	supports	it	perfectly.

When	to	use	UPD



As	we	have	seen	sockets	makes	talking	to	arbitrary	machines	around	the	world	unbelievably	easy	(at	least	compared	to
other	schemes).

When	you	craft	programs	that	accept	port	numbers	from	user	input	like	the	command	line	or	configuration	files,	it	is	friendly
to	allow	not	just	numeric	port	numbers	but	to	let	users	type	humanreadable	names	for	well-known	ports.	These	names	are
standard,	and	are	available	through	the		getservbyname()		call	supported	by	Python’s	standard	socket	module.	If	we	want	to
ask	where	the	Domain	Name	Service	lives,	we	could	have	found	out	this	way:

import	socket

socket.getservbyname('domain')

53

Now	examine	the	following	code	which	shows	a	simple	server	and	client.	You	can	see	already	that	all	sorts	of	operations
are	taking	place	that	are	drawn	from	the	socket	module	in	the	Python	Standard	Library.

#UDP	client	and	server	on	localhost

import	socket,	sys

s	=	socket.socket(socket.AF_INET,	socket.SOCK_DGRAM)

MAX	=	65535

PORT	=	1060

if	sys.argv[1:]	==	['server']:

		s.bind(('127.0.0.1',	PORT))

		print	'Listening	at',	s.getsockname()

		while	True:

				data,	address	=	s.recvfrom(MAX)

				print	'The	client	at',	address,	'says',	repr(data)

				s.sendto('Your	data	was	%d	bytes'	%	len(data),	address)

elif	sys.argv[1:]	==	['client']:

		print	'Address	before	sending:',	s.getsockname()

		s.sendto('This	is	my	message',	('127.0.0.1',	PORT))

		print	'Address	after	sending',	s.getsockname()

		data,	address	=	s.recvfrom(MAX)	#	overly	promiscuous	-	see	text!

		print	'The	server',	address,	'says',	repr(data)

else:

			print	>>sys.stderr,	'usage:	udp_local.py	server|client'

When	runing	it,	you	should	get	something	similar	to	this:

root@erlerobot:~/Python_files#	python	udp_local.py

usage:	udp_local.py	server|client

Noe	try	to	run	first	the	server:

root@erlerobot:~/Python_files#	python	ude_local.py	server

Listening	at	('127.0.0.1',	1060)

And	then	in	a	new	Terminal	window	the	client:

root@erlerobot:~/Python_files#	python	udp_local.py	client

Address	before	sending:	('0.0.0.0',	0)

Address	after	sending	('0.0.0.0',	59726)

The	server	('127.0.0.1',	1060)	says	'Your	data	was	18	bytes'

In	the	server	window	will	appear	a	new	line:

Socket	(UDP)



The	client	at	('127.0.0.1',	59726)	says	'This	is	my	message'

Note	that	the	Python	program	can	always	use	a	socket’s		getsockname()	method	to	retrieve	the	current	IP	and	port	to	which
the	socket	is	bound.	Once	the	socker	has	been	bound	successfully,	the	server	is	ready	to	start	receiving	requests!	It	enters
a	loop	and	repeatedly	runs		recvfrom()	,	telling	the	routine	that	it	will	happily	receive	messages	up	to	a	maximum	length	of
MAX,	which	is	equal	to	65535	bytes—a	value	that	happens	to	be	the	greatest	length	that	a	UDP	packet	can	possibly	have,
so	that	we	will	always	be	shown	the	full	content	of	each	packet.	Until	we	send	a	message	with	a	client,	our		recvfrom()		call
will	wait	forever.



Because	the	client	and	server	in	the	previous	section	were	both	running	on	the	same	machine	and	talking	through	its
loopback	interface—which	is	not	even	a	physical	network	card	that	could	experience	a	signaling	glitch	and	lose	a	packet,
but	merely	a	virtual	connection	back	to	the	same	machine	deep	in	the	network	stack—there	was	no	real	way	that	packets
could	get	lost,	and	so	we	did	not	actually	see	any	of	the	inconvenience	of	UDP.

You	can	run	this	client	and	server	example	on	two	different	machines	on	the	Internet.	And	instead	of	always	answering
client	requests,	this	server	randomly	chooses	to	answer	only	half	of	the	requests	coming	in	from	clients—which	will	let	us
demonstrate	how	to	build	reliability	into	our	client	code,	without	waiting	what	might	be	hours	for	a	real	dropped	packet	to
occur.

import	random,	socket,	sys

s	=	socket.socket(socket.AF_INET,	socket.SOCK_DGRAM)

MAX	=	65535

PORT	=	1060

if	2	<=	len(sys.argv)	<=	3	and	sys.argv[1]	==	'server':

		interface	=	sys.argv[2]	if	len(sys.argv)	>	2	else	''

		s.bind((interface,	PORT))

		print	'Listening	at',	s.getsockname()

		while	True:

				data,	address	=	s.recvfrom(MAX)

				if	random.randint(0,	1):

						print	'The	client	at',	address,	'says:',	repr(data)

						s.sendto('Your	data	was	%d	bytes'	%	len(data),	address)

				else:

						print	'Pretending	to	drop	packet	from',	address

elif	len(sys.argv)	==	3	and	sys.argv[1]	==	'client':

		hostname	=	sys.argv[2]

		s.connect((hostname,	PORT))

		print	'Client	socket	name	is',	s.getsockname()

		delay	=	0.1

		while	True:

				s.send('This	is	another	message')

				print	'Waiting	up	to',	delay,	'seconds	for	a	reply'

				s.settimeout(delay)

				try:

						data	=	s.recv(MAX)

				except	socket.timeout:

						delay	*=	2	#	wait	even	longer	for	the	next	request

						if	delay	>	2.0:

								raise	RuntimeError('I	think	the	server	is	down')

				except:

						raise	#	a	real	error,	so	we	let	the	user	see	it

				else:

						break	#	we	are	done,	and	can	stop	looping

		print	'The	server	says',	repr(data)

else:

		print	>>sys.stderr,	'usage:	udp_remote.py	server	[	<interface>	]'

		print	>>sys.stderr,	'	or:	udp_remote.py	client	<host>'

		sys.exit(2)

Running	the	file	itself	result	on:

	root@erlerobot:~/Python_files#	python	socket1.py

	usage:	udp_remote.py	server	[	<interface>	]

	or:	udp_remote.py	client	<host>

Then	run	the	server:

root@erlerobot:~/Python_files#	python	udp_remote.py	server

Listening	at	('0.0.0.0',	1060)

And	now	the	client,	remember	to	pass	the	hostname	where	the	server	script	is	being	run(in	this	case	the	same	machine):

Unreliability,	Backoff,	Blocking,	Timeouts



root@erlerobot:~/Python_files#	python	udep_remote.py	client	127.0.0.1

Client	socket	name	is	('127.0.0.1',	54770)

Waiting	up	to	0.1	seconds	for	a	reply

Waiting	up	to	0.2	seconds	for	a	reply

Waiting	up	to	0.4	seconds	for	a	reply

Waiting	up	to	0.8	seconds	for	a	reply

The	server	says	'Your	data	was	23	bytes'

As	you	can	see,	each	time	a	request	is	received,	the	server	uses		randint()		to	flip	a	coin	to	decide	whether	this	request	will
be	answered,	so	that	we	do	not	have	to	keep	running	the	client	all	day	waiting	for	a	real	dropped	packet.	The	cliente	will
find	that	one	or	more	of	its	requests	never	result	in	replies.



The	remote	UDP	client	in		socket1.py		uses	a	new	call	that	we	have	not	discussed	before:	the		connect()		socket	operation.
You	can	see	easily	enough	what	it	does.	Instead	of	having	to	use		sendto()		and	an	explicit	UDP	address	every	time	we
want	to	send	something	to	the	server,	the		connect()		call	lets	the	operating	system	know	ahead	of	time	which	remote
address	to	which	we	want	to	send	packets,	so	that	we	can	simply	supply	data	to	the		send()		call	and	not	have	to	repeat	the
server	address	again.	But		connect()		does	something	else	important,	which	will	not	be	obvious	at	all	from	reading	the	script
of		udp_remote.py	.	To	approach	this	topic,	let	us	return	to		udp_local.py	file	for	a	moment.	You	will	recall	that	both	its	client
and	server	use	the	loopback	IP	address	and	assume	reliable	delivery—the	client	will	wait	forever	for	a	response.	Try
running	the	client	in	one	window:

root@erlerobot:~/Python_files#	python	udp_local.py

Address	before	sending:	('0.0.0.0',	0)

Address	after	sending	('0.0.0.0',	52970)

The	client	is	now	waiting—perhaps	forever—for	a	response	in	reply	to	the	packet	it	has	just	sent	to	the	localhost	IP	address
at	UDP	port	1060.	But	what	if	we	nefariously	try	sending	it	back	a	packet	from	a	different	server,	instead?	From	another
command	prompt	on	the	same	system,	try	running	Python	and	entering	these	commands—and	for	the	port	number,	copy
the	integer	that	was	just	printed	to	the	screen	when	you	ran	the	UDP	client:

>>>	import	socket

>>>	s=socket.socket(socket.AF_INET,	socket.SOCK_DGRAM)

>>>	s.sendto('Fake	reply',('127.0.0.1',52970))

10

>>>

In	the	client	window	appears:

The	server	('127.0.0.1',	65320)	says	'Fake	reply'

It	turns	out	that	our	first	client	accepts	answers	from	anywhere.	Even	though	the	server	is	running	on	the	localhost,	and
remote	network	connectivity	is	not	even	desirable,	the	client	will	even	accept	packets	from	another	machine.	If	I	bring	up	a
Python	prompt	on	another	box	and	run	the	same	two	lines	of	code	as	just	shown,	then	a	waiting	client	can	even	see	the
remote	IP	address.

There	are,	then,	two	ways	to	write	UDP	clients	that	are	careful	about	the	return	addresses	of	the	packets	arriving	back:

You	can	use		sendto()		and	direct	each	outgoing	packet	to	a	specific	destination,	and	then	use		recvfrom()		to	receive
the	replies	and	carefully	check	the	return	address	it	gives	you	against	the	list	of	servers	to	which	you	have	made
outstanding	requests.

You	can		connect()		your	socket	right	after	creating	it,	and	then	simply	use		send()		and		recv()	,	and	the	operating
system	will	filter	out	unwanted	packets	for	you.	This	works	only	for	speaking	to	one	server	at	a	time,	because	running
	connect()		a	second	time	on	the	same	socket	does	not	add	a	second	destination	address	to	your	UDP	socket.	Instead,
it	wipes	out	the	first	address	entirely,	so	that	no	further	replies	from	the	earlier	address	will	be	delivered	to	your
program.

Connecting	UDP	Sockets



When	using	sockets,	it	is	important	to	distinguish	the	act	of	“binding”—by	which	you	grab	a	particular	UDP	port	for	the	use
of	a	particular	socket—from	the	act	that	the	client	performs	by	“connecting,”	which	limits	all	replies	received	so	that	they
can	come	only	from	the	particular	server	to	which	you	want	to	talk.

So	far	we	have	seen	two	possibilities	for	the	IP	address	used	in	the		bind()		call	that	the	server	makes:	you	can	use
'127.0.0.1'	to	indicate	that	you	only	want	packets	from	other	programs	running	on	the	same	machine,	or	use	an	empty
string	''	as	a	wildcard,	indicating	that	you	are	willing	to	receive	packets	from	any	interface.	It	actually	turns	out	that	there	is	a
third	choice:	you	can	provide	the	IP	address	of	one	of	the	machine’s	external	IP	interfaces,	like	its	Ethernet	connection	or
wireless	card,	and	the	server	will	listen	only	for	packets	destined	for	those	IPs.	First,	what	if	we	bind	solely	to	an	external
interface?	Run	the	server	like	this,	using	whatever	your	operating	system	tells	you	is	the	external	IP	address	of	your
system:

root@erlerobot:~/Python_files#		python	udp_remote.py	server	192.168.1.35

Listening	at	('192.168.1.35',	1060)

Connecting	to	this	IP	address	from	another	machine	should	still	work	just	fine:

root@erlerobot:~/Python_files#	python	udp_remote.py	client	192.168.1.35

Client	socket	name	is	('192.168.1.35',	58824)

Waiting	up	to	0.1	seconds	for	a	reply

The	server	says	'Your	data	was	23	bytes'

But	if	you	try	connecting	to	the	service	through	the	loopback	interface	by	running	the	client	script	on	the	same	machine,	the
packets	will	never	be	delivered:

root@erlerobot:~/Python_files#	python	udp_remote.py	client	127.0.0.1

Client	socket	name	is	('127.0.0.1',	60251)

Waiting	up	to	0.1	seconds	for	a	reply

Traceback	(most	recent	call	last):

...

socket.error:	[Errno	111]	Connection	refused

If	you	run	client	again	on	the	same	machine,	but	this	time	use	the	external	IP	address	of	the	box,	even	though	the	client
and	server	are	both	running	there,	this	will	not	give	any	error.So	binding	to	an	IP	interface	might	limit	which	external	hosts
can	talk	to	you;	but	it	will	certainly	not	limit	conversations	with	other	clients	on	the	same	machine,	so	long	as	they	know	the
IP	address	that	they	should	use	to	connect.

Now,	stop	all	of	the	scripts	that	are	running,	and	we	can	try	running	two	servers	on	the	same	box.

root@erlerobot:~/Python_files#	python	udp_remote.py	server	127.0.0.1

Listening	at	('127.0.0.1',	1060)

And	then	we	try	running	a	second	one,	connected	to	the	wildcard	IP	address	that	allows	requests	from	any	address:

root@erlerobot:~/Python_files#	python	udp_remote.py	server

Traceback	(most	recent	call	last):

...

socket.error:	[Errno	98]	Address	already	in	use

We	have	learned	something	about	operating	system	IP	stacks	and	the	rules	that	they	follow:	they	do	not	allow	two	different
sockets	to	listen	at	the	same	IP	address	and	port	number,	because	then	the	operating	system	would	not	know	where	to

Binding	to	Interfaces(UDP)



deliver	incoming	packets.	But	what	if	instead	of	trying	to	run	the	second	server	against	all	IP	interfaces,	we	just	ran	it
against	an	external	IP	interface—one	that	the	first	copy	of	the	server	is	not	listening	to?	Let	us	try:

root@erlerobot:~/Python_files#	python	udp_remote.py	server	192.168.1.35

Listening	at	('192.168.1.35',	1060)

It	worked,	this	menas	that	there	are	now	two	servers	running	on	this	machine,	one	of	which	is	bound	to	the	inwardlooking
port	1060	on	the	loopback	interface,	and	the	other	looking	outward	for	packets	arriving	on	port	1060	from	the	network	to
which	my	wireless	card	has	connected.

IP	network	stack	never	thinks	of	a	UDP	port	as	a	lone	entity	that	is	either	entirely	available,	or	else	in	use,	at	any	given
moment.	Instead,	it	thinks	in	terms	of	UDP	“socket	names”	that	are	always	a	pair	linking	an	IP	interface—even	if	it	is	the
wildcard	interface—with	a	UDP	port	number.	It	is	these	socket	names	that	must	not	conflict	among	the	listening	servers	at
any	given	moment,	rather	than	the	bare	UDP	ports	that	are	in	use.



The	foregoing	program	listings	have	suggested	that	a	UDP	packet	can	be	up	to	64kB	in	size,	whereas	you	probably	already
know	that	your	Ethernet	or	wireless	card	can	only	handle	packets	of	around	1,500	bytes	instead.

The	actual	truth	is	that	IP	sends	small	UDP	packets	as	single	packets	on	the	wire,	but	splits	up	larger	UDP	packets	into
several	small	physical	packets.	This	means	that	large	packets	are	more	likely	to	be	dropped,	since	if	any	one	of	their	pieces
fails	to	make	its	way	to	the	destination,	then	the	whole	packet	can	never	be	reassembled	and	delivered	to	the	listening
operating	system.	But	aside	from	the	higher	chance	of	failure,	this	process	of	fragmenting	large	UDP	packets	so	that	they
will	fit	on	the	wire	should	be	invisible	to	your	application.	There	are	three	ways,	however,	in	which	it	might	be	relevant:

If	you	are	thinking	about	efficiency,	you	might	want	to	limit	your	protocol	to	small	packets,	to	make	retransmission	less
likely	and	to	limit	how	long	it	takes	the	remote	IP	stack	to	reassemble	your	UDP	packet	and	give	it	to	the	waiting
application.

If	the	ICMP	packets	are	wrongfully	blocked	by	a	firewall	that	would	normally	allow	your	host	to	auto-detect	the	MTU
between	you	and	the	remote	host,	then	your	larger	UDP	packets	might	disappear	into	oblivion	without	your	ever
knowing.	The	MTU	is	the	“maximum	transmission	unit”	or	“largest	packet	size”	that	all	of	the	network	devices	between
two	hosts	will	support.

If	your	protocol	can	make	its	own	choices	about	how	it	splits	up	data	between	different	packets,	and	you	want	to	be
able	to	auto-adjust	this	size	based	on	the	actual	MTU	between	two	hosts,	then	some	operating	systems	let	you	turn	off
fragmentation	and	receive	an	error	if	a	UDP	packet	is	too	big.	This	lets	you	regroup	and	split	it	into	several	packets	if
that	is	possible.

Linux	is	one	operating	system	that	supports	this	last	option.	Take	a	look	at		big_sender.py		,	which	sends	a	very	large
message	to	one	of	the	servers	that	we	have	just	designed.

import	IN,	socket,	sys

s	=	socket.socket(socket.AF_INET,	socket.SOCK_DGRAM)

MAX	=	65535

PORT	=	1060

if	len(sys.argv)	!=	2:

		print	>>sys.stderr,	'usage:	big_sender.py	host'

		sys.exit(2)

hostname	=	sys.argv[1]

s.connect((hostname,	PORT))

s.setsockopt(socket.IPPROTO_IP,	IN.IP_MTU_DISCOVER,	IN.IP_PMTUDISC_DO)

try:

		s.send('#'	*	65000)

except	socket.error:

		print	'The	message	did	not	make	it'

		option	=	getattr(IN,	'IP_MTU',	14)	#	constant	taken	from	<linux/in.h>

		print	'MTU:',	s.getsockopt(socket.IPPROTO_IP,	option)

else:

		print	'The	big	message	was	sent!	Your	network	supports	really	big	packets!'

If	we	run	this	program	against	a	server	elsewhere	on	my	home	network,	then	we	discover	that	my	wireless	network	allows
physical	packets	that	are	no	bigger	than	the	1,500	bytes	typically	supported	by	Ethernet-style	networks:

root@erlerobot:~/Python_files#		python	big_sender.py	127.0.0.0

The	message	did	not	make	it

MTU:	1500

UDP	Fragmentation



The	POSIX	socket	interface	also	supports	all	sorts	of	socket	options	that	control	specific	behaviors	of	network	sockets.
These	are	accessed	through	the	Python	socket	methods		getsockopt()		and		setsockopt()	,	using	the	options	you	will	find
documented	for	your	operating	system.	You	can	find	this	options	described	in	the	Python	documentation.

When	setting	socket	options,the	set	call	is	similar	to:

value	=	s.getsockopt(socket.SOL_SOCKET,	socket.SO_BROADCAST)

s.setsockopt(socket.SOL_SOCKET,	socket.SO_BROADCAST,	value)

Here	are	some	of	the	more	common	options:

SO_BROADCAST:	Allows	broadcast	UDP	packets	to	be	sent	and	received;	see	the	next	section	for	details.

SO_DONTROUTE:	Only	be	willing	to	send	packets	that	are	addressed	to	hosts	on	subnets	to	which	this	computer	is
connected	directly.

SO_TYPE:	When	passed	to		getsockopt()	,	this	returns	to	you	regardless	of	whether	a	socket	is	of	type
	SOCK_DGRAM	and	can	be	used	for	UDP,	or	it	is	of	type		SOCK_STREAM		and	instead	supports	the	semantics	of	TCP.

NOTE:

If	UDP	has	a	superpower,	it	is	its	ability	to	support	broadcast:	instead	of	sending	a	packet	to	some	specific	other	host,	you
can	point	it	at	an	entire	subnet	to	which	your	machine	is	attached	and	have	the	physical	network	card	broadcast	the	packet
so	that	all	attached	hosts	see	it	without	its	having	to	be	copied	separately	to	each	one	of	them.Here	and	here	you	can	find
two	example	of	broadcasting.

Socket	Options

https://docs.python.org/2/library/socket.html
http://svn.python.org/projects/python/branches/pep-0384/Demo/sockets/broadcast.py
https://github.com/misheska/foundations-of-python-network-programming/blob/master/python2/02/udp_broadcast.py


The	Transmission	Control	Protocol	(TCP)	is	the	workhorse	of	the	Internet.	Protocols	that	carry	documents	and	files	nearly
always	ride	atop	TCP,	including	HTTP	and	all	the	major	ways	of	transmitting	e-mail.	It	is	also	the	foundation	of	choice	for
protocols	that	carry	on	long	conversations	between	people	or	computers,	like	SSH	and	many	popular	chat	protocols

TCP



First,	every	packet	is	given	a	sequence	number,	so	that	the	system	on	the	receiving	end	can	put	them	back	together	in	the
right	order,	and	so	that	it	can	notice	missing	packets	in	the	sequence	and	ask	that	they	be	re-transmitted.	Instead	of	using
sequential	integers	(1,2,…)	to	mark	packets,	TCP	uses	a	counter	that	counts	the	number	of	bytes	transmitted.	So	a	1,024-
byte	packet	with	a	sequence	number	of	7,200	would	be	followed	by	a	packet	with	a	sequence	number	of	8,224.	This	means
that	a	busy	network	stack	does	not	have	to	remember	how	it	broke	a	data	stream	up	into	packets;	if	asked	for	a	re-
transmission,	it	can	break	the	stream	up	into	packets	some	other	way	(which	might	let	it	fit	more	data	into	a	packet	if	more
bytes	are	now	waiting	for	transmission),	and	the	receiver	can	still	put	the	packets	back	together.

Rather	than	running	very	slowly	in	lock-step	by	needing	every	packet	to	be	acknowledged	before	it	sends	the	next	one,
TCP	sends	whole	bursts	of	packets	at	a	time	before	expecting	a	response.	The	amount	of	data	that	a	sender	is	willing	to
have	on	the	wire	at	any	given	moment	is	called	the	size	of	the	TCP	“window.”	The	TCP	implementation	on	the	receiving
end	can	regulate	the	window	size	of	the	transmitting	end,	and	thus	slow	or	pause	the	connection.	This	is	called	“flow
control.”	This	lets	it	forbid	the	transmission	of	additional	packets	in	cases	where	its	input	buffer	is	full	and	it	would	have	to
discard	any	more	data	if	it	were	to	arrive	right	now.

Finally,	if	TCP	sees	that	packets	are	being	dropped,	it	assumes	that	the	network	is	becoming	congested	and	stops	sending
as	much	data	every	second.

How	TCP	works



TCP	has	very	nearly	become	a	universal	default	when	two	programs	need	to	communicate,	we	should	look	at	a	few
instances	in	which	its	behavior	is	not	optimal	for	certain	kinds	of	data,	in	case	an	application	you	are	writing	ever	falls	into
one	of	these	categories.	First,	TCP	is	unwieldy	for	protocols	where	clients	want	to	send	single,	small	requests	to	a	server,
and	then	are	done	and	will	not	talk	to	it	further.	It	takes	three	packets	for	two	hosts	to	set	up	a	TCP	connection—the	famous
sequence	of	SYN,	SYN-ACK,	and	ACK	(which	mean	“I	want	to	talk,	here	is	the	packet	sequence	number	I	will	be	starting
with”;	“okay,	here’s	mine”;	“okay!”)—and	then	another	three	or	four	to	shut	the	connection	back	down	(either	a	quick	FIN,
FIN-ACK,	ACK,	or	a	slightly	longer	pair	of	separate	FIN	and	ACK	packets).	That	is	six	packets	just	to	send	a	single
request:Protocol	designers	quickly	turn	to	UDP	in	such	cases.

In	view	of	this	we	are	going	to	detail	two	situations	where	the	use	of	TCP	is	not	appropriate:

Where	UDP	really	shines	over	TCP,	then,	is	where	such	a	long-term	relationship	does	not	pertain	between	client	and
server,	and	especially	where	there	are	so	many	clients	that	a	typical	TCP	implementation	would	run	out	of	port
numbers	if	it	had	to	keep	up	with	a	separate	data	stream	for	each	active	client.

The	second	situation	where	TCP	is	inappropriate	is	when	an	application	can	do	something	much	smarter	than	simply
re-transmit	data	when	a	packet	has	been	lost.	Imagine	an	audio	chat	conversation,	for	example:	if	a	second’s	worth	of
data	is	lost	because	of	a	dropped	packet,	then	it	will	do	little	good	to	simply	re-send	that	same	second	of	audio,	over
and	over,	until	it	finally	arrives.

When	to	use	TCP



As	we	have	mentioned	before,	TCP	uses	port	numbers	to	distinguish	different	applications	running	at	the	same	IP	address,
and	follows	exactly	the	same	conventions	regarding	well-known	and	ephemeral	port	number.	With	a	stateful	stream
protocol	like	TCP,	the	`connect()	call	becomes	the	fundamental	act	upon	which	all	other	network	communication	hinges.
TCP	connect()	can	fail:	The	remote	host	might	not	answer;	it	might	refuse	the	connection;	or	more	obscure	protocol	errors
might	occur	like	the	immediate	receipt	of	a	RST	(“reset”)	packet.	Because	a	stream	connection	involves	setting	up	a
persistent	connection	between	two	hosts,	the	other	host	needs	to	be	listening	and	ready	to	accept	your	connection.

On	the	“server	side”—which,	for	the	purpose	of	this	chapter,	is	the	conversation	partner	not	doing	the	connect()	call	but
receiving	the	SYN	packet	that	it	initiates—an	incoming	connection	generates	an	even	more	momentous	event,	the	creation
of	a	new	socket.	This	is	because	the	standard	POSIX	interface	to	TCP	actually	involves	two	completely	different	kinds	of
sockets:	“passive”	listening	sockets	and	active	“connected”	ones:

A	passive	socket	holds	the	“socket	name”—the	address	and	port	number—at	which	the	server	is	ready	to	receive
connections.	No	data	can	ever	be	received	or	sent	by	this	kind	of	port;	it	does	not	represent	any	actual	network
conversation.	Instead,	it	is	how	the	server	alerts	the	operating	system	to	its	willingness	to	receive	incoming
connections	in	the	first	place.

An	active	socket	(connected	socket),	is	bound	to	one	particular	remote	conversation	partner,	who	has	their	own	IP
address	and	port	number.	It	can	be	used	only	for	talking	back	and	forth	with	that	partner,	and	can	be	read	and	written
to	without	worrying	about	how	the	resulting	data	will	be	split	up	into	packets—in	many	cases,	a	connected	socket	can
be	passed	to	another	POSIX	program	that	expects	to	read	from	a	normal	file,	and	the	program	will	never	even	know
that	it	is	talking	to	the	network.

Note	that	while	a	passive	socket	is	made	unique	by	the	interface	address	and	port	number	at	which	it	is	listening	(so	that	no
one	else	is	allowed	to	grab	that	same	address	and	port),	there	can	be	many	active	sockets	that	all	share	the	same	local
socket	name.

What	makes	an	active	socket	unique	is,	rather,	the	four-part	coordinate:	(local_ip,	local_port,	remote_ip,	remote_port).	It	is
this	four-tuple	by	which	the	operating	system	names	each	active	TCP	connection,	and	incoming	TCP	packets	are	examined
to	see	whether	their	source	and	destination	address	associate	them	with	any	of	the	currently	active	sockets	on	the	system.

What	TCP	Sockets	Mean



Here	you	can	find	the	code	of	a	simple	TCP	client	and	server	that	send	and	receive	16	octets:

import	socket,	sys

s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

HOST	=	sys.argv.pop()	if	len(sys.argv)	==	3	else	'127.0.0.1'

PORT	=	1060

def	recv_all(sock,	length):

		data	=	''

		while	len(data)	<	length:

				more	=	sock.recv(length	-	len(data))

				if	not	more:

						raise	EOFError('socket	closed	%d	bytes	into	a	%d-byte	message'

						%	(len(data),	length))

				data	+=	more

		return	data

if	sys.argv[1:]	==	['server']:

		s.setsockopt(socket.SOL_SOCKET,	socket.SO_REUSEADDR,	1)

		s.bind((HOST,	PORT))

		s.listen(1)

		while	True:

				print	'Listening	at',	s.getsockname()

				sc,	sockname	=	s.accept()

				print	'We	have	accepted	a	connection	from',	sockname

				print	'Socket	connects',	sc.getsockname(),	'and',	sc.getpeername()

				message	=	recv_all(sc,	16)

				print	'The	incoming	sixteen-octet	message	says',	repr(message)

				sc.sendall('Farewell,	client')

				sc.close()

				print	'Reply	sent,	socket	closed'

elif	sys.argv[1:]	==	['client']:

		s.connect((HOST,	PORT))

		print	'Client	has	been	assigned	socket	name',	s.getsockname()

		s.sendall('Hi	there,	server')

		reply	=	recv_all(s,	16)

		print	'The	server	said',	repr(reply)

		s.close()

else:

		print	>>sys.stderr,	'usage:	tcp_local.py	server|client	[host]'

First,	the	TCP		connect()		call	is	not	the	innocuous	bit	of	local	socket	configuration	that	it	is	in	the	case	of	UDP,	where	it
merely	sets	a	default	address	used	with	any	subsequent		send()		calls,	and	places	a	filter	on	packets	arriving	at	our	socket.
Here,		connect()		is	a	real	live	network	operation	that	kicks	off	the	three-way	handshake	between	the	client	and	server
machine	so	that	they	are	ready	to	communicate.	This	means	that		connect()		can	fail,	as	you	can	verify	quite	easily	by
executing	this	script	when	the	server	is	not	running:

		root@erlerobot:~/Python_files#	python	tcp_sixteen.py	client

		Traceback	(most	recent	call	last):

		File	"tcp_sixteen.py",	line	29,	in	<module>

				s.connect((HOST,	PORT))

		File	"/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/socket.py",	line	224,	in	meth

				return	getattr(self._sock,name)(*args)

socket.error:	[Errno	61]	Connection	refused

You	will	see	that	this	TCP	client	is	in	one	way	much	simpler	than	our	UDP	client,	because	it	does	not	need	to	make	any
provision	for	missing	data.	Because	of	the	assurances	that	TCP	provides,	it	can		send()		data	without	checking	whether	the
remote	end	receives	it,	and	run		recv()		without	having	to	consider	the	possibility	of	re-transmitting	its	request.

When	we	perform	a	TCP		send()	,	our	operating	system’s	networking	stack	will	face	one	of	three	situations:

The	data	can	be	immediately	accepted	by	the	system,	either	because	the	network	card	is	immediately	free	to	transmit,
or	because	the	system	has	room	to	copy	the	data	to	a	temporary	outgoing	buffer	so	that	your	program	can	continue
running.	In	these	cases,		send()		returns	immediately,	and	it	will	return	the	length	of	your	data	string	because	the	whole
string	was	transmitted.

A	Simple	TCP	Client	and	Server



Another	possibility	is	that	the	network	card	is	busy	and	that	the	outgoing	data	buffer	for	this	socket	is	full	and	the
system	cannot—or	will	not—allocate	any	more	space.	In	this	case,	the	default	behavior	of		send()		is	simply	to	block,
pausing	your	program	until	the	data	can	be	accepted.

There	is	a	final,	hybrid	possibility:	that	the	outgoing	buffers	are	almost	full,	but	not	quite,	and	so	part	of	the	data	you	are
trying	to	send	can	be	immediately	queued,	but	the	rest	will	have	to	wait.	In	this	case,		send()		completes	immediately
and	returns	the	number	of	bytes	accepted	from	the	beginning	of	your	data	string,	but	leaves	the	rest	of	the	data
unprocessed.

Fortunately,	Python	does	not	force	us	to	do	this	dance	ourselves	every	time	we	have	a	block	of	data	to	send:	the	Standard
Library	socket	implementation	provides	a	friendly		sendall()		method.	Not	only	is		sendall()	faster	than	doing	it	ourselves,	it
releases	the	Global	Interpreter	Lock	during	its	loop	so	that	other	Python	threads	can	run	without	contention	until	all	of	the
data	has	been	transmitted.	Unfortunately,	no	equivalent	is	provided	for	the		recv()	call	,	despite	the	fact	that	it	might	return
only	part	of	the	data	that	is	on	the	way	from	the	client.	Internally,	the	operating	system	implementation	of		recv()		uses	logic
very	close	to	that	used	when	sending:

If	no	data	is	available,	then		recv()		blocks	and	your	program	pauses	until	data	arrives.

If	plenty	of	data	is	available	already	in	the	incoming	buffer,	then	you	are	given	as	many	bytes	as	you	asked		recv()		for.

But	if	the	buffer	contains	a	bit	of	data,	but	not	as	much	as	you	are	asking	for,	then	you	are	immediately	returned	what
does	happen	to	be	there,	even	if	it	is	not	as	much	as	you	have	asked	for.

In	the	code	stored	in		tcp_sixteen.py	,	you	can	see	how	the	distinction	between	active	and	listening	socket	is	carried
through	in	actual	server	code.	The	link,	which	might	strike	you	as	odd	at	first,	is	that	a	listening	socket	actually	produces
new	connected	sockets	as	the	return	value	that	you	get	by	listening.	Follow	the	steps	in	the	program	listing	to	see	the	order
in	which	the	socket	operations	occur.

Run	the	server:

root@erlerobot:~/Python_files#		python	tcp_sixteen.py	server

Listening	at	('127.0.0.1',	1060)

And	then	the	client(in	another	terminal	window):

root@erlerobot:~/Python_files#	python	tcp_sixteen.py	client

Client	has	been	assigned	socket	name	('127.0.0.1',	49607)

The	server	said	'Farewell,	client'

The	server	returns	this:

We	have	accepted	a	connection	from	('127.0.0.1',	49607)

Socket	connects	('127.0.0.1',	1060)	and	('127.0.0.1',	49607)

The	incoming	sixteen-octet	message	says	'Hi	there,	server'

Reply	sent,	socket	closed

Listening	at	('127.0.0.1',	1060)



the	IP	address	that	you	pair	with	a	port	number	when	you	perform	a	bind()	operation	tells	the	operating	system	which
network	interfaces	you	are	willing	to	receive	connections	from.	The	example	invocations	of		tcp_sixteen.py		used	the
localhost	IP	address	127.0.0.1,	which	protects	your	code	from	connections	originating	on	other	machines.	You	can	verify
this	by	running		tcp_sixteen.py		in	server	mode	as	shown	previously,	and	trying	to	connect	with	a	client	from	another
machine:

root@erlerobot:~/Python_files#	python	tcp_sixteen.py	client	192.168.1.35

Traceback	(most	recent	call	last):

		File	"tcp_sixteen.py",	line	29,	in	<module>

				s.connect((HOST,	PORT))

		File	"/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/socket.py",	line	224,	in	meth

				return	getattr(self._sock,name)(*args)

socket.error:	[Errno	61]	Connection	refused

But	if	you	run	the	server	with	an	empty	string	for	the	hostname,	which	tells	the	Python	bind()	routine	that	you	are	willing	to
accept	connections	through	any	of	your	machine’s	active	network	interfaces,	then	the	client	can	connect	successfully	from
another	host:

root@erlerobot:~/Python_files#	python	tcp_sixteen.py	server	""

Listening	at	('0.0.0.0',	1060)

`

Run	the	client:

root@erlerobot:~/Python_files#	python	tcp_sixteen.py	client	192.168.1.35

Client	has	been	assigned	socket	name	('192.168.1.35',	49696)

The	server	said	'Farewell,	client'

This	appear	into	the	server	terminal:

We	have	accepted	a	connection	from	('192.168.1.35',	49696)

Socket	connects	('192.168.1.35',	1060)	and	('192.168.1.35',	49696)

The	incoming	sixteen-octet	message	says	'Hi	there,	server'

Reply	sent,	socket	closed

Listening	at	('0.0.0.0',	1060)

Binding	to	Interfaces(TCP)



The	term	“deadlock”	is	used	for	all	sorts	of	situations	in	computer	science	where	two	programs,	sharing	limited	resources,
can	wind	up	waiting	on	each	other	forever	because	of	poor	planning.	It	turns	out	that	it	can	happen	fairly	easily	when	using
TCP.

Take	a	look	at	tcp_deadlock.py		for	an	example	of	a	server	and	client	that	try	to	be	a	bit	too	clever	without	thinking	through
the	consequences.	Here,	the	server	author	has	done	something	that	is	actually	quite	intelligent.	His	job	is	to	turn	an
arbitrary	amount	of	text	into	uppercase.	Recognizing	that	its	client’s	requests	can	be	arbitrarily	large,	and	that	one	could	run
out	of	memory	trying	to	read	an	entire	stream	of	input	before	trying	to	process	it,	the	server	reads	and	processes	small
blocks	of	1,024	bytes	at	a	time.

import	socket,	sys

s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

HOST	=	'127.0.0.1'

PORT	=	1060

if	sys.argv[1:]	==	['server']:

				s.setsockopt(socket.SOL_SOCKET,	socket.SO_REUSEADDR,	1)

				s.bind((HOST,	PORT))

				s.listen(1)

				while	True:

								print	'Listening	at',	s.getsockname()

								sc,	sockname	=	s.accept()

								print	'Processing	up	to	1024	bytes	at	a	time	from',	sockname

								n	=	0

								while	True:

												message	=	sc.recv(1024)

												if	not	message:

																break

												sc.sendall(message.upper())		#	send	it	back	uppercase

												n	+=	len(message)

												print	'\r%d	bytes	processed	so	far'	%	(n,),

												sys.stdout.flush()

								print

								sc.close()

								print	'Completed	processing'

elif	len(sys.argv)	==	3	and	sys.argv[1]	==	'client'	and	sys.argv[2].isdigit():

				bytes	=	(int(sys.argv[2])	+	15)	//	16	*	16		#	round	up	to	//	16

				message	=	'capitalize	this!'		#	16-byte	message	to	repeat	over	and	over

				print	'Sending',	bytes,	'bytes	of	data,	in	chunks	of	16	bytes'

				s.connect((HOST,	PORT))

				sent	=	0

				while	sent	<	bytes:

								s.sendall(message)

								sent	+=	len(message)

								print	'\r%d	bytes	sent'	%	(sent,),

								sys.stdout.flush()

				print

				s.shutdown(socket.SHUT_WR)

				print	'Receiving	all	the	data	the	server	sends	back'

				received	=	0

				while	True:

								data	=	s.recv(42)

								if	not	received:

												print	'The	first	data	received	says',	repr(data)

								received	+=	len(data)

								if	not	data:

												break

								print	'\r%d	bytes	received'	%	(received,),

				s.close()

else:

Deadlock



				print	>>sys.stderr,	'usage:	tcp_deadlock.py	server	|	client	<bytes>'

If	you	start	the	server	and	then	run	the	client	with	a	command-line	argument	specifying	a	modest	number	of	bytes—	say,
asking	it	to	send	32	bytes	of	data	(for	simplicity,	it	will	round	whatever	value	you	supply	up	to	a	multiple	of	16	bytes)—then	it
will	get	its	text	back	in	all	uppercase:

root@erlerobot:~/Python_files#		python	tcp_deadlock.py	server

Listening	at	('127.0.0.1',	1060)

root@erlerobot:~/Python_files#	python	tcp_deadlock.py	client	32

Sending	32	bytes	of	data,	in	chunks	of	16	bytes

32	bytes	sent

Receiving	all	the	data	the	server	sends	back

The	first	data	received	says	'CAPITALIZE	THIS!CAPITALIZE	THIS!'

32	bytes	received

On	the	server	screen	this	is	displayed:

Processing	up	to	1024	bytes	at	a	time	from	('127.0.0.1',	49702)

32	bytes	processed	so	far

Completed	processing

Listening	at	('127.0.0.1',	1060)

Now,try	using	the	client	to	send	a	very	large	stream	of	data,	say,	one	totaling	a	gigabyte:

root@erlerobot:~/Python_files#	python	tcp_deadlock.py	client	1073741824

Sending	1073741824	bytes	of	data,	in	chunks	of	16	bytes

1399600	bytes	sent

In	the	server	window:

Processing	up	to	1024	bytes	at	a	time	from	('127.0.0.1',	49703)

688032	bytes	processed	so	far

You	will	see	both	the	client	and	the	server	furiously	updating	their	terminal	windows	as	they	breathlessly	update	you	with
the	amount	of	data	they	have	transmitted	and	received.	The	numbers	will	climb	and	climb	until,	quite	suddenly,	both
connections	freeze.The	server’s	output	buffer	and	the	client’s	input	buffer	have	both	finally	filled,	and	TCP	has	used	its
window	adjustment	protocol	to	signal	this	fact	and	stop	the	socket	from	sending	more	data	that	would	have	to	be	discarded
and	later	re-sent.



	tcp_deadlock.py		shows	us	how	a	Python	socket	object	behaves	when	an	end-of-file	is	reached.You	will	see	that	the	client
makes	a	shutdown()	call	on	the	socket	after	it	finishes	sending	its	transmission.	This	solves	an	important	problem:	if	the
server	is	going	to	read	forever	until	it	sees	end-offile,	then	how	will	the	client	avoid	having	to	do	a	full	close()	on	the	socket
and	thus	forbid	itself	from	doing	the	many	recv()	calls	that	it	still	needs	to	make	to	receive	the	server’s	response?	The
solution	is	to	“half-close”	the	socket—that	is,	to	permanently	shut	down	communication	in	one	direction	but	without
destroying	the	socket	itself—so	that	the	server	can	no	longer	read	any	data,	but	can	still	send	any	remaining	reply	back	in
the	other	direction,	which	will	still	be	open.	The	shutdown()	call	can	be	used	to	end	either	direction	of	communication	in	a
two-way	socket	like	this;	its	argument	can	be	one	of	three	symbols:

SHUT_WR:	This	is	the	most	common	value	used,	since	in	most	cases	a	program	knows	when	its	own	output	is
finished	but	not	about	when	its	conversation	partner	will	be	done.	This	value	says	that	the	caller	will	be	writing	no	more
data	into	the	socket,	and	that	reads	from	its	other	end	should	act	like	it	is	closed.

SHUT_RD:	This	is	used	to	turn	off	the	incoming	socket	stream,	so	that	an	end-of-file	error	is	encountered	if	your	peer
tries	to	send	any	more	data	to	you	on	the	socket.

SHUT_RDWR:	This	closes	communication	in	both	directions	on	the	socket.	It	might	not,	at	first,	seem	useful,	because
you	can	also	just	perform	a		close()		on	the	socket	and	communication	is	similarly	ended	in	both	directions.	The
difference	is	a	rather	advanced	one:	if	several	programs	on	your	operating	system	are	allowed	to	share	a	single
socket,	then		close()		just	ends	your	process’s	relationship	with	the	socket,	but	keeps	it	open	as	long	as	another
process	is	still	using	it;	but	`shutdown()	will	always	immediately	disable	the	socket	for	everyone	using	it.

Closed	Connections,	Half-Open	Connections



Since	TCP	supports	streams	of	data,	they	might	have	already	reminded	you	of	normal	files,	which	also	support	reading	and
writing	as	fundamental	operations.	Python	does	a	very	good	job	of	keeping	these	concepts	separate:	file	objects	can
	read()		and		write()	,	sockets	can		send()		and	`recv(),	and	no	kind	of	object	can	do	both.	But	sometimes	you	will	want	to
treat	a	socket	like	a	normal	Python	file	object—often	because	you	want	to	pass	it	into	code	like	that	of	the	many	Python
modules	such	as	pickle,	json,	and	zlib	that	can	read	and	write	data	directly	from	a	file.	For	this	purpose,	Python	provides	a
makefile()	method	on	every	socket	that	returns	a	Python	file	object	that	is	really	calling	recv()	and	send()	behind	the
scenes:

>>>	import	socket

>>>	s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

>>>	hasattr(s,	'read')

False

>>>	f	=	s.makefile()

>>>	hasattr(f,	'read')

True

Sockets,	like	normal	Python	files,	also	have	a		fileno()		method	that	lets	you	discover	their	file	descriptor	number	in	case
you	need	to	supply	it	to	lower-level	calls.

Using	TCP	Streams	like	Files



In	this	chapter,	we	will	discuss	the	topic	of	network	addresses	and	will	describe	the	distributed	service	that	allows	names	to
be	resolved	to	raw	IP	addresses.

Socket	names	and	DNS



The	last	chapter	has	already	introduced	you	to	the	fact	that	sockets	cannot	be	named	with	a	single	primitive	Python	value
like	a	number	or	string.	Instead,	both	TCP	and	UDP	use	integer	port	numbers	to	share	a	single	machine's	IP	address
among	the	many	different	applications	that	might	be	running	there,	and	so	the	address	and	port	number	have	to	be
combined	in	order	to	produce	a	socket	name,	like	this:

('18.9.22.69',	80)

You	will	recall	that	socket	names	are	important	at	several	points	in	the	creation	and	use	of	sockets.	For	your	reference,
here	are	all	of	the	major	socket	methods	that	demand	of	you	some	sort	of	socket	name	as	an	argument:

	mysocket.accept()	:	Each	time	this	is	called	on	a	listening	TCP	stream	socket	that	has	incoming	connections	ready	to
hand	off	to	the	application,	it	returns	a	tuple(ordered	set	of	values)	whose	second	item	is	the	remote	address	that	has
connected	(the	first	item	in	the	tuple	is	the	net	socket	connected	to	that	remote	address).

	mysocket.bind(address)	:	Assigns	the	socket	the	local	address	so	that	outgoing	packets	have	an	address	from	which	to
originate,	and	so	that	any	incoming	connections	from	other	machines	have	a	name	that	they	can	use	to	connect.

	mysocket.connect(address)	:	Establishes	that	data	sent	through	this	socket	will	be	directed	to	the	given	remote	address.
For	UDP	sockets,	this	simply	sets	the	default	address	used	if	the	caller	uses		send()		rather	than		sendto()	;	for	TCP
sockets,	this	actually	negotiates	a	new	stream	with	another	machine	using	a	three-way	handshake,	and	raises	an
exception	if	the	negotiation	fails.

	mysocket.getpeername()	:	Returns	the	remote	address	to	which	this	socket	is	connected.

	mysocket.getsockname()	:	Returns	the	address	of	this	socket's	own	local	endpoint.

	mysocket.recvfrom(...)	:	For	UDP	sockets,	this	returns	a	tuple	that	pairs	a	string	of	returned	data	with	the	address	from
which	it	was	just	sent.

	mysocket.sendto(data,	address)	:	An	unconnected	UDP	port	uses	this	method	to	fire	off	a	data	packet	at	a	particular
remote	address.

In	general,	any	of	the	foregoing	methods	can	receive	or	return	any	of	the	sorts	of	addresses	that	follow,	meaning	that	they
will	work	regardless	of	whether	you	are	using	IPv4,	IPv6	or	others.

Socket	names



If	you	review	previous	code,	you	will	notice	that	we	have	use:

import	socket

s	=	socket.socket(socket.AF_INET,	socket.SOCK_DGRAM)

s.bind(('localhost',	1060))

We	paid	particular	attention	to	the	hostnames	and	IP	addresses	that	their	sockets	used.	But	if	you	read	each	program
listing	from	the	beginning,	you	will	see	that	these	are	only	the	last	two	coordinates	of	five	major	decisions	that	were	made
during	the	construction	and	deployment	of	each	socket	object.	In	order,	here	is	the	full	list	of	values	that	had	to	be	chosen,
and	you	will	see	that	there	are	five	in	all:

First,	the	address	family	makes	the	biggest	decision:	it	names	what	kind	of	network	you	want	to	talk	to,	out	of	the	many
kinds	that	a	particular	machine	might	support.We	will	always	use	the	value	AF_INET.

Next	after	the	address	family	comes	the	socket	type.	It	chooses	the	particular	kind	of	communication	technique	that
you	want	to	use	on	the	network	you	have	chosen.	the	socket	interface	designers	decided	to	create	more	generic
names	for	the	broad	idea	of	a	packet-based	socket,	which	goes	by	the	name	SOCK_DGRAM,	and	the	broad	idea	of	a
reliable	flowcontrolled	data	stream,	which	as	we	have	seen	is	known	as	a	SOCK_STREAM.

The	third	field	in	the		socket()		call,	the	protocol,	is	rarely	used	because	once	you	have	specified	the	address	family
and	socket	type,	you	have	narrowed	down	the	possible	protocols	to	one	major	option.

The	fourth	and	fifth	fields	are,	then,	the	IP	address	and	UDP	or	TCP	port	number	that	were	explained	in	detail	in	the
last	chapters.

Five	socket	cordinates



And	having	explained	all	of	that,	it	turns	out	that	this	book	actually	does	need	to	introduce	one	additional	address	family,
beyond	the	AF_INET	we	have	used	so	far:	the	address	family	for	IPv6,	named	AF_INET6,	which	is	the	way	forward	into	a
future	where	the	world	does	not,	in	fact,	run	out	of	IP	addresses.

In	Python	you	can	test	directly	for	whether	the	underlying	platform	supports	IPv6	by	checking	the		has_ipv6		Boolean
attribute	inside	the	socket	module:

>>>	import	socket

>>>	socket.has_ipv6

True

But	note	that	this	does	not	tell	you	whether	an	actual	IPv6	interface	is	up	and	configured	and	can	currently	be	used	to	send
packets	anywhere;	it	is	purely	an	assertion	about	whether	IPv6	support	has	been	compiled	into	the	operating	system,	not
about	whether	it	is	in	use.

The	differences	that	IPv6	will	make	for	your	Python	code	might	sound	quite	daunting,	if	listed	one	right	after	the	other:

Your	sockets	have	to	be	prepared	to	have	the	family	AF_INET6	if	you	are	called	upon	to	operate	on	an	IPv6	network.

No	longer	do	socket	names	consist	of	just	two	pieces,	an	address	and	a	port	number;	instead,	they	can	also	involve
additional	coordinates	that	provide	“flow”	information	and	a	“scope”	identifier.

The	pretty	IPv4	octets	like	18.9.22.69	that	you	might	already	be	reading	from	configuration	files	or	from	your
command-line	arguments	will	now	sometimes	be	replaced	by	IPv6	host	addresses	instead,	which	you	might	not	even
have	good	regular	expressions	for	yet.	They	have	lots	of	colons,	they	can	involve	hexadecimal	numbers,	and	in
general	they	look	quite	ugly.

IPv6



To	make	your	code	simple,	powerful,	and	immune	from	the	complexities	of	the	transition	from	IPv4	to	IPv6,	you	should	turn
your	attention	to	one	of	the	most	powerful	tools	in	the	Python	socket	user's	arsenal:		getaddrinfo()	.	The		getaddrinfo()	
function	sits	in	the	socket	module	along	with	most	other	operations	that	involve	addresses	(rather	than	being	a	socket
method).	Unless	you	are	doing	something	specialized,	it	is	probably	the	only	routine	that	you	will	ever	need	to	transform	the
hostnames	and	port	numbers	that	your	users	specify	into	addresses	that	can	be	used	by	socket	methods.	Its	approach	is
simple:	rather	than	making	you	attack	the	addressing	problem	piecemeal,	which	is	necessary	when	using	the	older	routines
in	the	socket	module,	it	lets	you	specify	everything	you	know	about	the	connection	that	you	need	to	make	in	a	single	call.	In
response,	it	returns	all	of	the	coordinates	we	discussed	earlier	that	are	necessary	for	you	to	create	and	connect	a	socket	to
the	named	destination.

If	we	visit	Python	Official	Documentation	we	find	this	some	interesting	eplanations.	First	the	syntaxis	is	the	following:

socket.getaddrinfo(host,	port[,	family[,	socktype[,	proto[,	flags]]]])

So	what		getaddrinfo()	does	is;	translate	the	host/port	argument	into	a	sequence	of	5-tuples	that	contain	all	the	necessary
arguments	for	creating	a	socket	connected	to	that	service.	host	is	a	domain	name,	a	string	representation	of	an	IPv4/v6
address	or	None.	port	is	a	string	service	name	such	as	'http',	a	numeric	port	number	or	None.	By	passing	None	as	the
value	of	host	and	port,	you	can	pass	NULL	to	the	underlying	C	API.

The	function	returns	a	list	of	5-tuples	with	the	following	structure:

(family,	socktype,	proto,	canonname,	sockaddr)

In	these	tuples,	family,	socktype,	proto	are	all	integers	and	are	meant	to	be	passed	to	the		socket()		function.	"canonname"
will	be	a	string	representing	the	canonical	name	of	the	host	if	AI_CANONNAME	is	part	of	the	flags	argument;	else
canonname	will	be	empty.	"sockaddr"	is	a	tuple	describing	a	socket	address,	whose	format	depends	on	the	returned	family
(a	(address,	port)	2-tuple	for	AF_INET,	a	(address,	port,	flow	info,	scope	id)	4-tuple	for	AF_INET6),	and	is	meant	to	be
passed	to	the	socket.connect()	method.

Here	you	find	a	exapmle	of	use:

>>>	import	socket

>>>	from	pprint	import	pprint

>>>	infolist	=	socket.getaddrinfo('gatech.edu',	'www')

>>>	pprint(infolist)

[(2,	2,	17,	'',	('130.207.160.173',	80)),

	(2,	1,	6,	'',	('130.207.160.173',	80))]

>>>

>>>	ftpca	=	infolist[0]

>>>	ftpca[0:3]

(2,	2,	17)

>>>	s	=	socket.socket(*ftpca[0:3])

>>>	ftpca[4]

('130.207.160.173',	80)

>>>	s.connect(ftpca[4])

>>>

	ftpca		here	is	an	acronym	for	the	order	of	the	variables	that	are	returned:	“family,	type,	protocol,	canonical	name,	and
address,”	which	contain	everything	you	need	to	make	a	connection.	Here,	we	have	asked	about	the	possible	methods	for
connecting	to	the	HTTP	port	of	the	host	gatech.edu,	and	have	been	told	that	there	are	two	ways	to	do	it:	by	creating	a
	SOCK_STREAM		socket	(socket	type	1)	that	uses		IPPROTO_TCP		(protocol	number	6)	or	else	by	using	a		SOCK_DGRAM		(socket	type
2)	socket	with	`IPPROTO_UDP	(which	is	the	protocol	represented	by	the	integer17).

As	you	can	see	from	the	foregoing	code	snippet,		getaddrinfo()		generally	allows	not	only	the	hostname	but	also	the	port
name	to	be	a	symbol	rather	than	an	integer.

The	getaddrinfo()	function

https://docs.python.org/2/library/socket.html


Before	tackling	all	of	the	options	that	getaddrinfo()	supports,	it	will	be	more	useful	to	see	how	it	is	used	to	support	three
basic	network	operations.	We	will	tackle	them	in	the	order	that	you	might	perform	operations	on	a	socket:	binding,
connecting,	and	then	identifying	a	remote	host	who	has	sent	you	information.

>>>	import	socket

>>>	from	socket	import	getaddrinfo

>>>	getaddrinfo(None,	'smtp',	0,	socket.SOCK_STREAM,	0,	socket.AI_PASSIVE)

[(2,	1,	6,	'',	('0.0.0.0',	25)),	(30,	1,	6,	'',	('::',	25,	0,	0))]

>>>	getaddrinfo(None,	53,	0,	socket.SOCK_DGRAM,	0,	socket.AI_PASSIVE)

[(2,	2,	17,	'',	('0.0.0.0',	53)),	(30,	2,	17,	'',	('::',	53,	0,	0))]

>>>

Here	we	asked	about	where	we	should		bind()		a	socket	if	we	want	to	serve	SMTP	traffic	using	TCP,	and	if	we	want	to
serve	DNS	traffic	using	DCP,	respectively.	The	answers	we	got	back	in	each	case	are	the	appropriate	wildcard	addresses
that	will	let	us	bind	to	every	IPv4	and	every	IPv6	interface	on	the	local	machine	with	all	of	the	right	values	for	the	socket
family,	socket	type,	and	protocol	in	each	case.	If	you	instead	want	to		bind()		to	a	particular	IP	address	that	you	know	that
the	local	machine	holds,	then	omit	the	AI_PASSIVE	flag	and	just	specify	the	hostname.	For	example,	here	are	two	ways
that	you	might	try	binding	to	localhost:

>>>	getaddrinfo('127.0.0.1',	'smtp',	0,	socket.SOCK_STREAM,	0)

[(2,	1,	6,	'',	('127.0.0.1',	25))]

>>>	getaddrinfo('localhost',	'smtp',	0,	socket.SOCK_STREAM,	0)

[(30,	1,	6,	'',	('::1',	25,	0,	0)),	(2,	1,	6,	'',	('127.0.0.1',	25)),	(30,	1,	6,	'',	('fe80::1%lo0',	25,	0,	1))]

>>>

You	can	see	that	supplying	the	IPv4	address	for	the	localhost	locks	you	down	to	receiving	connections	only	over	IPv4,	while
using	the	symbolic	name	localhost	(at	least	on	a	Linux	laptop,	with	a	well-configured	/etc/hosts	file)	makes	available	both
the	IPv4	and	IPv6	local	names	for	the	machine.

Asking	getaddrinfo()	Where	to	Bind



The	majority	uses	of		getaddrinfo()		are	outward-looking,	and	generate	information	suitable	for	connecting	you	to	other
applications.	In	all	such	cases,	you	can	either	use	an	empty	string	to	indicate	that	you	want	to	connect	back	to	the	localhost
using	the	loopback	interface,	or	provide	a	string	giving	an	IPv4	address,	IPv6	address,	or	hostname	to	name	your
destination.	The	usual	use	of		getaddrinfo()		in	all	other	cases—which,	basically,	is	when	you	are	preparing	to		connect()	
or		̀ sendto()	—is	to	specify	the	AI_ADDRCONFIG	flag,	which	filters	out	any	addresses	that	are	impossible	for	your
computer	to	reach.	For	example,	an	organization	might	have	both	an	IPv4	and	an	IPv6	range	of	IP	addresses;	but	if	your
particular	host	supports	only	IPv4,	then	you	will	want	the	results	filtered	to	include	only	addresses	in	that	family.	In	case	the
local	machine	has	only	an	IPv6	network	interface	but	the	service	you	are	connecting	to	is	supporting	only	IPv4,	the
AI_V4MAPPED	will	return	you	those	IPv4	addresses	re-encoded	as	IPv6	addresses	that	you	can	actually	use.	So	you	will
usually	use		getaddrinfo()		this	way	when	connecting:

>>>	import	socket

>>>	from	socket	import	getaddrinfo

>>>	getaddrinfo('ftp.kernel.org',	'ftp',	0,	socket.SOCK_STREAM,	0,	socket.AI_ADDRCONFIG	|	socket.AI_V4MAPPED)

[(2,	1,	6,	'',	('199.204.44.194',	21)),	(2,	1,	6,	'',	('198.145.20.140',	21)),	(2,	1,	6,	'',	('149.20.4.69',	21))]

>>>

And	we	have	gotten	exactly	what	we	wanted:	every	way	to	connect	to	a	host	named	ftp.kernel.org	through	a	TCP
connection	to	its	FTP	port.

Here	is	another	query,	which	describes	how	I	can	connect	from	my	laptop	to	the	HTTP	interface	of	the	IANA	that	assigns
port	numbers	in	the	first	place:

>>>	getaddrinfo('iana.org',	'www',	0,	socket.SOCK_STREAM,	0,socket.AI_ADDRCONFIG	|	socket.AI_V4MAPPED)

[(2,	1,	6,	'',	('192.0.43.8',	80))]

>>>

If	we	take	away	our	carefully	chosen	flags	in	the	sixth	parameter,	then	we	will	also	be	able	to	see	their	IPv6	address:

>>>	getaddrinfo('iana.org',	'www',	0,	socket.SOCK_STREAM,	0)

[(2,	1,	6,	'',	('192.0.43.8',	80)),	(30,	1,	6,	'',	('2001:500:88:200::8',	80,	0,	0))]

>>>

Asking	getaddrinfo()	About	Services



One	last	circumstance	that	you	will	commonly	encounter	is	where	you	either	are	making	a	new	connection,	or	maybe	have
just	received	a	connection	to	one	of	your	own	sockets,	and	you	want	an	attractive	hostname	to	display	to	the	user	or	record
in	a	log	file.	This	is	slightly	dangerous	because	a	hostname	lookup	can	take	quite	a	bit	of	time,	even	on	the	modern
Internet,	and	might	return	a	hostname	that	no	longer	works	by	the	time	you	go	and	check	your	logs—so	for	log	files,	try	to
record	both	the	hostname	and	raw	IP	address.	But	if	you	have	a	good	use	for	the	“canonical	name”	of	a	host,	then	try
running		getaddrinfo()		with	the	AI_CANONNAME	flag	turned	on,	and	the	fourth	item	of	any	of	the	tuples	that	it	returns—
that	were	always	empty	strings	in	the	foregoing	examples,	you	will	note—will	contain	the	canonical	name:

>>>	import	socket

>>>	from	socket	import	getaddrinfo

>>>	getaddrinfo('iana.org',	'www',	0,	socket.SOCK_STREAM,	0,socket.AI_ADDRCONFIG	|	socket.AI_V4MAPPED	|	socket.AI_CANONNAME)

[(2,	1,	6,	'iana.org',	('192.0.43.8',	80))]

>>>

Asking	getaddrinfo()	for	Pretty	Hostnames



The	flags	available	vary	somewhat	by	operating	system,	and	you	should	always	consult	your	own	computer's
documentation	(not	to	mention	its	configuration)	if	you	are	confused	about	a	value	that	it	chooses	to	return.	But	there	are
several	flags	that	tend	to	be	cross-platform;	here	are	some	of	the	more	important	ones:

AI_ALL:	W	AI_V4MAPPED	option	will	save	you	in	the	situation	where	you	are	on	a	purely	IPv6-connected	host,	but	the
host	to	which	you	want	to	connect	advertises	only	IPv4	addresses:	it	resolves	this	problem	by	“mapping”	the	IPv4
addresses	to	their	IPv6	equivalent.	But	if	some	IPv6	addresses	do	happen	to	be	available,	then	they	will	be	the	only
ones	shown.	Thus	the	existence	of	this	option:	if	you	want	to	see	all	of	the	addresses	from	your	IPv6-	connected	host,
even	though	some	perfectly	good	IPv6	addresses	are	available,	then	combine	this	AI_ALL	flag	with	AI_V4MAPPED
and	the	list	returned	to	you	will	have	every	address	known	for	the	target	host.

AI_NUMERICHOST:	This	turns	off	any	attempt	to	interpret	the	hostname	parameter	(the	first	parameter	to
`getaddrinfo())	as	a	textual	hostname	like	cern.ch,	and	only	tries	to	interpret	the	hostname	string	as	a	literal	IPv4	or
IPv6	hostname	like	74.207.234.78	or	fe80::fcfd:4aff:fecf:ea4e.	This	is	much	faster,	as	no	DNS	round-trip	is	incurred
(see	the	next	section),	and	prevents	possibly	untrusted	user	input	from	forcing	your	system	to	issue	a	query	to	a
nameserver	under	someone	else's	control.

AI_NUMERICSERV:	This	turns	off	symbolic	port	names	like	www	and	insists	that	port	numbers	like	80	be	used
instead.	This	does	not	necessarily	have	the	networkquery	implications	of	the	previous	option,	since	port-number
databases	are	typically	stored	locally	on	IP-connected	machines;	on	POSIX	systems,	resolving	a	symbolic	port	name
typically	requires	only	a	quick	scan	of	the	/etc/services	file	(but	check	your	/etc/nsswitch.conf	file's	services	option	to	be
sure).	But	if	you	know	your	port	string	should	always	be	an	integer,	then	activating	this	flag	can	be	a	useful	sanity
check.

Other	getaddrinfo()	Flags



Here	you	have	a	quick	example	of	how		getaddrinfo()		looks	in	actual	code	in		www_ping.py	.

import	socket,	sys

if	len(sys.argv)	!=	2:

				print	>>sys.stderr,	'usage:	www_ping.py	<hostname_or_ip>'

				sys.exit(2)

hostname_or_ip	=	sys.argv[1]

try:

				infolist	=	socket.getaddrinfo(

								hostname_or_ip,	'www',	0,	socket.SOCK_STREAM,	0,

								socket.AI_ADDRCONFIG	|	socket.AI_V4MAPPED	|	socket.AI_CANONNAME,

								)

except	socket.gaierror,	e:

				print	'Name	service	failure:',	e.args[1]

				sys.exit(1)

info	=	infolist[0]		#	per	standard	recommendation,	try	the	first	one

socket_args	=	info[0:3]

address	=	info[4]

s	=	socket.socket(*socket_args)

try:

				s.connect(address)

except	socket.error,	e:

				print	'Network	failure:',	e.args[1]

else:

				print	'Success:	host',	info[3],	'is	listening	on	port	80'

It	performs	a	simple	are-you-there	test	of	whatever	web	server	you	name	on	the	command	line	by

attempting	a	quick	connection	to	port	80	with	a	streaming	socket.	Using	the	script	would	look	something	like	this:

root@erlerobot:~/Python_files#

root@erlerobot:~/Python_files#	python	www_ping.py	mit.edu

Success:	host	mit.edu	is	listening	on	port	80

root@erlerobot:~/Python_files#	python	www_ping.py	smtp.google.com

Name	service	failure:	nodename	nor	servname	provided,	or	not	known

root@erlerobot:~/Python_files#	www_ping.py	no-such-host.com

Name	service	failure:	nodename	nor	servname	provided,	or	not	known

root@erlerobot:~/Python_files#

Note	that	the		socket()	constructor	does	not	take	a	list	of	three	items	as	its	parameter.	Instead,	the	parameter	list	is
introduced	by	an	asterisk,	which	means	that	the	three	elements	of	the	socket_args	list	are	passed	as	three	separate
parameters	to	the	constructor.

getaddrinfo()	in	your	own	code



The	DNS	Protocol	purpose	is	to	turn	hostnames	into	IP	addresses.

For	example,	consider	the	domain	name	www.python.org.	If	your	web	browser	needs	to	know	this	address,	then	the
browser	runs	a	call	like		getaddrinfo()		to	ask	the	operating	system	to	resolve	that	name.	Your	system	will	know	either	that
it	is	running	a	nameserver	of	its	own,	or	that	the	network	to	which	it	is	attached	provides	name	service.So,	the	first	act	of
your	DNS	server	will	be	to	check	its	own	cache	of	recently	queried	domain	names	to	see	if	www.python.org	has	already
been	checked	by	some	other	machine	served	by	the	DNS	server	in	the	last	few	minutes	or	hours.	If	an	entry	is	present	and
has	not	yet	expired—and	the	owner	of	each	domain	name	gets	to	choose	its	expiration	timeout,	because	some
organizations	like	to	change	IP	addresses	quickly	if	they	need	to,	while	others	are	happy	to	have	old	IP	addresses	linger	for
hours	or	days	in	the	world's	DNS	caches—then	it	can	be	returned	immediately.	But	let	us	imagine	that	it	is	morning	and	that
you	are	the	first	person	in	your	office	or	in	the	coffee	shop	to	try	talking	to	www.python.org	today,	and	so	the	DNS	server
has	to	go	find	the	hostname	from	scratch.	Your	DNS	server	will	now	begin	a	recursive	process	of	asking	about
www.python.org	at	the	very	top	of	the	world's	DNS	server	hierarchy:	the	“root-level”	nameservers	that	know	all	of	the	top-
level	domains	(TLDs)	like	.com,	.org,	.net,	and	all	of	the	country	domains,	and	know	the	groups	of	servers	that	are
responsible	for	each.	Nameserver	software	generally	comes	with	the	IP	addresses	of	these	top-level	servers	built	in,	to
solve	the	bootstrapping	problem	of	how	you	find	any	domain	nameservers	before	you	are	actually	connected	to	the	domain
name	system.With	this	first	UDP	round-trip,	your	DNS	server	will	learn	(if	it	did	not	know	already	from	another	recent	query)
which	servers	keep	the	full	index	of	.org	domain.

Now	a	second	DNS	request	will	be	made,	this	time	to	one	of	the	.org	servers,	asking	who	on	earth	runs	the	python.org
domain.	You	can	find	out	what	those	top-level	servers	know	about	a	domain	by	running	the	whois	command-line	program
on	a	POSIX	system,	or	use	one	of	the	many	“whois”	web	pages	online,	typing:

whois	python.org

Wherever	you	are	in	the	world,	your	DNS	request	for	any	hostname	within	python.org	must	be	passed	on	to	one	of	the	two
DNS	servers	named	in	that	entry.

There	are	some	reasond	to	not	use	DNS,	and	use		getaddrinfo()		or	some	other	system-supported	mechanism	for
resolving	hostnames.

The	DNS	is	often	not	the	only	way	that	a	system	gets	name	information.

If	your	application	runs	off	and	tries	to	use	DNS	on	its	own	as	its	first	choice	for	resolving	a	domain	name,	then	users
will	notice	that	some	computer	names	that	work	everywhere	else	on	your	system—in	their	browser,	in	file	share
names,	and	so	forth—suddenly	do	not	work	when	they	use	your	application,	because	you	are	not	deferring	to
mechanisms	like	WINS	or	/etc/hosts	like	the	operating	system	itself	does.

The	local	machine	probably	has	a	cache	of	recently	queried	domain	names	that	might	already	know	about	the	host
whose	IP	address	you	need.	If	you	try	speaking	DNS	yourself	to	answer	your	query,	you	will	be	duplicating	work	that
has	already	been	done.

The	system	on	which	your	Python	script	is	running	already	knows	about	the	local	domain	nameservers,	thanks	either
to	manual	intervention	by	your	system	administrator	or	a	network	configuration	protocol	like	DHCP	in	your	office,
home,	or	coffee	shop.	To	crank	up	DNS	right	inside	your	Python	program,	you	will	have	to	learn	how	to	query	your
particular	operating	system	for	this	information—an	operating-system-specific	action	that	we	will	not	be	covering	in	this
book.

If	you	do	not	use	the	local	DNS	server,	then	you	will	not	be	able	to	benefit	from	its	own	cache	that	would	prevent	your
application	and	other	applications	running	on	the	same	network	from	repeating	requests	about	a	hostname	that	is	in
frequent	use	at	your	location.

A	Sketch	of	How	DNS	Works



From	time	to	time,	adjustments	are	made	to	the	world	DNS	infrastructure,	and	operating	system	libraries	and	daemons
are	gradually	updated	to	accommodate	this.	If	your	program	makes	raw	DNS	calls	of	its	own,	then	you	will	have	to
follow	these	changes	yourself	and	make	sure	that	your	code	stays	up-to-date	with	the	latest	changes	in	TLD	server	IP
addresses,	conventions	involving	internationalization,	and	tweaks	to	the	DNS	protocol	itself.

There	is,	however,	a	solid	and	legitimate	reason	to	make	a	DNS	call	from	Python:	because	you	are	a	mail	server,	or	at	the
very	least	a	client	trying	to	send	mail	directly	to	your	recipients	without	needing	to	run	a	local	mail	relay,	and	you	want	to
look	up	the	MX	records	associated	with	a	domain	so	that	you	can	find	the	correct	mail	server	for	your	friends	at
@example.com.



PyDNS	provides	a	module	for	performing	DNS	queries	from	python	applications.You	can	install	it	by:

	pip	install	pydns

Your	Python	interpreter	will	then	gain	the	ability	to	run	our	first	DNS	program	listing,	shown	in		dns_basic.py	.

import	sys,	DNS

if	len(sys.argv)	!=	2:

				print	>>sys.stderr,	'usage:	dns_basic.py	<hostname>'

				sys.exit(2)

DNS.DiscoverNameServers()

request	=	DNS.Request()

for	qt	in	DNS.Type.A,	DNS.Type.AAAA,	DNS.Type.CNAME,	DNS.Type.MX,	DNS.Type.NS:

				reply	=	request.req(name=sys.argv[1],	qtype=qt)

				for	answer	in	reply.answers:

								print	answer['name'],	answer['classstr'],	answer['typename'],	\

												repr(answer['data'])

Running	this	programm	will	resulto	on:

root@erlerobot:~/Python_files#	dns_basic.py	python.org

python.org	IN	A	'82.94.164.162'

python.org	IN	AAAA	'	\x01\x08\x88	\x00\x00\r\x00\x00\x00\x00\x00\x00\x00\xa2'

python.org	IN	MX	(50,	'mail.python.org')

python.org	IN	NS	'ns2.xs4all.nl'

python.org	IN	NS	'ns.xs4all.nl'

The	keys	that	get	printed	on	each	line	are	as	follows:

The	name	that	we	looked	up.

The	“class,”	which	in	all	queries	you	are	likely	to	see	is	IN,	meaning	it	is	a	question	about	Internet	addresses.

The	“type”	of	record;	some	common	ones	are	A	for	an	IPv4	address,	AAAA	for	an	IPv6	address,	NS	for	a	record	that
lists	a	nameserver,	and	MX	for	a	statement	about	what	mail	server	should	be	used	for	a	domain.

Finally,	the	“data”	provides	the	information	for	which	the	record	type	was	essentially	a	promise:	the	address,	or	data,	or
hostname	associated	with	the	name	that	we	asked	about.

Using	DNS



What	data	should	we	send?	How	should	it	be	encoded	and	formatted?	For	what	kinds	of	errors	will	our	Python	programs
need	to	be	prepared?	We	will	look	at	the	basic	answers	in	this	chapter,	and	learn	how	to	use	sockets	responsibly	so	that
our	data	arrives	intact.

Network	Data	and	Network	Errors



The	use	of	ASCII	for	the	basic	English	letters	and	numbers	is	nearly	universal	among	network	protocols	these	days.	But
when	you	begin	to	use	more	interesting	characters,	you	have	to	be	careful.	In	Python	you	should	always	represent	a
meaningful	string	of	text	with	a	“Unicode	string”	that	is	denoted	with	a	leading	u,	like	this:

>>>	elvish	=	u'Namárië!'

But	you	cannot	put	such	strings	directly	on	a	network	connection	without	specifying	which	rival	system	of	encoding	you
want	to	use	to	mix	your	characters	down	to	bytes.	A	very	popular	system	is	UTF-	8,	because	normal	characters	are
represented	by	the	same	codes	as	in	ASCII,	and	longer	sequences	of	bytes	are	necessary	only	for	international
characters.Other	encodings	are	available	in	Python;	the	Standard	Library	documentation	for	the	codecs	package	lists	them
all.	They	each	represent	a	full	system	for	reducing	symbols	to	bytes.	Here	are	a	few	examples:

>>>	elvish.encode('idna')

'xn--namri!-rta6f'

>>>	elvish.encode('cp500')

'\xd5\x81\x94E\x99\x89SO'

>>>	elvish.encode('utf_8_sig')

'\xef\xbb\xbfNam\xc3\xa1ri\xc3\xab!'

On	the	receiving	end	of	such	a	string,	simply	take	the	byte	string	and	call	its	decode()	method	with	the	name	of	the	codec
that	was	used	to	encode	it:

>>>	'xn--namri!-rta6f'.decode('idna')

u'nam\xe1ri\xeb!'

>>>	'\xd5\x81\x94E\x99\x89SO'.decode('cp500')

u'Nam\xe1ri\xeb!'

>>>	'\xef\xbb\xbfNam\xc3\xa1ri\xc3\xab!'.decode('utf_8_sig')

u'Nam\xe1ri\xeb!'

Text	and	Encodings

https://docs.python.org/2/library/codecs.html


To	understand	the	issue	of	byte	order,	consider	the	process	of	sending	an	integer	over	the	network.	To	be	specific,	think
about	the	integer	4253.

Many	protocols,	of	course,	will	simply	transmit	this	integer	as	the	string	'4253'—that	is,	as	four	distinct	characters.	The	four
digits	will	require	at	least	four	bytes	to	transmit,	at	least	in	any	common	text	encoding.	And	using	decimal	digits	will	also
involve	some	computational	expense:	since	numbers	are	not	stored	inside	computers	in	base	10,	it	will	take	repeated
division—with	inspection	of	the	remainder—to	determine	that	this	number	is	in	fact	made	of	4	thousands,	plus	2	hundreds,
plus	5	tens,	plus	3	left	over.	And	when	the	four-digit	string	'4253'	is	received,	repeated	addition	and	multiplication	by	powers
of	ten	will	be	necessary	to	put	the	text	back	together	into	a	number.

In	any	case,	the	string	'4253'	is	not	how	your	computer	represents	this	number	as	an	integer	variable	in	Python.	Instead	it
will	store	it	as	a	binary	number,	using	the	bits	of	several	successive	bytes	to	represent	the	one's	place,	two's	place,	four's
place,	and	so	forth	of	a	single	large	number.	We	can	glimpse	the	way	that	the	integer	is	stored	by	using	the	hex()	built-in
function	at	the	Python	prompt:

>>>	hex(4253)

'0x109d'

Each	hex	digit	corresponds	to	four	bits,	so	each	pair	of	hex	digits	represents	a	byte	of	data.	Instead	of	being	stored	as	four
decimal	digits	4,	4,	2,	and	3	with	the	first	4	being	the	“most	significant”	digit	(since	tweaking	its	value	would	throw	the
number	off	by	a	thousand)	and	3	being	its	least	significant	digit,	the	number	is	stored	as	a	most	significant	byte	0x10	and	a
least	significant	byte	0x9d,	adjacent	to	one	another	in	memory.

Here	we	reach	a	great	difference	between	computers.While	they	will	all	agree	that	the	bytes	in	memory	have	an	order,	and
they	will	all	store	a	string	like	Content-Length:	4253	in	exactly	that	order	starting	with	C	and	ending	with	3,	they	do	not
share	a	single	idea	about	the	order	in	which	the	bytes	of	a	binary	number	should	be	stored.	Some	computers	are	“big-
endian”	and	put	the	most	significant	byte	first;	others	are	“little-endian”	and	put	the	least	significant	byte	first.

Python	makes	it	very	easy	to	see	the	difference	between	the	two	endiannesses.	Simply	use	the	struct	module,	which
provides	a	variety	of	operations	for	converting	data	to	and	from	popular	binary	formats.	Here	is	the	number	4253
represented	first	in	a	little-endian	format	and	then	in	a	big-endian	order:

>>>	import	struct

>>>	struct.pack('<i',	4253)

'\x9d\x10\x00\x00'

>>>	struct.pack('>i',	4253)

'\x00\x00\x10\x9

	struct		module	performs	conversions	between	Python	values	and	C	structs	represented	as	Python	strings.You	can	read
more	here.We	here	used	the	code	i,	which	uses	four	bytes	to	store	an	integer,	so	the	two	upper	bytes	are	zero	for	asmall
number	like	4253.It	also	supports	an		unpack()		operation,	which	converts	the	binary	data	back	to	Python	numbers:

>>>	struct.unpack('>i',	'\x00\x00\x10\x9d')

(4253,)

Therefore	the	struct	module	provides	another	symbol,	'!',	which	means	the	same	thing	as	'>'	when	used	in		pack()		and
	unpack()		but	says	to	other	programmers	(and,	of	course,	to	yourself	as	you	read	the	code	later),	“I	am	packing	this	data	so
that	I	can	send	it	over	the	network.”

Network	Byte	Order

https://docs.python.org/2/library/struct.html?highlight=struct#struct


If	you	have	made	the	far	more	common	option	of	using	a	TCP	stream	for	communication,	then	you	will	face	the	issue	of
framing,	that	is,	the	issue	of	how	to	delimit	your	messages	so	that	the	receiver	can	tell	where	one	message	ends	and	the
next	begins.

There	is	a	first	pattern	(streaming)	that	can	be	used	by	extremely	simple	network	protocols	that	involve	only	the	delivery
of	data—no	response	is	expected,	so	there	never	has	to	come	a	time	when	the	receiver	decides	“Enough!”	and	turns
around	to	send	a	response.	In	this	case,	the	sender	can	loop	until	all	of	the	outgoing	data	has	been	passed	to	sendall()	and
then	close()	the	socket.	The	receiver	need	only	call	recv()	repeatedly	until	the	call	finally	returns	an	empty	string,	indicating
that	the	sender	has	finally	closed	the	socket.	You	can	see	this	pattern	in		streamer.py	:

import	socket,	sys

s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

HOST	=	sys.argv.pop()	if	len(sys.argv)	==	3	else	'127.0.0.1'

PORT	=	1060

if	sys.argv[1:]	==	['server']:

				s.setsockopt(socket.SOL_SOCKET,	socket.SO_REUSEADDR,	1)

				s.bind((HOST,	PORT))

				s.listen(1)

				print	'Listening	at',	s.getsockname()

				sc,	sockname	=	s.accept()

				print	'Accepted	connection	from',	sockname

				sc.shutdown(socket.SHUT_WR)

				message	=	''

				while	True:

								more	=	sc.recv(8192)		#	arbitrary	value	of	8k

								if	not	more:		#	socket	has	closed	when	recv()	returns	''

												break

								message	+=	more

				print	'Done	receiving	the	message;	it	says:'

				print	message

				sc.close()

				s.close()

elif	sys.argv[1:]	==	['client']:

				s.connect((HOST,	PORT))

				s.shutdown(socket.SHUT_RD)

				s.sendall('Beautiful	is	better	than	ugly.\n')

				s.sendall('Explicit	is	better	than	implicit.\n')

				s.sendall('Simple	is	better	than	complex.\n')

				s.close()

else:

				print	>>sys.stderr,	'usage:	streamer.py	server|client	[host]'

If	you	run	this	script	as	a	server	and	then,	at	another	command	prompt,	run	the	client	version,	you

will	see	that	all	of	the	client's	data	makes	it	intact	to	the	server,	with	the	end-of-file	event	generated	by	the	client	closing	the
socket	serving	as	the	only	framing	that	is	necessary:

root@erlerobot:~/Python_files#		python	streamer.py	server

Listening	at	('127.0.0.1',	1060)

Accepted	connection	from	('127.0.0.1',	49592)

Done	receiving	the	message;	it	says:

Beautiful	is	better	than	ugly.

Explicit	is	better	than	implicit.

Simple	is	better	than	complex.

There	is	a	second	pattern	is	a	variant	on	the	first:	streaming	in	both	directions.	The	socket	is	initially	left	open	in	both
directions.	First,	data	is	streamed	in	one	direction—exactly	and	then	that	direction	alone	is	shut	down.	Second,	data	is	then

Framing	and	Quoting



streamed	in	the	other	direction,	and	the	socket	is	finally	closed.

A	third	pattern,	which	we	have	already	seen,	is	to	use	fixed-length	messages,	as	illustrated	in		tcp_sixteen.py	.	You	can
use	the	Python		sendall()		method	to	keep	sending	parts	of	a	string	until	the	whole	thing	has	been	transmitted,	and	then
use	a		recv()		loop	of	our	own	devising	to	make	sure	that	you	receive	the	whole	message.

A	fourth	pattern	is	to	somehow	delimit	your	messages	with	special	characters.	The	receiver	would	wait	in	a	recv()	loop	like
the	one	just	cited,	but	wait	until	the	reply	string	it	was	accumulating	finally	contained	the	delimiter	indicating	the	end-of-
message.

A	fifth	pattern	is	to	prefix	each	message	with	its	length.	This	is	a	very	popular	choice	for	highperformance	protocols	since
blocks	of	binary	data	can	be	sent	verbatim	without	having	to	be	analyzed,	quoted,	or	interpolated.	Of	course,	the	length
itself	has	to	be	framed	using	one	of	the	techniques	given	previously—often	it	is	simply	a	fixed-width	binary	integer,	or	else	a
variable-length	decimal	string	followed	by	a	delimiter.	But	either	way,	once	the	length	has	been	read	and	decoded,	the
receiver	can	enter	a	loop	and	call		recv()		repeatedly	until	the	whole	message	has	arrived.

There	is	sixth	pattern	for	which	the	unknown	lengths	are	no	problem.	Instead	of	sending	just	one,	try	sending	several
blocks	of	data	that	are	each	prefixed	with	their	length.	This	means	that	as	each	chunk	of	new	information	becomes
available	to	the	sender,	it	can	be	labeled	with	its	length	and	placed	on	the	outgoing	stream.	When	the	end	finally	arrives,
the	sender	can	emit	an	agreed-upon	signal—perhaps	a	length	field	giving	the	number	zero—that	tells	the	receiver	that	the
series	of	blocks	is	complete.

Following(	blocks.py	)	you	can	find	an	example	of	this	sixth	pattern.Like	the	previous	one,	this	sends	data	in	only	one
direction—from	the	client	to	the	server—but	the	data	structure	is	much	more	interesting.	Each	message	is	prefixed	with	a	4-
byte	length;	in	a	struct,	'I'	means	a	32-bit	unsigned	integer,	meaning	that	these	messages	can	be	up	to	4GB	in	length.	A
series	of	three	such	messages	is	sent	to	the	server,	followed	by	a	zero-length	message—which	is	essentially	just	a	length
field	with	zeros	inside	and	then	no	message	data	after	it—to	signal	that	the	series	of	blocks	is	over.

import	socket,	struct,	sys

s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

HOST	=	sys.argv.pop()	if	len(sys.argv)	==	3	else	'127.0.0.1'

PORT	=	1060

format	=	struct.Struct('!I')		#	for	messages	up	to	2**32	-	1	in	length

def	recvall(sock,	length):

				data	=	''

				while	len(data)	<	length:

								more	=	sock.recv(length	-	len(data))

								if	not	more:

												raise	EOFError('socket	closed	%d	bytes	into	a	%d-byte	message'

																											%	(len(data),	length))

								data	+=	more

				return	data

def	get(sock):

				lendata	=	recvall(sock,	format.size)

				(length,)	=	format.unpack(lendata)

				return	recvall(sock,	length)

def	put(sock,	message):

				sock.send(format.pack(len(message))	+	message)

if	sys.argv[1:]	==	['server']:

				s.setsockopt(socket.SOL_SOCKET,	socket.SO_REUSEADDR,	1)

				s.bind((HOST,	PORT))

				s.listen(1)

				print	'Listening	at',	s.getsockname()

				sc,	sockname	=	s.accept()

				print	'Accepted	connection	from',	sockname

				sc.shutdown(socket.SHUT_WR)

				while	True:

								message	=	get(sc)

								if	not	message:

												break

								print	'Message	says:',	repr(message)

				sc.close()

				s.close()



elif	sys.argv[1:]	==	['client']:

				s.connect((HOST,	PORT))

				s.shutdown(socket.SHUT_RD)

				put(s,	'Beautiful	is	better	than	ugly.')

				put(s,	'Explicit	is	better	than	implicit.')

				put(s,	'Simple	is	better	than	complex.')

				put(s,	'')

				s.close()

else:

				print	>>sys.stderr,	'usage:	streamer.py	server|client	[host]'

Running	first	the	server	and	then	the	client	in	different	terminals,	resulto	on:

root@erlerobot:~/Python_files#	python	blocks.py	server

Listening	at	('127.0.0.1',	1060)

Accepted	connection	from	('127.0.0.1',	49692)

Message	says:	'Beautiful	is	better	than	ugly.'

Message	says:	'Explicit	is	better	than	implicit.'

Message	says:	'Simple	is	better	than	complex.'

root@erlerobot:~/Python_files#



Note	that	some	kinds	of	data	that	you	might	send	across	the	network	already	include	some	form	of	delimiting	built-in.	If	you
are	transmitting	such	data,	then	you	might	not	have	to	impose	your	own	framing	atop	what	the	data	is	already	doing.
Consider	Python	“pickles”	for	example,	the	native	form	of	serialization	that	comes	with	the	Standard	Library.	The	pickle
module	implements	a	fundamental,	but	powerful	algorithm	for	serializing	and	de-serializing	a	Python	object	structure.
“Pickling”	is	the	process	whereby	a	Python	object	hierarchy	is	converted	into	a	byte	stream,	and	“unpickling”	is	the	inverse
operation,	whereby	a	byte	stream	is	converted	back	into	an	object	hierarchy.Moreover,	using	a	quirky	mix	of	text	commands
and	data,	a	pickle	stores	the	contents	of	a	Python	data	structure	so	that	you	can	reconstruct	it	later	or	on	a	different
machine:

>>>	import	pickle

>>>	pickle.dumps([5,	6,	7])

'(lp0\nI5\naI6\naI7\na.'

The	interesting	thing	about	the	format	is	the	'.'	character	that	you	see	at	the	end	of	the	foregoing	string—it	is	the	format's
way	of	marking	the	end	of	a	pickle.	Upon	encountering	it,	the	loader	can	stop	and	return	the	value	without	reading	any
further.	Thus	we	can	take	the	foregoing	pickle,	stick	some	ugly	data	on	the	end,	and	see	that		loads()		will	completely
ignore	it	and	give	us	our	original	list	back:

>>>	pickle.loads('(lp0\nI5\naI6\naI7\na.UjJGdVpHRnNaZz09')

[5,	6,	7]

Of	course,	using		loads()		this	way	is	not	useful	for	network	data,	since	it	does	not	tell	us	how	many	bytes	it	processed	in
order	to	reload	the	pickle;	we	still	do	not	know	how	much	of	our	string	is	pickle	data.	But	if	we	switch	to	reading	from	a	file
and	using	the	pickle		load()		function,	then	the	file	pointer	will	be	left	right	at	the	end	of	the	pickle	data,	and	we	can	start
reading	from	there	if	we	want	to	read	what	came	after	the	pickle:

>>>	from	StringIO	import	StringIO

>>>	f	=	StringIO('(lp0\nI5\naI6\naI7\na.UjJGdVpHRnNaZz09')

>>>	pickle.load(f)

[5,	6,	7]

>>>	f.pos

18

>>>	f.read()

'UjJGdVpHRnNaZz09'

Pickles	and	Self-Delimiting	Formats

https://docs.python.org/2/library/pickle.html?highlight=pickles


If	your	protocol	needs	to	be	usable	from	other	programming	languages—or	if	you	simply	prefer	universal	standards	to
formats	specific	to	Python—then	the	JSON	and	XML	data	formats	are	each	a	popular	choice.	Note	that	neither	of	these
formats	supports	framing,	so	you	will	have	to	first	figure	out	how	to	extract	a	complete	string	of	text	from	over	the	network
before	you	can	then	process	it.

JSON	is	among	the	best	choices	available	today	for	sending	data	between	different	computer	languages.	Since	Python	2.6,
it	has	been	included	in	the	Standard	Library	as	a	module	named		json	.	JSON,	short	for	JavaScript	Object	Notation,	is	a
lightweight	format	for	data	exchange.	JSON	is	a	subset	of	the	object	literal	notation	JavaScript	that	does	not	require	the	use
of	XML.	For	ncoding	basic	Python	object	hierarchies:

>>>	#The	syntaxis	is:

...

>>>	import	json

>>>	json.dumps(['foo',	{'bar':	('baz',	None,	1.0,	2)}])

'["foo",	{"bar":	["baz",	null,	1.0,	2]}]'

>>>	#Example:

...

>>>	json.dumps([	51,	u'Namárië!'	])

'[51,	"Nam\\u00e1ri\\u00eb!"]'

For	decoding	it	you	should	use:

>>>	#The	syntaxis	is:

...

>>>	import	json

>>>	json.loads('["foo",	{"bar":["baz",	null,	1.0,	2]}]')

[u'foo',	{u'bar':	[u'baz',	None,	1.0,	2]}]

>>>	#An	example:

...

>>>	json.loads('{"name":	"Lancelot",	"quest":	"Grail"}')

{u'quest':	u'Grail',	u'name':	u'Lancelot'}

Note	that	the	protocol	fully	supports	Unicode	strings.	It	does,	however,	have	a	weakness:	a	vast	omission	in	the	JSON
standard	is	that	it	provides	absolutely	no	provision	for	cleanly	passing	binary	data	like	images	or	arbitrary	documents.The
XML	format	is	better	for	documents,	since	its	basic	structure	is	to	take	strings	and	mark	them	up	by	wrapping	them	in
angle-bracketed	elements.

XML,	JSON,	Etc.

https://docs.python.org/2/library/json.html?highlight=json#json


Since	the	time	necessary	to	transmit	data	over	the	network	is	often	more	significant	than	the	time	your	CPU	spends
preparing	the	data	for	transmission,	it	is	often	worthwhile	to	compress	data	before	sending	it.	The	popular	HTTP	protocol
lets	a	client	and	server	figure	out	whether	they	can	both	support	compression.

An	interesting	fact	about	the	most	ubiquitous	form	of	compression,	the	GNU		zlib		facility	(For	applications	that	require	data
compression,	the	functions	in	this	module	allow	compression	and	decompression,	using	the	zlib	library)	that	is	available
through	the	Python	Standard	Library,	is	that	it	is	self-framing.	If	you	start	feeding	it	a	compressed	stream	of	data,	then	it	can
tell	you	when	the	compressed	data	has	ended	and	further,	uncompressed	data	has	arrived	past	its	end.

Most	protocols	choose	to	do	their	own	framing	and	then,	if	desired,	pass	the	resulting	block	to	zlib	for	decompression.	But
you	could	conceivably	promise	yourself	that	you	would	always	tack	a	bit	of	uncompressed	data	onto	the	end	of	each	zlib
compressed	string—here,	we	will	use	a	single	'.'	byte—	and	watch	for	your	compression	object	to	split	out	that	“extra	data”
as	the	signal	that	you	are	done.	Consider	this	combination	of	two	compressed	data	streams:

>>>	import	zlib

>>>	data	=	zlib.compress('sparse')	+	'.'	+	zlib.compress('flat')	+	'.'

>>>	data

'x\x9c+.H,*N\x05\x00\t\r\x02\x8f.x\x9cK\xcbI,\x01\x00\x04\x16\x01\xa8.'

>>>	len(data)

28

Imagine	that	these	28	bytes	arrive	at	their	destination	in	8-byte	packets.	After	processing	the	first	packet,	we	will	find	the
decompression	object's		unused_data		slot	still	empty,	which	tells	us	that	there	is	still	more	data	coming,	so	we	would		recv()	
on	our	socket	again:

>>>	dobj	=	zlib.decompressobj()

>>>	dobj.decompress(data[0:8]),	dobj.unused_data

('spars',	'')

But	the	second	block	of	eight	characters,	when	fed	to	our	decompress	object,	both	finishes	out	the	compressed	data	we
were	waiting	for	(since	the	final	'e'	completes	the	string	'sparse')	and	also	finally	has	a	non-empty	unused_data	value	that
shows	us	that	we	finally	received	our	'.'	byte:

>>>	dobj.decompress(data[8:16]),	dobj.unused_data

('e',	'.x')

If	another	stream	of	compressed	data	is	coming,	then	we	have	to	provide	everything	past	the	'.'—	in	this	case,	the
character	'x'—to	our	new	decompress	object,	then	start	feeding	it	the	remaining	“packets”:

>>>	dobj2	=	zlib.decompressobj()

>>>	dobj2.decompress('x'),	dobj2.unused_data

('',	'')

>>>	dobj2.decompress(data[16:24]),	dobj2.unused_data

('flat',	'')

>>>	dobj2.decompress(data[24:]),	dobj2.unused_data

('',	'.')

At	this	point,	unused_data	is	again	non-empty,	meaning	that	we	have	read	past	the	end	of	this	second	bout	of	compressed
data	and	can	examine	its	content.

Compression

https://docs.python.org/2/library/zlib.html?highlight=zlib#zlib


Depending	on	the	protocol	implementation	that	you	are	using,	you	might	have	to	deal	only	with	exceptions	specific	to	that
protocol,	or	you	might	have	to	deal	with	both	protocol-specific	exceptions	and	with	raw	socket	errors	as	well.

The	exceptions	that	are	specific	to	socket	operations	are:

socket.gaierror:	This	exception	is	raised	when		getaddrinfo()		cannot	find	a	name	or	service	that	you	ask	about—
hence	the	letters	G,	A,	and	I	in	its	name.

>>>	import	socket

>>>	s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

>>>	s.connect(('nonexistent.hostname.foo.bar',	80))

Traceback	(most	recent	call	last):

...

gaierror:	[Errno	-5]	No	address	associated	with	hostname

socket.error:	This	is	the	workhorse	of	the	socket	module,	and	will	be	raised	for	nearly	every	failure	that	can	happen	at
any	stage	in	a	network	transmission.

socket.timeout:	This	exception	is	raised	only	if	you,	or	a	library	that	you	are	using,	decides	to	set	a	timeout	on	a	socket
rather	than	wait	forever	for	a		send()		or		recv()		to	complete.	It	indicates	that	the	timeout	was	reached	before	the
operation	could	complete	normally.

Network	Exceptions



There	are	four	basic	approaches	of	handling	the	errors	that	can	occur.

The	first	is	not	to	handle	exceptions	at	all.	If	only	you	or	only	other	Python	programmers	will	be	using	your	script,	then
they	will	probably	not	be	fazed	by	seeing	an	exception.	If	you	are	writing	a	library	of	calls	to	be	used	by	other
programmers,	then	this	first	approach	is	usually	preferable,	since	by	letting	the	exception	through	you	give	the
programmer	using	your	API	the	chance	to	decide	how	to	present	errors	to	his	or	her	users.

If	you	are	indeed	writing	a	library,	then	there	is	a	second	approach	to	consider:	wrapping	the	network	errors	in	an
exception	of	your	own.

A	third	approach	to	exceptions	is	to	wrap	a		try…except		clause	around	every	single	network	call	that	you	ever	make,
and	print	out	a	pithy	error	message	in	its	place.	While	suitable	for	short	programs,	this	can	become	very	repetitive
when	long	programs	are	involved,	without	necessarily	providing	that	much	more	information	for	the	user.

There	is	one	final	reason	that	might	dictate	where	you	add	an	exception	handler	to	your	network	program:	you	might
want	to	intelligently	re-try	an	operation	that	failed.

Handling	Exceptions



Before	you	send	sensitive	data	across	a	network,	you	need	proof	of	the	identity	of	the	machine	that	you	think	is	on	the
other	end	of	the	socket,	and	while	sending	the	data,	you	need	it	protected	against	the	prying	eyes	of	anyone	controlling	the
gateways	and	network	switches	that	see	all	of	your	packets.	The	solution	to	this	problem	is	to	use	Transport	Layer	Security
(TLS).	Because	earlier	versions	of	TLS	were	called	the	Secure	Sockets	Layer	(SSL),	nearly	all	of	the	libraries	that	you	will
use	to	speak	TLS	actually	still	have	SSL	somewhere	in	the	name.

TLS	and	SSL



There	are	several	security	problems	that	TLS	is	designed	to	solve.	They	are	best	understood	by	considering	the	dangers	of
sending	your	network	data	as	“cleartext”	over	a	plain	old	socket,	which	copies	your	data	byte-for-byte	into	the	packets	that
get	sent	over	the	network.

What	are	the	consequences	of	someone	who	can	now	observe,	capture,	and	analyze	your	data	at	his	leisure?

He	can	see	all	of	the	data	that	passes	over	that	segment	of	the	network.	The	fraction	of	your	data	that	he	can	capture
depends	on	how	much	of	it	passes	over	that	particular	link.

He	will	see	any	usernames	and	passwords	that	your	clients	use	to	connect	to	the	servers	behind	them.

Log	messages	can	also	be	intercepted,	if	they	are	being	sent	to	a	central	location	and	happen	to	travel	over	a
compromised	IP	segment	or	device.	This	could	be	very	useful	if	the	observer	wants	to	probe	for	vulnerabilities	in	your
software.

If	your	database	server	is	not	picky	about	who	connects,	aside	from	caring	that	the	web	front	end	sends	a	password,
then	the	attacker	can	now	launch	a	“replay	attack,”	in	which	he	makes	his	own	connection	to	your	database	and
downloads	all	of	the	data	that	a	front-end	server	is	normally	allowed	to	access.

Imagine	an	attacker	who	cannot	yet	alter	traffic	on	your	network	itself,	but	who	can	compromise	one	of	the	services	around
the	edges	that	help	your	servers	find	each	other.	Specifically,	what	if	she	can	compromise	the	DNS	service	that	lets	your
web	front	ends	find	your	db.example.com	server.Then	some	interesting	tricks	might	become	possible:

When	your	front	ends	ask	for	the	hostname	db.example.com,	she	could	answer	with	the	IP	address	of	her	own	server,
located	anywhere	in	the	world,	instead.

The	fake	database	server	will	be	at	a	loss	to	answer	requests	with	any	real	data	that	the	intruder	has	not	already
copied	down	off	the	network.

If	your	database	is	not	carefully	locked	down	and	so	is	not	picky	about	which	servers	connect,	then	the	attacker	can	do
something	more	interesting:	as	requests	start	arriving	at	her	fake	database	server,	he	can	have	it	turn	around	and
forward	those	requests	to	the	real	database	server.	This	is	called	a	“man-in-the-middle”	attack:	he	will	be	in	fairly
complete	control	of	your	application.

While	proxying	the	client	requests	through	to	the	database,	the	attacker	will	probably	also	have	the	option	of	inserting
queries	of	her	own	into	the	request	stream.	This	could	let	her	download	entire	tables	of	data	and	delete	or	change
whatever	data	the	front-end	services	are	typically	allowed	to	modify.

Cleartext	on	the	Network



The	secret	to	TLS	is	public-key	cryptography.There	are	several	mathematical	schemes	that	have	been	proved	able	to
support	public-key	schemes,	but	they	all	have	these	three	features:

Anyone	can	generate	a	key	pair,	consisting	of	a	private	key	that	they	keep	to	themselves	and	a	public	key	that	they
can	broadcast	however	they	want.

If	the	public	key	is	used	to	encrypt	information,	then	the	resulting	block	of	binary	data	cannot	be	read	by	anyone,
anywhere	in	the	world,	except	by	someone	who	holds	the	private	key.

If	the	system	that	holds	the	private	key	uses	it	to	encrypt	information,	then	any	copy	of	the	public	key	can	be	used	to
decrypt	the	data.

We	will	focus	on	how	public	keys	are	used	in	the	TLS	system:	Public	keys	are	used	at	two	different	levels	within	TLS:	first,
to	establish	a	certificate	authority	(CA)	system	that	lets	servers	prove	“who	they	really	are”	to	the	clients	that	want	to
connect;	and,	second,	to	help	a	particular	client	and	server	communicate	securely.

TLS	Encrypts	Your	Conversations



From	the	point	of	view	of	your	network	program,	you	start	a	TLS	connection	by	turning	control	of	a	socket	over	to	an	SSL
library.	By	doing	so,	you	indicate	that	you	want	to	stop	using	the	socket	for	cleartext	communication,	and	start	using	it	for
encrypted	data	under	the	control	of	the	library.

From	that	point	on,	you	no	longer	use	the	raw	socket;	doing	so	will	cause	an	error	and	break	the	connection.	Instead,	you
will	use	routines	provided	by	the	library	to	perform	all	communication.	Both	client	and	server	should	turn	their	sockets	over
to	SSL	at	the	same	time,	after	reading	all	pending	data	off	of	the	socket	in	both	directions.	There	are	two	general
approaches	to	using	SSL:

The	most	straightforward	option	is	probably	to	use	the	ssl	package	that	recent	versions	of	Python	ship	with	the
Standard	Library.

The	other	alternative	is	to	use	a	third-party	Python	library.	There	are	several	of	these	that	support	TLS,	but	many	of
them	are	decrepit	and	seem	to	have	been	abandoned.	For	example	M2Crypto	package.

Supporting	TLS	in	Python

https://docs.python.org/2/library/ssl.html?highlight=ssl%20package


Here	you	canfind	an	example	of	the	use	of	TLS.The	first	and	last	few	lines	of	this	file		sslclient.py		look	completely	normal:
opening	a	socket	to	a	remote	server,	and	then	sending	and	receiving	data	per	the	protocol	that	the	server	supports.	The
cryptographic	protection	is	invoked	by	the	few	lines	of	code	in	the	middle—two	lines	that	load	a	certificate	database	and
make	the	TLS	connection	itself,	and	then	the	call	to		match_hostname()		that	performs	the	crucial	test	of	whether	we	are
really	talking	to	the	intended	server	or	perhaps	to	an	impersonator.

import	os,	socket,	ssl,	sys

from	backports.ssl_match_hostname	import	match_hostname,	CertificateError

try:

				script_name,	hostname	=	sys.argv

except	ValueError:

				print	>>sys.stderr,	'usage:	sslclient.py	<hostname>'

				sys.exit(2)

#	First	we	connect,	as	usual,	with	a	socket.

sock	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

sock.connect((hostname,	443))

#	Next,	we	turn	the	socket	over	to	the	SSL	library!

ca_certs_path	=	os.path.join(os.path.dirname(script_name),	'certfiles.crt')

sslsock	=	ssl.wrap_socket(sock,	ssl_version=ssl.PROTOCOL_SSLv3,

																										cert_reqs=ssl.CERT_REQUIRED,	ca_certs=ca_certs_path)

#	Does	the	certificate	that	the	server	proffered	*really*	match	the

#	hostname	to	which	we	are	trying	to	connect?		We	need	to	check.

try:

				match_hostname(sslsock.getpeercert(),	hostname)

except	CertificateError,	ce:

				print	'Certificate	error:',	str(ce)

				sys.exit(1)

#	From	here	on,	our	`sslsock`	works	like	a	normal	socket.		We	can,	for

#	example,	make	an	impromptu	HTTP	call.

sslsock.sendall('GET	/	HTTP/1.0\r\n\r\n')

result	=	sslsock.makefile().read()		#	quick	way	to	read	until	EOF

sslsock.close()

print	'The	document	https://%s/	is	%d	bytes	long'	%	(hostname,	len(result))

Note	that	the	certificate	database	needs	to	be	provided	as	a	file	named		certfiles.crt		in	the	same	directory	as	the	script.

root@erlerobot:~/Python_files#	cat	/etc/ssl/certs/*	>	certfiles.crt

root@erlerobot:~/Python_files#		sslclient.py	www.openssl.org

The	document	https://www.openssl.org/	is	15941	bytes	long

The	Standard	SSL	Module



This	chapter	explores	how	network	programming	intersects	with	the	general	tools	and	techniques	that	Python	developers
use	to	write	long-running	daemons	that	can	perform	significant	amounts	of	work	by	keeping	a	computer	and	its	processors
busy.

Server	Architecture



A	daemon	is	a	computer	program	that	runs	as	a	background	process,	rather	than	being	under	the	direct	control	of	an
interactive	user.	You	can	also	install	python-daemon	from	the	Package,	and	its	code	will	let	your	server	program	become	a
daemon	entirely	on	its	own	power.

Another	useful	thing	is	the	modern	logging	module,	which	can	write	to	syslog,	files,	network	sockets,	or	anything	in
between.	The	simplest	pattern	is	to	place	something	like	this	at	the	top	of	each	of	your	daemon’s	source	files:

import	logging

log	=	logging.getLogger(__name__)

Then	your	code	can	generate	messages	very	simply:

log.error('the	system	is	down')

Daemons	and	Logging

https://pypi.python.org/pypi/daemon/1.0


In	this	minimalist	protocol		lancelot.py	,	the	client	opens	a	socket,	sends	across	one	of	the	three	questions	asked	of	Sir
Launcelot	at	the	Bridge	of	Death	in	Monty	Python’s	Holy	Grail	movie,	and	then	terminates	the	message	with	a	question
mark:		What	is	your	name?		The	server	replies	by	sending	back	the	appropriate	answer,	which	always	ends	with	a	period:		My
name	is	Sir	Launcelot	of	Camelot.		Both	question	and	answer	are	encoded	as	ASCII.

import	socket,	sys

PORT	=	1060

qa	=	(('What	is	your	name?',	'My	name	is	Sir	Lancelot	of	Camelot.'),

						('What	is	your	quest?',	'To	seek	the	Holy	Grail.'),

						('What	is	your	favorite	color?',	'Blue.'))

qadict	=	dict(qa)

def	recv_until(sock,	suffix):

				message	=	''

				while	not	message.endswith(suffix):

								data	=	sock.recv(4096)

								if	not	data:

												raise	EOFError('socket	closed	before	we	saw	%r'	%	suffix)

								message	+=	data

				return	message

def	setup():

				if	len(sys.argv)	!=	2:

								print	>>sys.stderr,	'usage:	%s	interface'	%	sys.argv[0]

								exit(2)

				interface	=	sys.argv[1]

				sock	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

				sock.setsockopt(socket.SOL_SOCKET,	socket.SO_REUSEADDR,	1)

				sock.bind((interface,	PORT))

				sock.listen(128)

				print	'Ready	and	listening	at	%r	port	%d'	%	(interface,	PORT)

				return	sock

The	server	code	is		server_simple.py	:

import	lancelot

def	handle_client(client_sock):

				try:

								while	True:

												question	=	lancelot.recv_until(client_sock,	'?')

												answer	=	lancelot.qadict[question]

												client_sock.sendall(answer)

				except	EOFError:

								client_sock.close()

def	server_loop(listen_sock):

				while	True:

								client_sock,	sockname	=	listen_sock.accept()

								handle_client(client_sock)

if	__name__	==	'__main__':

				listen_sock	=	lancelot.setup()

				server_loop(listen_sock)

Anyway,	this	simple	server	has	terrible	performance	characteristics.	The	difficulty	comes	when	many	clients	all	want	to
connect	at	the	same	time.	The	first	client’s	socket	will	be	returned	by		accept()	,	and	the	server	will	enter	the
	handle_client()		loop	to	start	answering	that	first	client’s	questions.	But	while	the	questions	and	answers	are	trundling	back
and	forth	across	the	network,	all	of	the	other	clients	are	forced	to	queue	up.

Introductory	example



We	will	tackle	the	deficiencies	of	the	simple	server	shown	in		server_simple.py		in	two	discussions.	First,	in	this	section,	we
will	discuss	how	much	time	it	spends	waiting	even	on	one	client	that	needs	to	ask	several	questions;	and	in	the	next
section,	we	will	look	at	how	it	behaves	when	confronted	with	many	clients	at	once.	A	simple	client	for	the	Launcelot	protocol
connects,	asks	each	of	the	three	questions	once,	and	then	disconnects.	The	code	of		client.py	is	the	following:

import	socket,	sys,	lancelot

def	client(hostname,	port):

				s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

				s.connect((hostname,	port))

				s.sendall(lancelot.qa[0][0])

				answer1	=	lancelot.recv_until(s,	'.')		#	answers	end	with	'.'

				s.sendall(lancelot.qa[1][0])

				answer2	=	lancelot.recv_until(s,	'.')

				s.sendall(lancelot.qa[2][0])

				answer3	=	lancelot.recv_until(s,	'.')

				s.close()

				print	answer1

				print	answer2

				print	answer3

if	__name__	==	'__main__':

				if	not	2	<=	len(sys.argv)	<=	3:

								print	>>sys.stderr,	'usage:	client.py	hostname	[port]'

								sys.exit(2)

				port	=	int(sys.argv[2])	if	len(sys.argv)	>	2	else	lancelot.PORT

				client(sys.argv[1],	port)

With	these	two	scripts	in	place,	we	can	start	running	our	server	in	one	console	window:

```

root@erlerobot:~/Python_files#		python	server_simple.py	localhost

Ready	and	listening	at	'localhost'	port	1060

```

We	can	then	run	our	client	in	another	window,	and	see	the	three	answers	returned	by	the	server:

root@erlerobot:~/Python_files#		python	client.py	localhost

My	name	is	Sir	Lancelot	of	Camelot.

To	seek	the	Holy	Grail.

Blue.

The	client	and	server	run	very	quickly	here	on	my	laptop.	But	appearances	are	deceiving,	so	we	had	better	approach	this
client-server	interaction	more	scientifically	by	bringing	real	measurements	to	bear	upon	its	activity.

The	solution	for	measuring	the	real	waiting	time	when	running	the	client	and	server	on	a	single	machine,	but	to	send	the
connection	through	a	round-trip	to	another	machine	by	way	of	an	SSH	tunnel.

When	doing	this	you	will	notice	how	the	cost	of	communication	dominates	the	performance.	It	will	always	seem	to	take	less
than	10	μs	for	the	server	to	run	the	answer	=	line	and	retrieve	the	response	that	corresponds	to	a	particular	question.	If
actually	generating	the	answer	were	the	client’s	only	job,	then	we	could	expect	it	to	serve	more	than	100,000	client
requests	per	second	way	of	an	SSH	tunnel.	But	look	at	all	of	the	time	that	the	client	and	server	spend	waiting	for	the
network:	every	time	one	of	them	finishes	a		sendall()		call,	it	takes	between	500	μs	and	800	μs	before	the	other
conversation	partner	is	released	from	its	`recv()	call	and	can	proceed.

Now	on,	we	may	need	a	system	for	comparing	the	subsequent	server	designs	that	we	explore.We	are	therefore	going	to
turn	now	to	a	public	tool:	the	FunkLoad	tool,	written	in	Python	and	available	from	the	Python	Package	Index.

Elementary	client

https://pypi.python.org/pypi/funkload/1.16.1


root@erlerobot:~/Python_files#		pip	install	funkload



The	simple	server	we	have	been	examining	has	the	problem	that	the	`recv()	call	often	finds	that	no	data	is	yet	available
from	the	client,	so	the	call	“blocks”	until	data	arrives.	The	time	spent	waiting,	as	we	have	seen,	is	time	lost;	it	cannot	be
spent	usefully	by	the	server	to	answer	requests	from	other	clients.

But	what	if	we	avoided	ever	calling		recv()		until	we	knew	that	data	had	arrived	from	a	particular	client.	The	result	would	be
an	eventdriven	server	that	sits	in	a	tight	loop	watching	many	clients;	I	have	written	an	example,	shown	in		server_poll.	

import	lancelot

import	select

listen_sock	=	lancelot.setup()

sockets	=	{	listen_sock.fileno():	listen_sock	}

requests	=	{}

responses	=	{}

poll	=	select.poll()

poll.register(listen_sock,	select.POLLIN)

while	True:

				for	fd,	event	in	poll.poll():

								sock	=	sockets[fd]

								#	Removed	closed	sockets	from	our	list.

								if	event	&	(select.POLLHUP	|	select.POLLERR	|	select.POLLNVAL):

												poll.unregister(fd)

												del	sockets[fd]

												requests.pop(sock,	None)

												responses.pop(sock,	None)

								#	Accept	connections	from	new	sockets.

								elif	sock	is	listen_sock:

												newsock,	sockname	=	sock.accept()

												newsock.setblocking(False)

												fd	=	newsock.fileno()

												sockets[fd]	=	newsock

												poll.register(fd,	select.POLLIN)

												requests[newsock]	=	''

								#	Collect	incoming	data	until	it	forms	a	question.

								elif	event	&	select.POLLIN:

												data	=	sock.recv(4096)

												if	not	data:						#	end-of-file

																sock.close()		#	makes	POLLNVAL	happen	next	time

																continue

												requests[sock]	+=	data

												if	'?'	in	requests[sock]:

																question	=	requests.pop(sock)

																answer	=	dict(lancelot.qa)[question]

																poll.modify(sock,	select.POLLOUT)

																responses[sock]	=	answer

								#	Send	out	pieces	of	each	reply	until	they	are	all	sent.

								elif	event	&	select.POLLOUT:

												response	=	responses.pop(sock)

												n	=	sock.send(response)

												if	n	<	len(response):

																responses[sock]	=	response[n:]

												else:

																poll.modify(sock,	select.POLLIN)

																requests[sock]	=	''

The	main	loop	in	this	program	is	controlled	by	the	poll	object,	which	is	queried	at	the	top	of	every	iteration.	The		poll()		call
is	a	blocking	call,	the	difference	is	that	recv()	has	to	wait	on	one	single	client,	while		poll()		can	wait	on	dozens	or	hundreds
of	clients,	and	return	when	any	of	them	shows	activity.

The	way		poll()		works	is	that	we	tell	it	which	sockets	we	need	to	monitor,	and	whether	each	socket	interests	us	because
we	want	to	read	from	it	or	write	to	it.	When	one	or	more	of	the	sockets	are	ready,		poll()		returns	and	provides	a	list	of	the
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sockets	that	we	can	now	use.

To	keep	things	straight	when	reading	the	code,	think	about	the	lifespan	of	one	particular	client	and	trace	what	happens	to
its	socket	and	data.

The	client	will	first	do	a		connect()	,	and	the	server’s		poll()		call	will	return	and	declare	that	there	is	data	ready	on	the
main	listening	socket.	That	can	mean	only	one	thing,	a	new	client	has	connected.	So	we		accept()		the	connection	and
tell	our	poll	object	that	we	want	to	be	notified	when	data	becomes	available	for	reading	from	the	new	socket.	To	make
sure	that	the		recv()		and		send()		methods	on	the	socket	never	block	and	freeze	our	event	loop,	we	call	the
	setblocking()		socket	method	with	the	value	False	(which	means	“blocking	is	not	allowed”).

When	data	becomes	available,	the	incoming	string	is	appended	to	whatever	is	already	in	the	requests	dictionary	under
the	entry	for	that	socket.	(	sockets	can	safely	be	used	as	dictionary	keys	in	Python)

We	keep	accepting	more	data	until	we	see	a	question	mark,	at	which	point	the	Launcelot	question	is	complete.	The
questions	are	so	short	that,	in	practice,	they	probably	all	arrive	in	the	very	first		recv()		from	each	socket;	but	just	to	be
safe,	we	have	to	be	prepared	to	make	several		recv()		calls	until	the	whole	question	has	arrived.	We	then	look	up	the
appropriate	answer,	store	it	in	the	responses	dictionary	under	the	entry	for	this	client	socket,	and	tell	the	poll	object	that
we	no	longer	want	to	listen	for	more	data	from	this	client	but	instead	want	to	be	told	when	its	socket	can	start	accepting
outgoing	data.

Once	a	socket	is	ready	for	writing,	we	send	as	much	of	the	answer	as	will	fit	into	one		send()	call	on	the	client	socket.
This,	by	the	way,	is	a	big	reason		send()		returns	a	length:	because	if	you	use	it	in	non-blocking	mode,	then	it	might	be
able	to	send	only	some	of	your	bytes	without	making	you	wait	for	a	buffer	to	drain	back	down.

Once	this	server	has	finished	transmitting	the	answer,	we	tell	the	poll	object	to	swap	the	client	socket	back	over	to
being	listened	to	for	new	incoming	data.

After	many	question-answer	exchanges,	the	client	will	finally	close	the	connection.	Oddly	enough,	the	POLLHUP,
POLLERR,	and	POLLNVAL	circumstances	that		poll()		can	tell	us	about—all	of	which	indicate	that	the	connection	has
closed	one	way	or	another—are	returned	only	if	we	are	trying	to	write	to	the	socket,	not	read	from	it.	So	when	an
attempt	to	read	returns	zero	bytes,	we	have	to	tell	the	poll	object	that	we	now	want	to	write	to	the	socket	so	that	we
receive	the	official	notification	that	the	connection	is	closed.

A	slightly	older	mechanism	for	writing	event-driven	servers	that	listen	to	sockets	is	to	use	the		select()		call,	which	like
	poll()		is	available	from	the	Python	select	module	in	the	Standard	Library.	I	recommend	to	use	`poll()	because	it
produces	much	cleaner	code,	but	many	people	choose	select()	because	it	is	supported	on	Windows.

When	talking	about	event-driven	servers,	you	should	take	into	account	the	following:	Event-Driven	Servers	are
Blocking	and	Synchronous.	Referring	to	the	event	-	driven	servers,	like	the	one	in		server_poll.py	,	some	people	call
them	“non-blocking,”	despite	the	fact	that	the		poll()		call	blocks(they	mean	that	it	does	not	block	waiting	for	any
particular	client),	and	others	call	them	“asynchronous”	despite	the	fact	that	the	program	executes	its	statements	in	their
usual	linear	order.

Two	things	you	should	know



I	should	add	a	quick	note	about	how		recv()		and		send()		behave	in	non-blocking	mode,	when	you	have	called
setblocking(False)	on	their	socket.	A	`poll()	loop	like	the	one	just	shown	means	that	we	never	finish	calling	either	of	these
functions	when	they	cannot	accept	or	provide	data.	But	what	if	we	find	ourselves	in	a	situation	where	we	want	to	call	either
function	in	non-blocking	mode	and	do	not	yet	know	whether	the	socket	is	ready?

For	the		recv()		call,	these	are	the	rules:

If	data	is	ready,	it	is	returned.
If	no	data	has	arrived,	socket.error	is	raised.
If	the	connection	has	closed,	''	is	returned.

Note	that	closed	connection	returns	a	value,	but	a	still-open	connection	raises	an	exception.	The	logic	behind	this	behavior
is	that	the	first	and	last	possibilities	are	both	possible	in	blocking	mode	as	well:	either	you	get	data	back,	or	finally	the
connection	closes	and	you	get	back	an	empty	string.	So	to	communicate	the	extra,	third	possibility	that	can	happen	in	non-
blocking	mode—	that	the	connection	is	still	open	but	no	data	is	ready	yet—an	exception	is	used.

The	behavior	of	non-blocking		send()		is	similar:

Some	data	is	sent,	and	its	length	is	returned.
The	socket	buffers	are	full,	so	socket.error	is	raised.
If	the	connection	is	closed,	socket.error	is	also	raised.

This	evidence	that		poll()		could	say	that	a	socket	is	ready	for	sending,	but	a	FIN	packet	from	the	client	could	arrive	right
after	the	server	is	released	from	its		poll()		but	before	it	can	start	up	its		send()		call.

The	Semantics	of	Non-blocking



There	are	a	couple	of	Python	facts	to	take	into	account	when	you	are	computing	your	own	event-driven	server.

It	happens	that	Python	comes	with	an	event-driven	framework	built	into	the	Standard	Library.	I	am	going	to	recommend	that
you	ignore	it	entirely.	It	is	a	pair	of	ancient	modules,	asyncore	and	asynchat,	that	date	from	the	early	days	of	Python—you
will	note	that	all	of	the	classes	they	define	are	lowercase,	in	defiance	of	both	good	taste	and	all	subsequent	practice—and
that	they	are	difficult	to	use	correctly.

Instead,	we	will	talk	about	Twisted	Python.	Twisted	Python	is	not	simply	a	framework;	it	is	an	event-driven	networking
engine	for	Python.	The	Twisted	community	has	developed	a	way	of	writing	Python	that	is	all	their	own.

Take	a	look	at		server_twisted.py		for	how	simple	our	event-driven	server	can	become	if	we	leave	the	trouble	of	dealing	with
the	low-level	operating	system	calls	to	someone	else.

from	twisted.internet.protocol	import	Protocol,	ServerFactory

from	twisted.internet	import	reactor

import	lancelot

class	Lancelot(Protocol):

				def	connectionMade(self):

								self.question	=	''

				def	dataReceived(self,	data):

								self.question	+=	data

								if	self.question.endswith('?'):

												self.transport.write(dict(lancelot.qa)[self.question])

												self.question	=	''

factory	=	ServerFactory()

factory.protocol	=	Lancelot

reactor.listenTCP(1060,	factory)

reactor.run()

From	then	on,	every	event	on	that	socket	is	translated	into	a	method	call	to	our	object,	letting	us	write	code	that	appears	to
be	thinking	about	just	one	client	at	a	time.	But	thanks	to	the	fact	that	Twisted	will	create	dozens	or	hundreds	of	our
Launcelot	protocol	objects,	one	corresponding	to	each	connected	client,	the	result	is	an	event	loop	that	can	respond	to
whichever	client	sockets	are	ready.

Here	you	can	find	more	infromation	about	Twisted	Python

Twisted	Python

https://pypi.python.org/pypi/Twisted
http://twistedmatrix.com/documents/current/core/howto/


The	essential	idea	of	a	threaded	or	multi-process	server	is	that	we	take	the	simple	and	straightforward	server	that	we
started	out	with	(the		server_simple.py	)	and	run	several	copies	of	it	at	once	so	that	we	can	serve	several	clients	at	once,
without	making	them	wait	on	each	other.

Using	multiple	threads	or	processes	is	very	common,	especially	in	high-capacity	web	and	database	servers.In	the	Standard
Library	you	can	find	the	multiprocessing	module.

(Note:The	main	program	logic	does	not	even	know	which	solution	is	being	used;	the	two	classes	have	a	similar	enough
interface	that	either	Thread	or	Process	can	here	be	used	interchangeably.)

Look	the	example	at		server_multi.py	:

import	sys,	time,	lancelot

from	multiprocessing	import	Process

from	server_simple	import	server_loop

from	threading	import	Thread

WORKER_CLASSES	=	{'thread':	Thread,	'process':	Process}

WORKER_MAX	=	10

def	start_worker(Worker,	listen_sock):

				worker	=	Worker(target=server_loop,	args=(listen_sock,))

				worker.daemon	=	True		#	exit	when	the	main	process	does

				worker.start()

				return	worker

if	__name__	==	'__main__':

				if	len(sys.argv)	!=	3	or	sys.argv[2]	not	in	WORKER_CLASSES:

								print	>>sys.stderr,	'usage:	server_multi.py	interface	thread|process'

								sys.exit(2)

				Worker	=	WORKER_CLASSES[sys.argv.pop()]		#	setup()	wants	len(argv)==2

				#	Every	worker	will	accept()	forever	on	the	same	listening	socket.

				listen_sock	=	lancelot.setup()

				workers	=	[]

				for	i	in	range(WORKER_MAX):

								workers.append(start_worker(Worker,	listen_sock))

				#	Check	every	two	seconds	for	dead	workers,	and	replace	them.

				while	True:

								time.sleep(2)

								for	worker	in	workers:

												if	not	worker.is_alive():

																print	worker.name,	"died;	starting	replacement	worker"

																workers.remove(worker)

																workers.append(start_worker(Worker,	listen_sock))

As	you	can	see	it	is	letting	multiple	threads	or	processes	all	call		accept()		on	the	very	same	server	socket,	and	instead	of
raising	an	error	and	insisting	that	only	one	thread	at	a	time	be	able	to	wait	for	an	incoming	connection,	the	operating	system
patiently	queues	up	all	of	our	waiting	workers	and	then	wakes	up	one	worker	for	each	new	connection	that	arrives.	The	fact
that	a	listening	socket	can	be	shared	at	all	between	threads	and	processes,	and	that	the	operating	system	does	round-
robin	balancing	among	the	workers	that	are	waiting	on	an		accept()		call,	is	one	of	the	great	glories	of	the	POSIX	network
stack	and	execution	model;	it	makes	programs	like	this	very	simple	to	write.

Threading	and	Multi-processing

https://docs.python.org/2/library/multiprocessing.html


The	SocketServer	module	simplifies	the	task	of	writing	network	servers.

There	are	four	basic	server	classes:	TCPServer,	UDPServer,UnixDatagramServer	and	UnixStreamServer.

These	four	classes	process	requests	synchronously;	each	request	must	be	completed	before	the	next	request	can	be
started.	This	isn’t	suitable	if	each	request	takes	a	long	time	to	complete,	because	it	requires	a	lot	of	computation,	or
because	it	returns	a	lot	of	data	which	the	client	is	slow	to	process.

In		server_SocketServer.py	,	you	can	see	how	small	our	multi-threaded	server	becomes	when	it	takes	advantage	of	this
framework.	(There	is	also	a	ForkingMixIn	that	you	can	use	if	you	want	it	to	spawn	several	processes—at	least	on	a	POSIX
system.)

from	SocketServer	import	ThreadingMixIn,	TCPServer,	BaseRequestHandler

import	lancelot,	server_simple,	socket

class	MyHandler(BaseRequestHandler):

				def	handle(self):

								server_simple.handle_client(self.request)

class	MyServer(ThreadingMixIn,	TCPServer):

				allow_reuse_address	=	1

				#	address_family	=	socket.AF_INET6		#	if	you	need	IPv6

server	=	MyServer(('',	lancelot.PORT),	MyHandler)

server.serve_forever()

Whereas	our	earlier	example	created	the	workers	up	front	so	that	they	were	all	sharing	the	same	listening	socket,	the
SocketServer	does	all	of	its	listening	in	the	main	thread	and	creates	one	worker	each	time		accept()		returns	a	new	client
socket.

Threading	and	Multi-processing	Frameworks

https://docs.python.org/2/library/socketserver.html?highlight=socketserver#SocketServer


This	chapter	surveys	the	handful	of	technologies	that	have	together	become	fundamental	building	blocks	for	expanding
applications	to	Internet	scale.

This	chapter’s	purpose	is	to	introduce	you	to	the	problem	that	each	tool	solves;	explain	how	to	use	the	service	to	address
that	issue;	and	give	a	few	hints	about	using	the	tool	from	Python.

Caches,	Message	Queues,	and	Map-Reduce



Memcached	is	the	“memory	cache	daemon.”	Its	impact	on	many	large	Internet	services	has	been,	by	all	accounts,
revolutionary.	After	glancing	at	how	to	use	it	from	Python,	we	will	discuss	its	implementation,	which	will	teach	us	about	a
very	important	modern	network	concept	called	sharding.

The	actual	procedures	for	using	Memcached	are	designed	to	be	very	simple:

You	run	a	Memcached	daemon	on	every	server	with	some	spare	memory.
You	make	a	list	of	the	IP	address	and	port	numbers	of	your	new	Memcached	daemons,	and	distribute	this	list	to	all	of
the	clients	that	will	be	using	the	cache.
Your	client	programs	now	have	access	to	an	organization-wide	blazing-fast	keyvalue	cache	that	acts	something	like	a
big	Python	dictionary	that	all	of	your	servers	can	share.	The	cache	operates	on	an	LRU	(least-recently-used)	basis,
dropping	old	items	that	have	not	been	accessed	for	a	while	so	that	it	has	room	to	both	accept	new	entries	and	keep
records	that	are	being	frequently	accessed.

Using	Memcached



Enough	Python	clients	are	currently	listed	for	Memcached	that	I	had	better	just	send	you	to	the	page	that	lists	them,	rather
than	try	to	review	them	here:	http://code.google.com/p/memcached/wiki/Clients.	The	client	that	they	list	first	is	written	in
pure	Python,	and	therefore	will	not	need	to	compile	against	any	libraries.	Memcached	can	be	install	thanks	to	being
available	on	the	Python	Package	Index:

root@erlerobot:~/Python_files#	pip	install	python-memcached

``

The	interface	is	straightforward.	Though	you	might	have	expected	an	interface	that	more	strongly

resembles	a	Python	dictionary	with	native	methods	like	`__getitem__`,	the	author	of	python-memcached

chose	instead	to	use	the	same	method	names	as	are	used	in	other	languages	supported	by

Memcached—which	I	think	was	a	good	decision,	since	it	makes	it	easier	to	translate	Memcached

examples	into	Python	:

```python

>>>	import	memcache

>>>	mc	=	memcache.Client(['127.0.0.1:11211'])

>>>	mc.set('user:19',	'{name:	"Lancelot",	quest:	"Grail"}')

True

>>>	mc.get('user:19')

'{name:	"Lancelot",	quest:	"Grail"}'

The	basic	pattern	by	which	Memcached	is	used	from	Python	is	shown	in		squares.py	.	Before	embarking	on	an	(artificially)
expensive	operation,	it	checks	Memcached	to	see	whether	the	answer	is	already	present.	If	so,	then	the	answer	can	be
returned	immediately;	if	not,	then	it	is	computed	and	stored	in	the	cache	before	being	returned.

import	memcache,	random,	time,	timeit

mc	=	memcache.Client(['127.0.0.1:11211'])

def	compute_square(n):

				value	=	mc.get('sq:%d'	%	n)

				if	value	is	None:

								time.sleep(0.001)		#	pretend	that	computing	a	square	is	expensive

								value	=	n	*	n

								mc.set('sq:%d'	%	n,	value)

				return	value

def	make_request():

				compute_square(random.randint(0,	5000))

print	'Ten	successive	runs:',

for	i	in	range(1,	11):

				print	'%.2fs'	%	timeit.timeit(make_request,	number=2000),

print

The	Memcached	daemon	needs	to	be	running	on	your	machine	at	port	11211	for	this	example	to	succeed.	For	the	first	few
hundred	requests,	of	course,	the	program	will	run	at	its	usual	speed.	But	as	the	cache	begins	to	accumulate	more	requests,
it	is	able	to	accelerate	an	increasingly	large	fraction	of	them.

root@erlerobot:~/Python_files#	python	squares.py

Ten	successive	runs:	2.75s	1.98s	1.51s	1.14s	0.90s	0.82s	0.71s	0.65s	0.58s	0.55s

This	pattern	is	generally	characteristic	of	caching:	a	gradual	improvement	as	the	cache	begins	to	cover	the	problem
domain,	and	then	stability	as	either	the	cache	fills	or	the	input	domain	has	been	fully	covered.

You	must	always	remember	that	Memcached	is	a	cache;	it	is	ephemeral,	it	uses	RAM	for	storage,	and,	if	re-started,	it
remembers	nothing	that	you	have	ever	stored!	Your	application	should	always	be	able	to	recover	if	the	cache	should
disappear.

http://code.google.com/p/memcached/wiki/Clients
https://pypi.python.org/pypi/python-memcached/1.53


The	design	of	Memcached	illustrates	an	important	principle	that	is	used	in	several	other	kinds	of	databases,	and	which	you
might	want	to	employ	in	architectures	of	your	own:	the	clients	shard	the	database	by	hashing	the	keys’	string	values	and
letting	the	hash	determine	which	member	of	the	cluster	is	consulted	for	each	key.

To	understand	why	this	is	effective,	consider	a	particular	key/value	pair—like	the	key	sq:42	and	the	value	1764	that	might
be	stored	by		squares.py	.	To	make	the	best	use	of	the	RAM	it	has	available,	the	Memcached	cluster	wants	to	store	this	key
and	value	exactly	once.	But	to	make	the	service	fast,	it	wants	to	avoid	duplication	without	requiring	any	coordination
between	the	different	servers	or	communication	between	all	of	the	clients.

This	means	that	all	of	the	clients,	without	any	other	information	to	go	on	than	(a)	the	key	and	(b)	the	list	of	Memcached
servers	with	which	they	are	configured,	need	some	scheme	for	working	out	where	that	piece	of	information	belongs.	If	they
fail	to	make	the	same	decision,	then	not	only	might	the	key	and	value	be	copied	on	to	several	servers	and	reduce	the
overall	memory	available,	but	also	a	client’s	attempt	to	remove	an	invalid	entry	could	leave	other	invalid	copies	elsewhere.

The	solution	is	that	the	clients	all	implement	a	single,	stable	algorithm	that	can	turn	a	key	into	an	integer	n	that	selects	one
of	the	servers	from	their	list.	They	do	this	by	using	a	“hash”	algorithm,	which	mixes	the	bits	of	a	string	when	forming	a
number	so	that	any	pattern	in	the	string	is,	hopefully,	obliterated.	You	can	find	hashlib	module	in	the	Python	Standard
Library.

To	see	why	patterns	in	key	values	must	be	obliterated,	consider		hashing.py	.	It	loads	a	dictionary	of	English	words	(you
might	have	to	download	a	dictionary	of	your	own	or	adjust	the	path	to	make	the	script	run	on	your	own	machine),	and
explores	how	those	words	would	be	distributed	across	four	servers	if	they	were	used	as	keys.	The	first	algorithm	tries	to
divide	the	alphabet	into	four	roughly	equal	sections	and	distributes	the	keys	using	their	first	letter;	the	other	two	algorithms
use	hash	functions.

import	hashlib

def	alpha_shard(word):

				"""Do	a	poor	job	of	assigning	data	to	servers	by	using	first	letters."""

				if	word[0]	in	'abcdef':

								return	'server0'

				elif	word[0]	in	'ghijklm':

								return	'server1'

				elif	word[0]	in	'nopqrs':

								return	'server2'

				else:

								return	'server3'

def	hash_shard(word):

				"""Do	a	great	job	of	assigning	data	to	servers	using	a	hash	value."""

				return	'server%d'	%	(hash(word)	%	4)

def	md5_shard(word):

				"""Do	a	great	job	of	assigning	data	to	servers	using	a	hash	value."""

				#	digest()	is	a	byte	string,	so	we	ord()	its	last	character

				return	'server%d'	%	(ord(hashlib.md5(word).digest()[-1])	%	4)

words	=	open('/usr/share/dict/words').read().split()

for	function	in	alpha_shard,	hash_shard,	md5_shard:

				d	=	{'server0':	0,	'server1':	0,	'server2':	0,	'server3':	0}

				for	word	in	words:

								d[function(word.lower())]	+=	1

				print	function.__name__[:-6],	d

The		hash()		function	is	Python’s	own	built-in	hash	routine,	which	is	designed	to	be	blazingly	fast	because	it	is	used
internally	to	implement	Python	dictionary	lookup.

Memcached	and	Sharding

https://docs.python.org/2/library/hashlib.html?highlight=hashlib


Message	queue	protocols	let	you	send	reliable	chunks	of	data	called	messages.	Typically,	a	queue	promises	to	transmit
messages	reliably,	and	to	deliver	them	atomically:	a	message	either	arrives	whole	and	intact,	or	it	does	not	arrive	at	all.
Clients	never	have	to	loop	and	keep	calling	something	like		recv()		until	a	whole	message	has	arrived.	The	other	innovation
that	message	queues	offer	is	that,	instead	of	supporting	only	the	point-topoint	connections	that	are	possible	with	an	IP
transport	like	TCP,	you	can	set	up	all	kinds	of	topologies	between	messaging	clients.	Each	brand	of	message	queue
typically	supports	several	topologies.

A	pipeline	topology	is	the	pattern	that	perhaps	best	resembles	the	picture	you	have	in	your	head	when	you	think	of	a
queue:	a	producer	creates	messages	and	submits	them	to	the	queue,	from	which	the	messages	can	then	be	received	by	a
consumer.	For	example,	the	front-end	web	machines	of	a	photosharing	web	site	might	accept	image	uploads	from	end
users	and	list	the	incoming	files	on	an	internal	queue.	A	machine	room	full	of	servers	could	then	read	from	the	queue,	each
receiving	one	message	for	each	read	it	performs,	and	generate	thumbnails	for	each	of	the	incoming	images.	The	queue
might	get	long	during	the	day	and	then	be	short	or	empty	during	periods	of	relatively	low	use,	but	either	way	the	front-end
web	servers	are	freed	to	quickly	return	a	page	to	the	waiting	customer,	telling	them	that	their	upload	is	complete	and	that
their	images	will	soon	appear	in	their	photostream.

A	publisher-subscriber	topology	looks	very	much	like	a	pipeline,	but	with	a	key	difference.	The	pipeline	makes	sure	that
every	queued	message	is	delivered	to	exactly	one	consumer—since,	after	all,	it	would	be	wasteful	for	two	thumbnail
servers	to	be	assigned	the	same	photograph.	But	subscribers	typically	want	to	receive	all	of	the	messages	that	are	being
enqueued	by	each	publisher—or	else	they	want	to	receive	every	message	that	matches	some	particular	topic.	Either	way,	a
publisher-subscriber	model	supports	messages	that	fan	out	to	be	delivered	to	every	interested	subscriber.	This	kind	of
queue	can	be	used	to	power	external	services	that	need	to	push	events	to	the	outside	world,	and	also	to	form	a	fabric	that
a	machine	room	full	of	servers	can	use	to	advertise	which	systems	are	up,	which	are	going	down	for	maintenance,	and	that
can	even	publish	the	addresses	of	other	message	queues	as	they	are	created	and	destroyed.

Finally,	a	request-reply	pattern	is	often	the	most	complex	because	messages	have	to	make	a	roundtrip.	Both	of	the
previous	patterns	placed	very	little	responsibility	on	the	producer	of	a	message:	they	connect	to	the	queue,	transmit	their
message,	and	are	done.	But	a	message	queue	client	that	makes	a	request	has	to	stay	connected	and	wait	for	the
corresponding	reply	to	be	delivered	back	to	it.	The	queue	itself,	to	support	this,	has	to	feature	some	sort	of	addressing
scheme	by	which	replies	can	be	directed	to	the	correct	client	that	is	still	sitting	and	waiting	for	it.	But	for	all	of	its	underlying
complexity,	this	is	probably	the	most	powerful	pattern	of	all,	since	it	allows	the	load	of	dozens	or	hundreds	of	clients	to	be
spread	across	equally	large	numbers	of	servers	without	any	effort	beyond	setting	up	the	message	queue.	And	since	a	good
message	queue	will	allow	servers	to	attach	and	detach	without	losing	messages,	this	topology	allows	servers	to	be	brought
down	for	maintenance	in	a	way	that	is	invisible	to	the	population	of	client	machines.
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There	are	several	AMQP	(Advanced	Message	Queuing	Protocol)	implementations	currently	listed	in	the	Python	Package
Index.

An	alternative	to	using	AMQP	and	having	to	run	a	central	broker,	like	RabbitMQ	or	Apache	Qpid,	is	to	use	ØMQ,	the	“Zero
Message	Queue,”	which	was	invented	by	the	same	company	as	AMQP	but	moves	the	messaging	intelligence	from	a
centralized	broker	into	every	one	of	your	message	client	programs.

A	good	summary	of	the	advantages	and	disadvantages	is	provided	at	the	ØMQ	web	site:	http://zeromq.org/docs:welcome-
from-amqp

The	next	example,	queuecrazy.py	,	shows	some	of	the	patterns	that	can	be	supported	when	message	queues	are	used	to
connect	different	parts	of	an	application.	It	requires	ØMQ,	which	you	can	most	easily	make	available	to	Python	Index:

root@erlerobot:~/Python_files#	pip	install	pyzmq-static

The	listing	uses	Python	threads	to	create	a	small	cluster	of	six	different	services.	One	pushes	a	constant	stream	of	words
on	to	a	pipeline.	Three	others	sit	ready	to	receive	a	word	from	the	pipeline;	each	word	wakes	one	of	them	up.	The	final	two
are	request-reply	servers,	which	resemble	remote	procedure	endpoints	and	send	back	a	message	for	each	message	they
receive.

import	random,	threading,	time,	zmq

zcontext	=	zmq.Context()

def	fountain(url):

				"""Produces	a	steady	stream	of	words."""

				zsock	=	zcontext.socket(zmq.PUSH)

				zsock.bind(url)

				words	=	[	w	for	w	in	dir(__builtins__)	if	w.islower()	]

				while	True:

								zsock.send(random.choice(words))

								time.sleep(0.4)

def	responder(url,	function):

				"""Performs	a	string	operation	on	each	word	received."""

				zsock	=	zcontext.socket(zmq.REP)

				zsock.bind(url)

				while	True:

								word	=	zsock.recv()

								zsock.send(function(word))		#	send	the	modified	word	back

def	processor(n,	fountain_url,	responder_urls):

				"""Read	words	as	they	are	produced;	get	them	processed;	print	them."""

				zpullsock	=	zcontext.socket(zmq.PULL)

				zpullsock.connect(fountain_url)

				zreqsock	=	zcontext.socket(zmq.REQ)

				for	url	in	responder_urls:

								zreqsock.connect(url)

				while	True:

								word	=	zpullsock.recv()

								zreqsock.send(word)

								print	n,	zreqsock.recv()

def	start_thread(function,	*args):

				thread	=	threading.Thread(target=function,	args=args)

				thread.daemon	=	True		#	so	you	can	easily	Control-C	the	whole	program

				thread.start()

start_thread(fountain,	'tcp://127.0.0.1:6700')

start_thread(responder,	'tcp://127.0.0.1:6701',	str.upper)

start_thread(responder,	'tcp://127.0.0.1:6702',	str.lower)

for	n	in	range(3):

				start_thread(processor,	n	+	1,	'tcp://127.0.0.1:6700',
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																	['tcp://127.0.0.1:6701',	'tcp://127.0.0.1:6702'])

time.sleep(30)

The	two	request-reply	servers	are	different—one	turns	each	word	it	receives	to	uppercase,	while	the	other	makes	its	words
all	lowercase—and	you	can	tell	the	three	processors	apart	by	the	fact	that	each	is	assigned	a	different	integer.

Finally	I	would	like	to	add	the	following	to	fix	the	concept	of	message	Queues:	Message	queues	provide	a	point	of
coordination	and	integration	for	different	parts	of	your	application	that	may	require	different	hardware,	load	balancing
techniques,	platforms,	or	even	programming	languages.	They	can	take	responsibility	for	distributing	messages	among
many	waiting	consumers	or	servers	in	a	way	that	is	not	possible	with	the	single	point-to-point	links	offered	by	normal	TCP
sockets,	and	can	also	use	a	database	or	other	persistent	storage	to	assure	that	updates	to	your	service	are	not	lost	if	the
server	goes	down.	Message	queues	also	offer	resilience	and	flexibility,	since	if	some	part	of	your	system	temporarily
becomes	a	bottleneck,	then	the	message	queue	can	absorb	the	shock	by	allowing	many	messages	to	queue	up	for	that
service.	By	hiding	the	population	of	servers	or	processes	that	serve	a	particular	kind	of	request,	the	message	queue	pattern
also	makes	it	easy	to	disconnect,	upgrade,	reboot,	and	reconnect	servers	without	the	rest	of	your	infrastructure	noticing.



MapReduce	is	a	programming	model	and	an	associated	implementation	for	processing	and	generating	large	data	sets	with
a	parallel,	distributed	algorithm	on	a	cluster.

A	MapReduce	program	is	composed	of	a		Map()		procedure	that	performs	filtering	and	sorting	(such	as	sorting	students	by
first	name	into	queues,	one	queue	for	each	name)	and	a		Reduce()		procedure	that	performs	a	summary	operation	(such	as
counting	the	number	of	students	in	each	queue,	yielding	name	frequencies).	The	"MapReduce	System"	(also	called
"infrastructure"	or	"framework")	orchestrates	by	marshalling	the	distributed	servers,	running	the	various	tasks	in	parallel,
managing	all	communications	and	data	transfers	between	the	various	parts	of	the	system,	and	providing	for	redundancy
and	fault	tolerance.

These	two	operations	bear	some	resemblance	to	the	Python	built-in	functions	of	that	name	(which	Python	itself	borrowed
from	the	world	of	functional	programming);	imagine	how	one	might	split	across	several	servers	the	tasks	of	summing	the
squares	of	many	integers:

>>>	squares	=	map(lambda	n:	n*n,	range(11))

>>>	squares

[0,	1,	4,	9,	16,	25,	36,	49,	64,	81,	100]

>>>	import	operator

>>>	reduce(operator.add,	squares)

385

The	mapping	operation	should	be	prepared	to	run	once	on	some	particular	slice	of	the	overall	problem	or	data	set,	and	to
produce	a	tally,	table,	or	response	that	summarizes	its	findings	for	that	slice	of	the	input.	The	reduce	operation	is	then
exposed	to	the	outputs	of	the	mapping	functions,	to	combine	them	together	into	an	ever-accumulating	answer.	To	use	the
mapreduce	cluster’s	power	effectively,	frameworks	are	not	content	to	simply	run	the	reduce	function	on	one	node	once	all
of	the	dozens	or	hundreds	of	active	machines	have	finished	the	mapping	stage.	Instead,	the	reduce	function	is	run	in
parallel	on	many	nodes	at	once,	each	considering	the	output	of	a	handful	of	map	operations,	and	then	these	intermediate
results	are	combined	again	and	again	in	a	tree	of	computations	until	a	final	reduce	step	produces	output	for	the	whole
input.

In	conclusion,	the	map-reduce	pattern	provides	a	cloud-style	framework	for	distributed	computation	across	many
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processors	and,	potentially,	across	many	parts	of	a	large	data	set.



Hypertext	is	structured	text	that	uses	logical	links	(hyperlinks)	between	nodes	containing	text.	HTTP	(The	Hypertext
Transfer	Protocol)is	the	protocol	to	exchange	or	transfer	hypertext.

HTTP	is	the	foundation	of	data	communication	for	the	World	Wide	Web.As	this	chapter	proceeds	to	explore	the	features	of
HTTP,	we	are	going	to	illustrate	the	protocol	using	several	modules	that	come	built-in	to	the	Python	Standard	Library

HTTP



Uniform	Resource	Locators	(URLs),	are	strings	that	tell	your	web	browser	how	to	fetch	resources	from	the	World	Wide
WebThey	are	a	subclass	of	the	full	set	of	possible	Uniform	Resource	Identifiers	(URIs);	specifically,	they	are	URIs
constructed	so	that	they	give	instructions	for	fetching	a	document,	instead	of	serving	only	as	an	identifier.

To	understand	how	they	work,F	consider	a	very	simple	URL,	for	example,	like	the	following:	http://python.org		If	submitted
to	a	web	browser,	this	URL	is	interpreted	as	an	order	to	resolve	the	host	name	python.org	to	an	IP	address	,	make	a	TCP
connection	to	that	IP	address	at	the	standard	HTTP	port	80	,	and	then	ask	for	the	root	document	/	that	lives	at	that	site.

Now	imagine	another	more	complicated	URL,	imagine	that	we	wanted	the	logo	for	Nord/LB,	a	large	German	bank.	The
resulting	URL	might	look	something	like	this:		http://example.com:8080/Nord%2FLB/logo?shape=square&dpi=96	

Here,	the	URL	specifies	more	information	than	our	previous	example	did:

The	protocol	will,	again,	be	HTTP.
The	hostname	example.com	will	be	resolved	to	an	IP.
This	time,	port	8080	will	be	used	instead	of	80.
Once	a	connection	is	complete,	the	remote	server	will	be	asked	for	the	resource	named:	/Nord%2FLB/logo?
shape=square&dpi=96

Web	servers,	in	practice,	have	absolute	freedom	to	interpret	URLs	as	they	please;	however,	the	intention	of	the	standard	is
that	this	URL	be	parsed	into	two	question-mark-delimited	pieces.	The	first	is	a	path	consisting	of	two	elements:

A	Nord/LB	path	element.
A	logo	path	element.

The	string	following	the	?	is	interpreted	as	a	query	containing	two	terms:

A	shape	parameter	whose	value	is	square.
A	dpi	parameter	whose	value	is	96.

Any	characters	beyond	the	alphanumerics,	a	few	punctuation	marks—specifically	the	set	$-	_.+!*'(),—and	the	special
delimiter	characters	themselves	(like	the	slashes)	must	be	percent-encoded	by	following	a	percent	sign	%	with	the	two-digit
hexadecimal	code	for	the	character.

You	should	note	that	the	following	URL	paths	are	not	equivalent:

Nord%2FLB%2Flogo	=	A	single	path	component,	named	Nord/LB/logo.

Nord%2FLB/logo	=	Two	path	components,	Nord/LB	and	logo.

Nord/LB/logo=	Three	separate	path	components	Nord,	LB,	and	logo.

The	most	important	Python	routines	for	working	with	URLs	live,	appropriately	enough,	in	their	own	module.The	urlparse
module;	this	module	defines	a	standard	interface	to	break	URL	strings	up	in	components	(addressing	scheme,	network
location,	path	etc.),	to	combine	the	components	back	into	a	URL	string,	and	to	convert	a	“relative	URL”	to	an	absolute	URL
given	a	“base	URL.”

>>>	from	urlparse	import	urlparse,	urldefrag,	parse_qs,	parse_qsl

With	these	routines,	you	can	get	large	and	complex	URLs	like	the	example	given	earlier	and	turn

them	into	their	component	parts,	with	RFC-compliant	parsing	already	implemented	for	you:

```python

>>>	p	=	urlparse('http://example.com:8080/Nord%2FLB/logo?shape=square&dpi=96')

>>>	p

ParseResult(scheme='http',	netloc='example.com:8080',	path='/Nord%2FLB/logo',
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»	»	»	params='',	query='shape=square&dpi=96',	fragment='')

The	query	string	that	is	offered	by	the	ParseResult	can	then	be	submitted	to	one	of	the	parsing	routines	if	you	want	to
interpret	it	as	a	series	of	key-value	pairs,	which	is	a	standard	way	for	web	forms	to	submit	them:

>>>	parse_qs(p.query)

{'shape':	['square'],	'dpi':	['96']}

Note	that	each	value	in	this	dictionary	is	a	list,	rather	than	simply	a	string.	This	is	to	support	the	fact	that	a	given	parameter
might	be	specified	several	times	in	a	single	URL;	in	such	cases,	the	values	are	simply	appended	to	the	list:

>>>	parse_qs('mode=topographic&pin=Boston&pin=San%20Francisco')

{'mode':	['topographic'],	'pin':	['Boston',	'San	Francisco']}

This,	you	will	note,	preserves	the	order	in	which	values	arrive;	of	course,	this	does	not	preserve	the	order	of	the	parameters
themselves	because	dictionary	keys	do	not	remember	any	particular	order.	If	the	order	is	important	to	you,	then	use	the
	parse_qsl()		function	instead	(the	l	must	stand	for	“list”):

>>>	parse_qsl('mode=topographic&pin=Boston&pin=San%20Francisco')

[('mode',	'topographic'),	('pin',	'Boston'),	('pin',	'San	Francisco')]

`

Finally,	note	that	an	“anchor”	appended	to	a	URL	after	a	#	character	is	not	relevant	to	the	HTTP	protocol.	This	is	because
any	anchor	is	stripped	off	and	is	not	turned	into	part	of	the	HTTP	request.	Instead,	the	anchor	tells	a	web	client	to	jump	to
some	particular	section	of	a	document	after	the	HTTP	transaction	is	complete	and	the	document	has	been	downloaded.	To
remove	the	anchor,	use		urldefrag()	:

>>>	u	=	'http://docs.python.org/library/urlparse.html#urlparse.urldefrag'

>>>	urldefrag(u)

('http://docs.python.org/library/urlparse.html',	'urlparse.urldefrag')

You	can	turn	a	ParseResult	back	into	a	URL	by	calling	its		geturl()		method.	When	combined	with	the		urlencode()	
function,	which	knows	how	to	build	query	strings,	this	can	be	used	to	construct	new	URLs:

>>>	import	urllib,	urlparse

>>>	query	=	urllib.urlencode({'company':	'Nord/LB',	'report':	'sales'})

>>>	p	=	urlparse.ParseResult(

...	'https',	'example.com',	'data',	None,	query,	None)

>>>	p.geturl()

'https://example.com/data?report=sales&company=Nord%2FLB'

For	last,	the	HTTP	request	look	like	this:

GET	/rfc/rfc2616.txt	HTTP/1.1

Accept-Encoding:	identity

Host:	www.ietf.org

Connection:	close

User-Agent:	Python-urllib/2.7

And	the	HTTP	response	that	comes	back	over	the	socket	also	starts	with	a	set	of	headers,	but	then	also	includes	a	body
that	contains	the	document	itself	that	has	been	requested	:

HTTP/1.1	200	OK

Server:	cloudflare-nginx



Date:	Fri,	11	Jul	2014	07:02:55	GMT

Content-Type:	text/plain

Transfer-Encoding:	chunked

Connection:	close

Set-Cookie:	__cfduid=d5be98ff9fbae526f308d478da5bb413e1405062173934;	expires=Mon,	23-Dec-2019	23:50:00	GMT;	path=/;	domain=.ietf.org;	HttpOnly

Last-Modified:	Fri,	11	Jun	1999	18:46:53	GMT

Vary:	Accept-Encoding

CF-RAY:	1483235b13c51043-CDG

<addinfourl	at	4341048456	whose	fp	=	<socket._fileobject	object	at	0x102a13750>>



Very	often,	the	links	used	in	web	pages	do	not	specify	full	URLs,	but	relative	URLs	that	are	missing	several	of	the	usual
components.	When	one	of	these	links	needs	to	be	resolved,	the	client	needs	to	fill	in	the	missing	information	with	the
corresponding	fields	from	the	URL	used	to	fetch	the	page	in	the	first	place.

The	simplest	relative	links	are	the	names	of	pages	one	level	deeper	than	the	base	page:

>>>	urlparse.urljoin('http://www.python.org/psf/',	'grants')

'http://www.python.org/psf/grants'

>>>	urlparse.urljoin('http://www.python.org/psf/',	'mission')

'http://www.python.org/psf/mission'

Note	the	crucial	importance	of	the	trailing	slash	in	the	URLs:

>>>	urlparse.urljoin('http://www.python.org/psf',	'grants')

'http://www.python.org/grants'

Like	file	system	paths	on	the	POSIX	and	Windows	operating	systems,	.	can	be	used	for	the	current	directory	and	..	is	the
name	of	the	parent:

>>>	urlparse.urljoin('http://www.python.org/psf/',	'./mission')

'http://www.python.org/psf/mission'

>>>	urlparse.urljoin('http://www.python.org/psf/',	'../news/')

'http://www.python.org/news/'

>>>	urlparse.urljoin('http://www.python.org/psf/',	'/dev/')

'http://www.python.org/dev'

`

And,	as	illustrated	in	the	last	example,	a	relative	URL	that	starts	with	a	slash	is	assumed	to	live	at	the	top	level	of	the	same
site	as	the	original	URL.	Happily,	the		urljoin()		function	ignores	the	base	URL	entirely	if	the	second	argument	also
happens	to	be	an	absolute	URL.	This	means	that	you	can	simply	pass	every	URL	on	a	given	web	page	to	the		urljoin()	
function,	and	any	relative	links	will	be	converted;	at	the	same	time,	absolute	links	will	be	passed	through	untouched:

>>>	#	Absolute	links	are	safe	from	change

...

>>>	urlparse.urljoin('http://www.python.org/psf/',	'http://yelp.com/')

'http://yelp.com/'

Relative	URLs



We	now	turn	to	the	HTTP	protocol	itself.	Although	its	on-the-wire	appearance	is	usually	an	internal	detail	handled	by	web
browsers	and	libraries	like	urllib2	module.The	urllib2	module	defines	functions	and	classes	which	help	in	opening	URLs
(mostly	HTTP)	in	a	complex	world	—	basic	and	digest	authentication,	redirections,	cookies	and	more.

we	are	going	to	adjust	its	behavior	so	that	we	can	see	the	protocol	printed	to	the	screen.	Take	a	look	at		verbose_http.py	:

import	StringIO,	httplib,	urllib2

class	VerboseHTTPResponse(httplib.HTTPResponse):

				def	_read_status(self):

								s	=	self.fp.read()

								print	'-'	*	20,	'Response',	'-'	*	20

								print	s.split('\r\n\r\n')[0]

								self.fp	=	StringIO.StringIO(s)

								return	httplib.HTTPResponse._read_status(self)

class	VerboseHTTPConnection(httplib.HTTPConnection):

				response_class	=	VerboseHTTPResponse

				def	send(self,	s):

								print	'-'	*	50

								print	s.strip()

								httplib.HTTPConnection.send(self,	s)

class	VerboseHTTPHandler(urllib2.HTTPHandler):

				def	http_open(self,	req):

								return	self.do_open(VerboseHTTPConnection,	req)

This	customization	prints	out	both	the	outgoing	request	and	the	incoming	response	instead	of	keeping	them	both	hidden.

To	allow	for	customization,	the	urllib2	library	lets	you	bypass	its	vanilla	urlopen()	function	and	instead	build	an	opener	full	of
handler	classes	of	your	own	devising—a	fact	that	we	will	use	repeatedly	as	this	chapter	progresses.	Listing	9–1	provides
exactly	such	a	handler	class	by	performing	a	slight	customization	on	the	normal	HTTP	handler.	This	customization	prints
out	both	the	outgoing	request	and	the	incoming	response	instead	of	keeping	them	both	hidden.	For	many	of	the	following
examples,	we	will	use	an	opener	object	that	we	build	right	here,	using	the	handler	from		verbose_http.py	:

>>>	from	verbose_http	import	VerboseHTTPHandler

>>>	import	urllib,	urllib2

>>>	opener	=	urllib2.build_opener(VerboseHTTPHandler)

You	can	try	using	this	opener	against	the	URL	of	the	RFC	that	we	mentioned	at	the	beginning	of	this	chapter:
	opener.open('http://www.ietf.org/rfc/rfc2616.txt')	

Instrumenting	urllib2

https://docs.python.org/2/library/urllib2.html?highlight=urllib2#urllib2


When	the	earliest	version	of	HTTP	was	first	invented,	it	had	a	single	power:	to	issue	a	method	called	GET	that	named	and
returned	a	hypertext	document	from	a	remote	server.	That	method	is	still	the	backbone	of	the	protocol	today.

The	GET	method,	like	all	HTTP	methods,	is	the	first	thing	transmitted	as	part	of	an	HTTP	request,	and	it	is	immediately
followed	by	the	request	headers.	For	simple	GET	methods,	the	request	simply	ends	with	the	blank	line	that	terminates	the
headers	so	the	server	can	immediately	stop	reading	and	send	a	response.

>>>	info	=	opener.open('http://www.ietf.org/rfc/rfc2616.txt')

GET	/rfc/rfc2616.txt	HTTP/1.1

Accept-Encoding:	identity

Host:	www.ietf.org

Connection:	close...

The	opener’s		open()		method,	like	the	plain		urlopen()		function	at	the	top	level	of	urllib2,	returns	an	information	object	that
lets	us	examine	the	result	of	the	GET	method.	You	can	see	that	the	HTTP	request	started	with	a	status	line	containing	the
HTTP	version,	a	status	code,	and	a	short	message.	The	info	object	makes	these	available	as	object	attributes;	it	also	lets
us	examine	the	headers	through	a	dictionary-like	object:

>>>	info.code

200

>>>	info.msg

'OK'

>>>	sorted(info.headers.keys())

['accept-ranges',	'connection',	'content-length',	'content-type',

'date',	'etag',	'last-modified',	'server',	'vary']

>>>	info.headers['Content-Type']

'text/plain'

Finally,	the	info	object	is	also	prepared	to	act	as	a	file.	The	HTTP	response	status	line,	the	headers,	and	the	blank	line	that
follows	them	have	all	been	read	from	the	HTTP	socket,	and	now	the	actual	document	is	waiting	to	be	read.	As	is	usually	the
case	with	file	objects,	you	can	either	start	reading	the	info	object	in	pieces	through	read(N)	or	readline();	or	you	can	choose
to	bring	the	entire	data	stream	into	memory	as	a	single	string:

>>>	print	info.read().strip()

Network	Working	Group	R.	Fielding

Request	for	Comments:	2616	UC	Irvine

Obsoletes:	2068	J.	Gettys

Category:	Standards	Track	Compaq/W3C

...

These	are	the	first	lines	of	the	longer	text	file	that	you	will	see	if	you	point	your	web	browser	at	the	same	URL.

In	a	world	of	six	billion	people	and	four	billion	IP	addresses,	the	need	quickly	became	clear	to	support	servers	that	might
host	dozens	of	web	sites	at	the	same	IP.	And	that	is	why	the	URL	location	is	now	included	in	every	HTTP	request.	For
compatibility,	it	has	not	been	made	part	of	the	GET	request	line	itself,	but	has	instead	been	stuck	into	the	headers	under	the
name	Host.

>>>	info	=	opener.open('http://www.google.com/')

--------------------	Response	--------------------

HTTP/1.1	302	Found

Cache-Control:	private

...

--------------------------------------------------

GET	/?gfe_rd=cr&ei=OY6_U_qjHOeA8QeTg4H4BQ	HTTP/1.1

Accept-Encoding:	identity

Host:	www.google.es

Connection:	close

The	GET	Method	and	The	Host	Header



User-Agent:	Python-urllib/2.7

--------------------	Response	--------------------

HTTP/1.1	200	OK

...

Depending	on	how	they	are	configured,	servers	might	return	entirely	different	sites	when	confronted	with	two	different
values	for	Host;	they	might	present	slightly	different	versions	of	the	same	site;	or	they	might	ignore	the	header	altogether.
But	semantically,	two	requests	with	different	values	for	Host	are	asking	about	two	entirely	different	URLs.	When	several
sites	are	hosted	at	a	single	IP	address,	those	sites	are	each	said	to	be	served	by	a	virtual	host,	and	the	whole	practice	is
sometimes	referred	to	as	virtual	hosting.

Is	also	important	to	take	care	that	when	handling	HTTP	diffrent	responses	can	happend,	between	them	codes,	errors,	and
redirection.	You	can	read	more	about	this	here.

https://support.google.com/webmasters/answer/40132?hl=en


By	default,	HTTP/1.1	servers	will	keep	a	TCP	connection	open	even	after	they	have	delivered	their	response.	This	enables
you	to	make	further	requests	on	the	same	socket	and	avoid	the	expense	of	creating	a	new	socket	for	every	piece	of	data
you	might	need	to	download.	Keep	in	mind	that	downloading	a	modern	web	page	can	involve	fetching	dozens,	if	not
hundreds,	of	separate	pieces	of	content.	The	HTTPConnection	class	provided	by	urllib2	lets	you	take	advantage	of	this
feature.	In	fact,	all	requests	go	through	one	of	these	objects;	when	you	use	a	function	like		urlopen()		or	use	the		open()	
method	on	an	opener	object,	an	HTTPConnection	object	is	created	behind	the	scenes,	used	for	that	one	request,	and	then
discarded.	When	you	might	make	several	requests	to	the	same	site,	use	a	persistent	connection	instead:

>>>	import	httplib

>>>	c	=	httplib.HTTPConnection('www.python.org')

>>>	c.request('GET',	'/')

>>>	original_sock	=	c.sock

>>>	content	=	c.getresponse().read()	#	get	the	whole	page

>>>	c.request('GET',	'/about/')

>>>	c.sock	is	original_sock

True

Now,	if	we	insert	this	header	manually,	then	we	force	the	HTTPConnection	object	to	create	a	second	socket	when	we	ask	it
for	a	second	page:

>>>	c	=	httplib.HTTPConnection('www.python.org')

>>>	c.request('GET',	'/',	headers={'Connection':	'close'})

>>>	original_sock	=	c.sock

>>>	content	=	c.getresponse().read()

>>>	c.request('GET',	'/about/')

>>>	c.sock	is	original_sock

False

Note	that	HTTPConnection	does	not	raise	an	exception	when	one	socket	closes	and	it	has	to	create	another	one;	you	can
keep	using	the	same	object	over	and	over	again.	This	holds	true	regardless	of	whether	the	server	is	accepting	all	of	the
requests	over	a	single	socket,	or	it	is	sometimes	hanging	up	and	forcing	HTTPConnection	to	reconnect.

Payloads	and	Persistent	Connections



The	POST	HTTP	method	was	designed	to	power	web	forms.	When	forms	are	used	with	the	GET	method,	which	is	indeed
their	default	behavior,	they	append	the	form’s	field	values	to	the	end	of	the	URL:		http://www.google.com/search?
q=python+language	

The	construction	of	such	a	URL	creates	a	new	named	location	that	can	be	saved;	bookmarked;	referenced	from	other	web
pages;	and	sent	in	e-mails,	Tweets,	and	text	messages.	And	for	actions	like	searching	and	selecting	data,	these	features
are	perfect.	But	what	about	a	login	form	that	accepts	your	e-mail	address	and	password?	Not	only	would	there	be	negative
security	implications	to	having	these	elements	appended	to	the	form	URL—such	as	the	fact	that	they	would	be	displayed
on	the	screen	in	the	URL	bar	and	included	in	your	browser	history—but	surely	it	would	be	odd	to	think	of	your	username
and	password	as	creating	a	new	location	or	page	on	the	web	site	in	question:		http://example.com/welcome?
email=brandon@rhodesmill.org&pw=aaz9Gog3	

Building	URLs	in	this	way	would	imply	that	a	different	page	exists	on	the	example.com	web	site	for	every	possible
password	that	you	could	try	typing.	This	is	undesirable	for	obvious	reasons.	And	so	the	POST	method	should	always	be
used	for	forms	that	are	not	constructing	the	name	of	a	particular	page	or	location	on	a	web	site,	but	are	instead	performing
some	action	on	behalf	of	the	caller.	Forms	in	HTML	can	specify	that	they	want	the	browser	to	use	POST	by	specifying	that
method	in	their	`

element:

<form	name="myloginform"	action="/access/dummy"	method="post">

E-mail:	<input	type="text"	name="e-mail"	size="20">

Password:	<input	type="password"	name="password"	size="20">

<input	type="submit"	name="submit"	value="Login">

</form>

Instead	of	stuffing	form	parameters	into	the	URL,	a	POST	carries	them	in	the	body	of	the	request.	We	can	perform	the
same	action	ourselves	in	Python	by	using		urlencode		to	format	the	form	parameters,	and	then	supplying	them	as	a	second
parameter	to	any	of	the		urllib2		methods	that	open	a	URL.	-	(From	the	standard	Python	library:	urllib.urlencode(query[,
doseq])		Convert	a	mapping	object	or	a	sequence	of	two-element	tuples	to	a	“percent-encoded”	string,	suitable	to	pass	to
	urlopen()		above	as	the	optional	data	argument.	This	is	useful	to	pass	a	dictionary	of	form	fields	to	a	POST	request.	)

form	=	urllib.urlencode({'inputstring':	'Atlanta,	GA'})

>>>	response	=	opener.open('http://forecast.weather.gov/zipcity.php',	form)

--------------------------------------------------

POST	/zipcity.php	HTTP/1.1

...

Content-Length:	25

Host:	forecast.weather.gov

Content-Type:	application/x-www-form-urlencoded

...

--------------------------------------------------

inputstring=Atlanta%2C+GA

--------------------	Response	--------------------

HTTP/1.1	302	Found

...

Location:	http://forecast.weather.gov/MapClick.php?CityName=Atlanta&state=GA

&site=FFC&textField1=33.7629&textField2=-84.4226&e=1

...

--------------------------------------------------

GET	/MapClick.php?CityName=Atlanta&state=GA&site=FFC&textField1=33.7629&textField2=

-84.4226&e=1	HTTP/1.1

...

--------------------	Response	--------------------

HTTP/1.1	200	OK

...

Although	our	opener	object	is	putting	a	dashed	line	between	each	HTTP	request	and	its	payload	for	clarity	(a	blank	line,
you	will	recall,	is	what	really	separates	headers	and	payload	on	the	wire)	you	are	otherwise	seeing	a	raw	HTTP	POST
method	here.	Note	these	features	of	the	request-responses	shown	in	example	above:

POST	And	Forms



The	request	line	starts	with	the	string	POST.
Content	is	provided	(and	thus,	a	Content-Length	header).
The	form	parameters	are	sent	as	the	body.
The	Content-Type	for	standard	web	forms	is	x-www-form-urlencoded.

The	most	important	thing	to	grasp	is	that	GET	and	POST	are	most	emphatically	not	simply	two	different	ways	to	format
form	parameters.	Instead,	they	actually	mean	two	entirely	different	things.	The	GET	method	means,	“I	believe	that	there	is
a	document	at	this	URL;	please	return	it.”	The	POST	method	means,	“Here	is	an	action	that	I	want	performed.”

In	the	POST	example	above	you	can	notice	that	instead	of	simply	returning	a	status	of	200	followed	by	a	page	of	weather
forecast	data,	it	instead	returned	a	302	redirect	that	urllib2	obeyed	by	performing	a	GET	for	the	page	named	in	the
Location:	header.

A	web	site	leaves	users	in	a	very	difficult	position	if	it	answers	a	POST	form	submission	with	a	literal	web	page.Well-
designed	user-facing	POST	forms	always	redirect	to	a	page	that	shows	the	result	of	the	action,	and	this	page	can	be	safely
bookmarked,	shared,	stored,	and	reloaded.	This	is	an	important	feature	of	modern	browsers:	if	a	POST	results	in	a	redirect,
then	pressing	the	reload	button	simply	refetches	the	final	URL	and	does	not	reattempt	the	whole	train	of	redirects	that	lead
to	the	current	location

Successful	Form	POSTs	Should	Always	Redirect



Web-based	APIs,	which	fetch	documents	and	data	using	GET	and	POST	to	specific	URLs.	Therefore,	we	should
immediately	note	that	many	modern	web	services	try	to	integrate	their	APIs	more	tightly	with	HTTP	by	going	beyond	the
two	most	common	HTTP	methods	by	implementing	additional	methods	like	PUT	and	DELETE.

A	design	pattern	named	“Representational	State	Transfer”	has	therefore	been	taking	hold	in	many	developer	communities.
It	specifies	that	the	nouns	of	an	API	should	live	at	their	own	URLs.	For	example,	PUT,	GET,	POST,	and	DELETE	should	be
used,	respectively,	to	create,	fetch,	modify,	and	remove	the	documents	living	at	these	URLs.

By	coupling	this	basic	recommendation	with	further	guidelines,	the	REST	methodology	guides	the	creation	of	web	services
that	make	more	complete	use	of	the	HTTP	protocol.	Such	web	services	also	offer	quite	clean	semantics,	and	can	be
accelerated	by	the	same	caching	proxies	that	are	often	used	to	speed	the	delivery	of	normal	web	pages.

Note	that	HTTP	supports	arbitrary	method	names,	even	though	the	standard	defines	specific	semantics	for	GET	and	POST
and	all	of	the	rest.	Tradition	would	dictate	using	the	well-known	methods	defined	in	the	standard	unless	you	are	using	a
specific	framework	or	methodology	that	recognizes	and	has	defined	other	methods.

REST	And	More	HTTP	Methods



	User-Agent:	Python-urllib/2.6	:	This	header	is	optional	in	the	HTTP	protocol,	and	many	sites	simply	ignore	or	log	it.	It	can
be	useful	when	sites	want	to	know	which	browsers	their	visitors	use	most	often,	and	it	can	sometimes	be	used	to
distinguish	search	engine	spiders	(bots)	from	normal	users	browsing	a	site.

Many	web	sites	are	sensitive	to	the	kinds	of	browsers	that	view	them.	If	you	need	to	access	such	sites	with	`urllib2,	you	can
simply	instruct	it	to	lie	about	its	identity,	and	the	receiving	web	site	will	not	know	the	difference:

>>>	url	=	'https://wca.eclaim.com/'

>>>	urllib2.urlopen(url).read()

'<HTML>...The	following	are...required...Microsoft	Internet	Explorer...'

>>>	agent	=	'Mozilla/5.0	(Windows;	U;	MSIE	7.0;	Windows	NT	6.0;	en-US)'

>>>	request	=	urllib2.Request(url)

>>>	request.add_header('User-Agent',	agent)

>>>	urllib2.urlopen(request).read()

'\r\n<HTML>\r\n<HEAD>\r\n\t<TITLE>Eclaim.com	-	Log	In</TITLE>...'

There	are	databases	of	possible	user	agent	strings	online	at	several	sites	that	you	can	reference	both	when	analyzing
agent	strings	that	your	own	servers	have	received,	as	well	as	when	concocting	strings	for	your	own	HTTP	requests:

http://www.zytrax.com/tech/web/browser_ids.htm
http://www.useragentstring.com/pages/useragentstring.php

Identifying	User	Agents	and	Web	Servers

http://www.zytrax.com/tech/web/browser_ids.htm
http://www.useragentstring.com/pages/useragentstring.php


It	is	always	possible	to	simply	make	an	HTTP	request	and	let	the	server	return	a	document	with	whatever	Content-Type:	is
appropriate	for	the	information	we	have	requested.	Some	of	the	usual	content	types	encountered	by	a	browser	include	the
following:	text/html,	text/plain,	text/css,	image/gif,	image/jpeg,	image/x-png,	application/javascript,	application/pdf,
application/zip.

If	the	web	service	is	returning	a	generic	data	stream	of	bytes	that	it	cannot	describe	more	specifically,	it	can	always	fall	back
to	the	content	type:application/octet-stream.

The	four	headers	that	will	interest	you	include	the	following:	Accept,	Accept-Charset,	Accept-Language,	Accept-Encoding

Each	of	these	headers	supports	a	comma-separated	list	of	items,	where	each	item	can	be	given	a	weight	between	one	and
zero	(larger	weights	indicate	more	preferred	items)	by	adding	a	suffix	that	consists	of	a	semi-colon	and	q=	string	to	the
item.	The	result	will	look	something	like	this	(using,	for	illustration,	the	Accept:	header	that	my	Google	Chrome	browser
seems	to	be	currently	using):		Accept:	application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;	»
q=0.8,image/png,*/*;q=0.5	

This	indicates	that	Chrome	prefers	XML	and	XHTML,	but	will	accept	HTML	or	even	plain	text	if	those	are	the	only	document
formats	available;	that	Chrome	prefers	PNG	images	when	it	can	get	them;	and	that	it	has	no	preference	between	all	of	the
other	content	types	in	existence.

Content	Type	Negotiation



While	many	documents	delivered	over	HTTP	are	already	fairly	heavily	compressed,	including	images	and	file	formats	like
PDF	,	web	pages	themselves	are	written	in	verbose	SGML	dialects	that	can	consume	much	less	bandwidth	if	subjected	to
generic	textual	compression.	Similarly,	CSS	and	JavaScript	files	also	contain	very	stereotyped	patterns	of	punctuation	and
repeated	variable	names,	which	is	very	amenable	to	compression.

Web	clients	can	make	servers	aware	that	they	accept	compressed	documents	by	listing	the	formats	they	support	in	a
request	header,	as	in	this	example:	`Accept-Encoding:	gzip``

For	some	reason,	many	sites	seem	to	not	offer	compression	unless	the	User-Agent:	header	specifies	something	they
recognize.	Thus,	to	convince	Google	to	compress	its	Google	News	page,	you	have	to	use		urllib2		something	like	this:

>>>	request	=	urllib2.Request('http://news.google.com/')

>>>	request.add_header('Accept-Encoding',	'gzip')

>>>	request.add_header('User-Agent',	'Mozilla/5.0')

>>>	info	=	opener.open(request)

--------------------------------------------------

GET	/	HTTP/1.1

Host:	news.google.com

User-Agent:	Mozilla/5.0

Connection:	close

Accept-Encoding:	gzip

--------------------	Response	--------------------

HTTP/1.1	200	OK

Content-Type:	text/html;	charset=UTF-8

...

Content-Encoding:	gzip

...

Remember	that	web	servers	do	not	have	to	perform	compression,	and	that	many	will	ignore	your		Accept-Encoding:	header	.
Therefore,	you	should	always	check	the	content	encoding	of	the	response,	and	perform	decompression	only	when	the
server	declares	that	it	is	necessary:

>>>	info.headers['Content-Encoding']	==	'gzip'

True

>>>	import	gzip,	StringIO

>>>	gzip.GzipFile(fileobj=StringIO.StringIO(info.read())).read()

'<!DOCTYPE	HTML	...<html>...</html>'

As	you	can	see,	Python	does	not	let	us	pass	the	file-like	info	response	object	directly	to	the	GzipFile	class	because,	it	is	not
quite	file-like	enough.	Here,	we	can	perform	the	quick	work-around	of	reading	the	whole	compressed	file	into	memory	and
then	wrapping	it	in	a	StringIO	object	that	does	support	`tell().

Compression



Many	elements	of	a	typical	web	site	design	are	repeated	on	every	page	you	visit,	and	your	browsing	would	slow	to	a	crawl
if	every	image	and	decoration	had	to	be	downloaded	separately	for	every	page	you	viewed.	Well-configured	web	servers
therefore	add	headers	to	every	HTTP	response	that	allow	browsers,	as	well	as	any	proxy	caches	between	the	browser	and
the	server,	to	continue	using	a	copy	of	a	downloaded	resource	for	some	period	of	time	until	it	expires.

There	are	two	basic	mechanisms	by	which	servers	can	support	client	caching.	In	the	first	approach,	an	HTTP	response
includes	an	Expires:	header	that	formats	a	date	and	time	using	the	same	format	as	the	standard	Date:	header:		Expires:
Sun,	21	Jan	2010	17:06:12	GMT	.	However,	this	requires	the	client	to	check	its	clock—and	many	computers	run	clocks	that
are	far	ahead	of	or	behind	the	real	current	date	and	time.

This	brings	us	to	a	second,	more	modern	alternative,	the	Cache-Control	header,	that	depends	only	on	the	client	being	able
to	correctly	count	seconds	forward	from	the	present.	For	example,	to	allow	an	image	or	page	to	be	cached	for	an	hour	but
then	insist	that	it	be	refetched	once	the	hour	is	up,	a	cache	control	header	could	be	supplied	like	this:		Cache-Control:	max-
age=3600,	must-revalidate	.

HTTP	Caching



It’s	possible	that	you	might	want	your	program	to	check	a	series	of	links	for	validity	or	whether	they	have	moved,	but	you	do
not	want	to	incur	the	expense	of	actually	downloading	the	body	that	would	follow	the	HTTP	headers.	In	this	case,	you	can
issue	a	HEAD	request.	This	is	directly	possible	through		httplib	,	but	it	can	also	be	performed	by		urllib2		if	you	are	willing
to	write	a	small	request	class	of	your	own:

>>>	class	HeadRequest(urllib2.Request):

...	def	get_method(self):

...	return	'HEAD'

...

>>>	info	=	urllib2.urlopen(HeadRequest('http://www.google.com/'))

>>>	info.read()

''

You	can	see	that	the	body	of	the	response	is	completely	empty.

The	HEAD	Method



An	encrypted	URL	starts	with	https:	instead	of	simply	http:,	uses	the	default	port	443	instead	of	port	80,	and	uses	TLS.

Encryption	has	to	be	negotiated	before	the	user	can	send	his	HTTP	request,	lest	all	of	the	information	in	it	be	divulged;	but
until	the	request	is	transmitted,	the	server	does	not	know	what	Host:	the	request	will	specify.	Therefore,	encrypted	web	sites
still	live	under	the	old	problem	of	having	to	use	a	different	IP	address	for	every	domain	that	must	be	hosted.

A	technique	known	as	“Server	Name	Indication”	(SNI)	has	been	developed	to	get	around	this	traditional	restriction;
however,	Python	does	not	yet	support	it.	It	appears,	though,	that	a	patch	was	applied	to	the	Python	3	trunk	with	this	feature,
only	days	prior	to	the	time	of	writing.	Here	is	the	ticket	in	case	you	want	to	follow	the	issue:
http://bugs.python.org/issue5639.

To	use	HTTPS	from	Python,	simply	supply	an	https:	method	in	your	URL:

>>>	info	=	urllib2.urlopen('https://www.ietf.org/rfc/rfc2616.txt')

>>>

If	the	connection	works	properly,	then	neither	your	government	nor	any	of	the	various	large	and	shadowy	corporations	that
track	such	things	should	be	able	to	easily	determine	either	the	search	term	you	used	or	the	results	you	viewed.

HTTPS	Encryption
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The	HTTP	protocol	came	with	a	means	of	authentication	that	was	so	poorly	thought	out	and	so	badly	implemented	that	it
seems	to	have	been	almost	entirely	abandoned.	When	a	server	was	asked	for	a	page	to	which	access	was	restricted,	it
was	supposed	to	return	a	response	code:		HTTP/1.1	401	Authorization	Required	.

The	authentication	token	was	generated	by	doing	base64	encoding	on	the	colon-separated	username	and	password:

>>>	import	base64

>>>	print	base64.b64encode("guido:vanOranje!")

Z3VpZG86dmFuT3JhbmplIQ==

This,	of	course,	just	protects	any	special	characters	in	the	username	and	password	that	might	have	been	confused	as	part
of	the	headers	themselves;	it	does	not	protect	the	username	and	password	at	all,	since	they	can	very	simply	be	decoded
again:

>>>	print	base64.b64decode("Z3VpZG86dmFuT3JhbmplIQ==")

guido:vanOranje!

Anyway,	once	the	encoded	value	was	computed,	it	could	be	included	in	the	second	request	like	this:	`Authorization:	Basic
QWxhZGRpbjpvcGVuIHNlc2FtZQ==``

An	incorrect	password	or	unknown	user	would	elicit	additional	401	errors	from	the	server,	resulting	in	the	pop-up	box
appearing	again	and	again.	Finally,	if	the	user	got	it	right,	she	would	either	be	shown	the	resource	or—if	she	in	fact	did	not
have	permission—be	shown	a	response	code	like	the	following:	403	Forbidden	.

Python	supports	this	kind	of	authentication	through	a	handler	that,	as	your	program	uses	it,	can	accumulate	a	list	of
passwords.

auth_handler	=	.HTTPBasicAuthHandler()

auth_handler.add_password(realm='voetbal',	uri='http://www.onsoranje.nl/',

												user='guido',	passwd='vanOranje!')

The	resulting	handler	can	be	passed	into	build_opener().

HTTP	Authentication



The	actual	mechanism	that	powers	user	identity	tracking,	logging	in,	and	logging	out	of	modern	web	sites	is	the	cookie.	The
HTTP	responses	sent	by	a	server	can	optionally	include	a	number	of	Set-cookie:	headers	that	browsers	store	on	behalf	of
the	user.	In	every	subsequent	request	made	to	that	site,the	browser	will	include	a	Cookie:	header	corresponding	to	each
cookie	that	has	been	set.

The	most	obvious	use	os	cookies	is	to	keep	up	with	user	identity.	To	support	logging	in,	a	web	site	can	deploy	a	normal
form	that	asks	for	your	username	and	password	(or	e-mail	address	and	password,	or	whatever).

Cookies	can	also	be	used	for	feats	other	than	simply	identifying	users.	For	example,	a	site	can	issue	a	cookie	to	every
browser	that	connects,	enabling	it	to	track	even	casual	visitors.	This	approach	enables	an	online	store	to	let	visitors	start
building	a	shopping	cart	full	of	items	without	ever	being	forced	to	create	an	account.

From	the	point	of	view	of	a	web	client,	cookies	are	moderately	short	strings	that	have	to	be	stored	and	then	divulged	when
matching	requests	are	made.	The	Python	Standard	Library	puts	this	logic	in	its	own	module,		cookielib	(The	cookielib
module	defines	classes	for	automatic	handling	of	HTTP	cookies.),	whose	CookieJar	objects	can	be	used	as	small	cookie
databases	by	the	HTTPCookieProcessor	in	`urllib2.	To	see	its	effect,	you	need	go	no	further	than	the	front	page	of	Google,
which	sets	cookies	in	the	mere	event	of	an	unknown	visitor	arriving	at	the	site	for	the	first	time.	Here	is	how	we	create	a
new	opener	that	knows	about	cookies:

>>>	import	cookielib

>>>	cj	=	cookielib.CookieJar()

>>>	cookie_opener	=	urllib2.build_opener(VerboseHTTPHandler,

...	urllib2.HTTPCookieProcessor(cj))

Opening	the	Google	front	page	will	result	in	two	different	cookies	getting	set:

>>>	response	=	cookie_opener.open('http://www.google.com/')

--------------------------------------------------

GET	/	HTTP/1.1

...

--------------------	Response	--------------------

HTTP/1.1	200	OK

...

Set-Cookie:	PREF=ID=94381994af6d5c77:FF=0:TM=1288205983:LM=1288205983:S=Mtwivl7EB73uL5Ky;

expires=Fri,	26-Oct-2012	18:59:43	GMT;	path=/;	domain=.google.com

Set-Cookie:	NID=40=rWLn_I8_PAhUF62J0yFLtb1-AoftgU0RvGSsa81FhTvd4vXD91iU5DOEdxSVt4otiISY-

3RfEYcGFHZA52w3-85p-hujagtB9akaLnS0QHEt2v8lkkelEGbpo7oWr9u5;	expires=Thu,	28-Apr-2011

18:59:43	GMT;	path=/;	domain=.google.com;	HttpOnly

...

If	you	investigate	more	about		cookielib	,you	will	find	that	you	can	do	more	than	query	and	modify	the	cookies	that	have
been	set.	You	can	also	automatically	store	them	in	a	file,	so	that	they	survive	from	one	Python	session	to	the	next.	You	can
even	create	cookie	processors	that	implement	your	own	custom	policies	with	respect	to	which	cookies	to	store	and	which	to
divulge.

Servers	can	constrain	a	cookie	to	a	particular	domain	and	path,	in	addition	to	setting	a	Max-age	or	expires	time.
Unfortunately,	some	browsers	ignore	this	setting,	so	sites	should	never	base	their	security	on	the	assumption	that	the
expires	time	will	be	obeyed.	Therefore,	servers	can	mark	cookies	as	secure;	this	ensures	that	such	cookies	are	only
transmitted	with	HTTPS	requests	to	the	site	and	never	in	unsecure	HTTP	requests.

Cookies
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A	perpetual	problem	with	cookies	is	that	web	site	designers	do	not	seem	to	realize	that	cookies	need	to	be	protected	as
zealously	as	your	username	and	password.	While	it	is	true	that	well-designed	cookies	expire	and	will	no	longer	be	accepted
as	valid	by	the	server,	cookies—while	they	last—give	exactly	as	much	access	to	a	web	site	as	a	username	and	password.

Some	sites	do	not	protect	cookies	at	all:	they	might	require	HTTPS	for	your	username	and	password,	but	then	return	you	to
normal	HTTP	for	the	rest	of	your	session.	Other	sites	are	smart	enough	to	protect	subsequent	page	loads	with	HTTPS,
even	after	you	have	left	the	login	page,	but	they	forget	that	static	data	from	the	same	domain,	like	images,	decorations,
CSS	files,	and	JavaScript	source	code,	will	also	carry	your	cookie.	The	better	alternatives	are	to	either	send	all	of	that
information	over	HTTPS,	or	to	carefully	serve	it	from	a	different	domain	or	path	that	is	outside	the	jurisdiction	of	the	session
cookie.

Should	you	happen	to	observe	or	capture	a	Cookie:	header	from	an	HTTP	request	that	you	observe,	remember	that	there
is	no	need	to	store	it	in	a	CookieJar	or	represent	it	as	a	cookielib	object	at	all.	Indeed,	you	could	not	do	that	anyway
because	the	outgoing	Cookie:	header	does	not	reveal	the	domain	and	path	rules	that	the	cookie	was	stored	with.	Instead,
just	inject	the	Cookie:	header	raw	into	the	requests	you	make	to	the	web	site:		̀ python	request	=	urllib2.Request(url)

request.add_header('Cookie',	intercepted_value)	info	=	urllib2.urlopen(request)	

HTTP	Session	Hijacking



The	earliest	experiments	with	scripts	that	could	run	in	web	browsers	revealed	a	problem:	all	of	the	HTTP	requests	made	by
the	browser	were	done	with	the	authority	of	the	user’s	cookies,	so	pages	could	cause	quite	a	bit	of	trouble	by	attempting	to,
say,	POST	to	the	online	web	site	of	a	popular	bank	asking	that	money	be	transferred	to	the	attacker’s	account.	Anyone	who
visited	the	problem	site	while	logged	on	to	that	particular	bank	in	another	window	could	lose	money.	To	address	this,
browsers	imposed	the	restriction	that	scripts	in	languages	like	JavaScript	can	only	make	connections	back	to	the	site	that
served	the	web	page,	and	not	to	other	web	sites.	This	is	called	the	“same	origin	policy.”

Today,	would-be	attackers	find	ways	around	this	policy	by	using	a	constellation	of	attacks	called	cross-site	scripting	(known
by	the	acronym	XSS	to	prevent	confusion	with	Cascading	Style	Sheets).	These	techniques	include	things	like	finding	the
fields	on	a	web	page	where	the	site	will	include	snippets	of	user-provided	data	without	properly	escaping	them,	and	then
figuring	out	how	to	craft	a	snippet	of	data	that	will	perform	some	compromising	action	on	behalf	of	the	user	or	send	private
information	to	a	third	party.	Next,	the	wouldbe	attackers	release	a	link	or	code	containing	that	snippet	onto	a	popular	web
site,	bulletin	board,	or	in	spam	e-mails,	hoping	that	thousands	of	people	will	click	and	inadvertently	assist	in	their	attack
against	the	site.	There	are	a	collection	of	techniques	that	are	important	for	avoiding	cross-site	scripting;	you	can	find	them
in	any	good	reference	on	web	development.	The	most	important	ones	include	the	following:

When	processing	a	form	that	is	supposed	to	submit	a	POST	request,	always	carefully	disregard	any	GET	parameters.

Never	support	URLs	that	produce	some	side	effect	or	perform	some	action	simply	through	being	the	subject	of	a	GET.

In	every	form,	include	not	only	the	obvious	information—such	as	a	dollar	amount	and	destination	account	number	for
bank	transfers—but	also	a	hidden	field	with	a	secret	value	that	must	match	for	the	submission	to	be	valid.	That	way,
random	POST	requests	that	attackers	generate	with	the	dollar	amount	and	destination	account	number	will	not	work
because	they	will	lack	the	secret	that	would	make	the	submission	valid.

While	the	possibilities	for	XSS	are	not,	strictly	speaking,	problems	or	issues	with	the	HTTP	protocol	itself,	it	helps	to	have	a
solid	understanding	of	them	when	you	are	trying	to	write	any	program	that	operates	safely	on	the	World	Wide	Web.

A	library	called	WebOb	is	also	available	for	Python	(and	listed	on	the	Python	Package	Index)	that	contains	HTTP	request
and	response	classes	that	were	designed	from	the	other	direction:	that	is,	they	were	intended	all	along	as	general-purpose
representations	of	HTTP	in	all	of	its	low-level	details.	You	can	learn	more	about	them	at	the	WebOb	project	web	page:
http://pythonpaste.org/webob/

Cross-Site	Scripting	Attacks
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Most	web	sites	are	designed	first	and	foremost	for	human	eyes.	While	well-designed	sites	offer	formal	APIs	by	which	you
can	construct	Google	maps,	upload	Flickr	photos,	or	browse	YouTube	videos,	many	sites	offer	nothing	but	HTML	pages
formatted	for	humans.	If	you	need	a	program	to	be	able	to	fetch	its	data,	then	you	will	need	the	ability	to	dive	into	densely
formatted	markup	and	retrieve	the	information	you	need—a	process	known	affectionately	as	screen	scraping.

Screen	Scraping



Before	you	can	parse	an	HTML-formatted	web	page,	you	of	course	have	to	acquire	some.Here	are	some	options	for
downloading	content.

You	can	use		urllib2	,	or	the	even	lower-level		httplib	,	to	construct	an	HTTP	request	that	will	return	a	web	page.	For
each	form	that	has	to	be	filled	out,	you	will	have	to	build	a	dictionary	representing	the	field	names	and	data	values
inside;	unlike	a	real	web	browser,	these	libraries	will	give	you	no	help	in	submitting	forms.

You	can	to	install	mechanize	and	write	a	program	that	fills	out	and	submits	web	forms	much	as	you	would	do	when
sitting	in	front	of	a	web	browser.	The	downside	is	that,	to	benefit	from	this	automation,	you	will	need	to	download	the
page	containing	the	form	HTML	before	you	can	then	submit	it—possibly	doubling	the	number	of	web	requests	you
perform.

If	you	need	to	download	and	parse	entire	web	sites,	take	a	look	at	the	Scrapy	project,	hosted	at	http://scrapy.org,	which
provides	a	framework	for	implementing	your	own	web	spiders.	With	the	tools	it	provides,	you	can	write	programs	that
follow	links	to	every	page	on	a	web	site,	tabulating	the	data	you	want	extracted	from	each	page.

When	web	pages	wind	up	being	incomplete	because	they	use	dynamic	JavaScript	to	load	data	that	you	need,	you	can
use	the	QtWebKit	module	of	the	PyQt4	library	to	load	a	page,	let	the	JavaScript	run,	and	then	save	or	parse	the
resulting	complete	HTML	page.

Finally,	if	you	really	need	a	browser	to	load	the	site,	both	the	Selenium	and	Windmill	test	platforms	provide	a	way	to
drive	a	standard	web	browser	from	inside	a	Python	program.	You	can	start	the	browser	up,	direct	it	to	the	page	of
interest,	fill	out	and	submit	forms,	do	whatever	else	is	necessary	to	bring	up	the	data	you	need,	and	then	pull	the
resulting	information	directly	from	the	DOM	elements	that	hold	them.

Fetching	Web	Pages
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The	task	of	grabbing	information	from	a	web	site	usually	starts	by	reading	it	carefully	with	a	web	browser	and	finding	a
route	to	the	information	you	need.

Figure		fetch_urllib2.py		shows	the	site	of	the	National	Weather	Service;	for	our	first	example,	we	will	write	a	program	that
takes	a	city	and	state	as	arguments	and	prints	out	the	current	conditions,	temperature,	and	humidity.

When	using	the	urllib2	module	from	the	Standard	Library,	you	will	have	to	read	the	web	page	HTML	manually	to	find	the
form.	You	can	use	the	View	Source	command	in	your	browser,	search	for	the	words	“Local	forecast,”	and	find	the	following
form	in	the	middle	of	the	sea	of	HTML:

<form	method="post"	action="http://forecast.weather.gov/zipcity.php"	...>

...

<input	type="text"	id="zipcity"	name="inputstring"	size="9"

»	value="City,	St"	onfocus="this.value='';"	/>

<input	type="submit"	name="Go2"	value="Go"	/>

</form>

The	only	important	elements	here	are	the		<form>		itself	and	the	<input>		fields	inside;	everything	else	is	just	decoration
intended	to	help	human	readers.	This	form	does	a	POST	to	a	particular	URL	with,	it	appears,	just	one	parameter:	an
inputstring	giving	the	city	name	and	state.	fetch_urllib2.py		shows	a	simple	Python	program	that	uses	only	the	Standard
Library	to	perform	this	interaction,	and	saves	the	result	to	phoenix.html.

import	urllib,	urllib2

data	=	urllib.urlencode({'inputstring':	'Phoenix,	AZ'})

info	=	urllib2.urlopen('http://forecast.weather.gov/zipcity.php',	data)

content	=	info.read()

open('phoenix.html',	'w').write(content)

On	the	one	hand,		urllib2		makes	this	interaction	very	convenient;	we	are	able	to	download	a	forecast	page	using	only	a
few	lines	of	code.	But,	on	the	other	hand,	we	had	to	read	and	understand	the	form	ourselves	instead	of	relying	on	an	actual
HTML	parser	to	read	it.	The	approach	encouraged	by	mechanize	is	quite	different:	you	need	only	the	address	of	the
opening	page	to	get	started,	and	the	library	itself	will	take	responsibility	for	exploring	the	HTML	and	letting	you	know	what
forms	are	present.	Here	are	the	forms	that	it	finds	on	this	particular	page:

>>>	import	mechanize

>>>	br	=	mechanize.Browser()

>>>	response	=	br.open('http://www.weather.gov/')

>>>	for	form	in	br.forms():

...	print	'%r	%r	%s'	%	(form.name,	form.attrs.get('id'),	form.action)

...	for	control	in	form.controls:

...	print	'	',	control.type,	control.name,	repr(control.value)

None	None	http://search.usa.gov/search

»	hidden	v:project	'firstgov'

»	text	query	''

»	radio	affiliate	['nws.noaa.gov']

»	submit	None	'Go'

None	None	http://forecast.weather.gov/zipcity.php

»	text	inputstring	'City,	St'

»	submit	Go2	'Go'

'jump'	'jump'	http://www.weather.gov/

»	select	menu	['http://www.weather.gov/alerts-beta/']

»	button	None	None

Once	we	have	determined	that	we	need	the		zipcity.php		form,	we	can	write	a	program	like	that	shown	in
	etch_mechanize.py	.	You	can	see	that	at	no	point	does	it	build	a	set	of	form	fields	manually	itself,	as	was	necessary	in	our
previous	listing.	Instead,	it	simply	loads	the	front	page,	sets	the	one	field	value	that	we	care	about,	and	then	presses	the
form’s	submit	button.	Note	that	since	this	HTML	form	did	not	specify	a	name,	we	had	to	create	our	own	filter	function—the

Downloading	Pages	Through	Form	Submission
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lambda	function	in	the	listing—to	choose	which	of	the	three	forms	we	wanted.

import	mechanize

br	=	mechanize.Browser()

br.open('http://www.weather.gov/')

br.select_form(predicate=lambda(form):	'zipcity'	in	form.action)

br['inputstring']	=	'Phoenix,	AZ'

response	=	br.submit()

content	=	response.read()

open('phoenix.html',	'w').write(content)

Many	mechanize	users	instead	choose	to	select	forms	by	the	order	in	which	they	appear	in	the	page—in	which	case	we
could	have	called	select_form(nr=1).	But	I	prefer	not	to	rely	on	the	order,	since	the	real	identity	of	a	form	is	inherent	in	the
action	that	it	performs,	not	its	location	on	a	page.



The	Hypertext	Markup	Language	(HTML)	is	one	of	many	markup	dialects	built	atop	the	Standard	Generalized	Markup
Language	(SGML),	which	bequeathed	to	the	world	the	idea	of	using	thousands	of	angle	brackets	to	mark	up	plain	text.
Inserting	bold	and	italics	into	a	format	like	HTML	is	as	simple	as	typing	eight	angle	brackets:

	The	<b>very</b>	strange	book	<i>Tristram	Shandy</i>.		The	very	strange	book	Tristram	Shandy.

In	the	terminology	of	SGML,	the	strings		<b	>	and		</b>		are	each	tags—they	are,	in	fact,	an	opening	and	a	closing	tag—
and	together	they	create	an	element	that	contains	the	text	very	inside	it.	Elements	can	contain	text	as	well	as	other
elements,	and	can	define	a	series	of	key/value	attribute	pairs	that	give	more	information	about	the	element:

	<p	content="personal">I	am	reading	<i	document="play">Hamlet</i>.</p>	

I	am	reading	Hamlet.

The	problem	with	SGML	languages	in	this	regard—and	HTML	is	one	particular	example—is	that	they	expect	parsers	to
know	the	rules	about	which	elements	can	be	nested	inside	which	other	elements,	and	this	leads	to	constructions	like	this
unordered	list	<ul	>,	inside	which	are	several	list	items		<li>	:

	<ul><li>First<li>Second<li>Third<li>Fourth</ul>	

First
Second
Third
Fourth

Since	HTML	in	fact	says	that

elements	cannot	nest,	an	HTML	parser	will	understand	the	foregoing	snippet	to	be	equivalent	to	this	more	explicit	XML
string:

	<ul><li>First</li><li>Second</li><li>Third</li><li>Fourth</li></ul>	

First
Second
Third
Fourth

And	beyond	this	implicit	understanding	of	HTML	that	a	parser	must	possess	are	the	twin	problems	that,	first,	various
browsers	over	the	years	have	varied	wildly	in	how	well	they	can	reconstruct	the	document	structure	when	given	very
concise	or	even	deeply	broken	HTML;	and,	second,	most	web	page	authors	judge	the	quality	of	their	HTML	by	whether
their	browser	of	choice	renders	it	correctly.	This	has	resulted	not	only	in	a	World	Wide	Web	that	is	full	of	sites	with	invalid
and	broken	HTML	markup,	but	also	in	the	fact	that	the	permissiveness	built	into	browsers	has	encouraged	different	flavors
of	broken	HTML	among	their	different	user	groups.

For	more	documentation	about	these	topic	visit:

http://www.w3.org/MarkUp/Guide/
http://www.w3.org/MarkUp/Guide/Advanced.html
http://www.w3.org/MarkUp/Guide/Style
http://werbach.com/barebones/barebones.html
http://www.w3.org/TR/REC-html40/
http://validator.w3.org/
http://tidy.sourceforge.net/
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Parsing	HTML	with	Python	requires	three	choices:

The	parser	you	will	use	to	digest	the	HTML,	and	try	to	make	sense	of	its	tangle	of	opening	and	closing	tags.

The	API(Application	Programming	Interface)	by	which	your	Python	program	will	access	the	tree	of	concentric	elements
that	the	parser	built	from	its	analysis	of	the	HTML	page.

What	kinds	of	selectors	you	will	be	able	to	write	to	jump	directly	to	the	part	of	the	page	that	interests	you,	instead	of
having	to	step	into	the	hierarchy	one	element	at	a	time.

The	issue	of	selectors	is	a	very	important	one,	because	a	well-written	selector	can	unambiguously	identify	an	HTML
element	that	interests	you	without	your	having	to	touch	any	of	the	elements	above	it	in	the	document	tree.

Now,	I	should	pause	for	a	second	to	explain	terms	like	“deeper,”	and	I	think	the	concept	will	be	clearest	if	we	reconsider	the
unordered	list	that	was	quoted	in	the	previous	section.	An	experienced	web	developer	looking	at	that	list	rearranges	it	in	her
head,	so	that	this	is	what	it	looks	like:

First

Second

Third

Fourth

<ul>

<li>First</li>

<li>Second</li>

<li>Third</li>

<li>Fourth</li>

</ul>

Here	the		<ul>		element	is	said	to	be	a	“parent”	element	of	the	individual	list	items,	which	“wraps”	them	and	which	is	one
level	“above”	them	in	the	whole	document.	The	<li>		elements	are	“siblings”	of	one	another;	each	is	a	“child”	of	the		<ul>	
element	that	“contains”	them,	and	they	sit	“below”	their	parent	in	the	larger	document	tree.	This	kind	of	spatial	thinking
winds	up	being	very	important	for	working	your	way	into	a	document	through	an	API.

In	brief,	here	are	your	choices	along	each	of	the	three	axes	that	were	just	listed:

The	most	powerful,	flexible,	and	fastest	parser	at	the	moment	appears	to	be	the	HTMLParser	that	comes	with	lxml;	the
next	most	powerful	is	the	longtime	favorite	BeautifulSoup	;	and	coming	in	dead	last	are	the	parsing	classes	included
with	the	Python	Standard	Library,	which	no	one	seems	to	use	for	serious	screen	scraping.

The	best	API	for	manipulating	a	tree	of	HTML	elements	is	ElementTree,	which	has	been	brought	into	the	Standard
Library	for	use	with	the	Standard	Library	parsers,	and	is	also	the	API	supported	by	lxml;	BeautifulSoup	supports	an	API
peculiar	to	itself;	and	a	pair	of	ancient,	ugly,	event-based	interfaces	to	HTML	still	exist	in	the	Python	Standard	Library.

The	lxml	library	supports	two	of	the	major	industry-standard	selectors:	CSS	selectors	and	XPath	query	language;
BeautifulSoup	has	a	selector	system	all	its	own,	but	one	that	is	very	powerful	and	has	powered	countless	web-scraping
programs	over	the	years.

Three	Axes



The	tree	of	objects	that	a	parser	creates	from	an	HTML	file	is	often	called	a	Document	Object	Model,	or	DOM,	even	though
this	is	officially	the	name	of	one	particular	API	defined	by	the	standards	bodies	and	implemented	by	browsers	for	the	use	of
JavaScript	running	on	a	web	page.

The	task	we	have	set	for	ourselves,	you	will	recall,	is	to	find	the	current	conditions,	temperature,	and	humidity	in	the
phoenix.html	page	that	we	have	downloaded

There	are	two	approaches	to	narrowing	your	attention	to	the	specific	area	of	the	document	in	which	you	are	interested.	You
can	either	search	the	HTML	for	a	word	or	phrase	close	to	the	data	that	you	want,	or,	as	we	mentioned	previously,	use
Google	Chrome	or	Firefox	with	Firebug	to	“Inspect	Element”	and	see	the	element	you	want	embedded	in	an	attractive
diagram	of	the	document	tree.

To	see	how	direct	document-object	manipulation	would	work	in	this	case,	we	can	load	the	raw	page	directly	into	both	the
lxml	and	BeautifulSoup	systems.

>>>	import	lxml.etree

>>>	parser	=	lxml.etree.HTMLParser(encoding='utf-8')

>>>	tree	=	lxml.etree.parse('phoenix.html',	parser)

The	need	for	a	separate	parser	object	here	is	because,	as	you	might	guess	from	its	name,	lxml	is	natively	targeted	at	XML
files.

>>>	from	BeautifulSoup	import	BeautifulSoup

>>>	soup	=	BeautifulSoup(open('phoenix.html'))

Traceback	(most	recent	call	last):

...

HTMLParseError:	malformed	start	tag,	at	line	96,	column	720

What	on	earth?	Well,	look,	the	National	Weather	Service	does	not	check	or	tidy	its	HTM.	Jumping	to	line	96,	column	720	of
phoenix.html,	we	see	that	there	does	indeed	appear	to	be	some	broken	HTML:

<a	href="http://www.weather.gov"<u>www.weather.gov</u></a>

You	can	see	that	the		<u>	tag	starts	before	a	closing	angle	bracket	has	been	encountered	for	the		<a>		tag.	But	why	should
BeautifulSoup	care.	I	wonder	what	version	I	have	installed.

>>>	BeautifulSoup.__version__

'3.1.0'

Well,	drat.	I	typed	too	quickly	and	was	not	careful	to	specify	a	working	version	when	I	ran	pip	to	install	BeautifulSoup	into
my	virtual	environment.	Let’s	try	again:

root@erlerobot:~/Python_files#	pip	install	BeautifulSoup==3.0.8.1

Now,	if	we	were	to	take	the	approach	of	starting	at	the	top	of	the	document	and	digging	ever	deeper	until	we	find	the	node
that	we	are	interested	in,	we	are	going	to	have	to	generate	some	very	verbose	code.	Here	is	the	approach	we	would	have
to	take	with	lxml:

Diving	into	an	HTML	Document

https://pypi.python.org/pypi/BeautifulSoup/3.2.1


>>>	fonttag	=	tree.find('body').find('div').findall('table')[3]	\

...	.findall('tr')[1].find('td').findall('table')[1].find('tr')	\

...	.findall('td')[1].findall('table')[1].find('tr').find('td')	\

...	.find('table').findall('tr')[1].find('td').find('table')	\

...	.find('tr').find('td').find('font')

>>>	fonttag.text

'\nA	Few	Clouds'

An	attractive	syntactic	convention	lets	BeautifulSoup	handle	some	of	these	steps	more	beautifully:

>>>	fonttag	=	soup.body.div('table',	recursive=False)[3]	\

...	('tr',	recursive=False)[1].td('table',	recursive=False)[1].tr	\

...	('td',	recursive=False)[1]('table',	recursive=False)[1].tr.td	\

...	.table('tr',	recursive=False)[1].td.table	\

...	.tr.td.font

>>>	fonttag.text

u'A	Few	Clouds71&deg;F(22&deg;C)'

BeautifulSoup	lets	you	choose	the	first	child	element	with	a	given	tag	by	simply	selecting	the	attribute	.tagname,	and	lets
you	receive	a	list	of	child	elements	with	a	given	tag	name	by	calling	an	element	like	a	function	with	the	tag	name	and	a
recursive	option	telling	it	to	pay	attention	just	to	the	children	of	an	element.

Both	lxml	and	BeautifulSoup	provide	attractive	ways	to	quickly	grab	a	child	element	based	on	its	tag	name	and	position	in
the	document.	We	clearly	should	not	be	using	such	primitive	navigation	to	try	descending	into	a	real-world	web	page.

Figuring	out	how	HTML	elements	are	grouped,	by	the	way,	is	much	easier	if	you	either	view	HTML	with	an	editor	that	prints
it	as	a	tree,	or	if	you	run	it	through	a	tool	like	HTML	tidy	from	W3C	that	can	indent	each	tag	to	show	you	which	ones	are
inside	which	other	ones.		tidy		validate,	correct,	and	pretty-print	HTML	files.	You	should	use	this	command	line:

	tidy	phoenix.html	>	phoenix-tidied.html



A	selector	is	a	pattern	that	is	crafted	to	match	document	elements	on	which	your	program	wants	to	operate.Some	of	them
are:

People	who	are	deeply	XML-centric	prefer	XPath	expressions,	which	are	a	companion	technology	to	XML	itself	and	let
you	match	elements	based	on	their	ancestors,	their	own	identity,	and	textual	matches	against	their	attributes	and	text
content.

If	you	are	a	web	developer,	then	you	probably	link	to	CSS	selectors	as	the	most	natural	choice	for	examining	HTML.

Both	lxml	and	BeautifulSoup,	as	we	have	seen,	provide	a	smattering	of	their	own	methods	for	finding	document
elements.

Here	are	standards	and	descriptions	for	each	of	the	selector	styles	just	described:

http://www.w3.org/TR/xpath/
http://codespeak.net/lxml/tutorial.html#using-xpath-to-find-text
http://codespeak.net/lxml/xpathxslt.html
http://www.w3.org/TR/CSS2/selector.html
http://codespeak.net/lxml/cssselect.html

And,	finally,	here	are	links	to	documentation	that	looks	at	selector	methods	peculiar	to	lxml	and	BeautifulSoup:

http://codespeak.net/lxml/tutorial.html#elementpath
http://www.crummy.com/software/BeautifulSoup/documentation.html

Now,	here	you	have	a	completed	weather	scraper	in	the	file		weather.py	:

import	sys,	urllib,	urllib2

import	lxml.etree

from	lxml.cssselect	import	CSSSelector

from	BeautifulSoup	import	BeautifulSoup

if	len(sys.argv)	<	2:

				print	>>sys.stderr,	'usage:	weather.py	CITY,	STATE'

				exit(2)

data	=	urllib.urlencode({'inputstring':	'	'.join(sys.argv[1:])})

info	=	urllib2.urlopen('http://forecast.weather.gov/zipcity.php',	data)

content	=	info.read()

#	Solution	#1	using	CSSSelector

parser	=	lxml.etree.HTMLParser(encoding='utf-8')

tree	=	lxml.etree.fromstring(content,	parser)

big	=	CSSSelector('td.big')(tree)[0]

if	big.find('font')	is	not	None:

				big	=	big.find('font')

print	'Condition:',	big.text.strip()

print	'Temperature:',	big.findall('br')[1].tail

tr	=	tree.xpath('.//td[b="Humidity"]')[0].getparent()

print	'Humidity:',	tr.findall('td')[1].text

print

#	Solution	#2	using	BeautifulSoup

soup	=	BeautifulSoup(content)		#	doctest:	+SKIP

big	=	soup.find('td',	'big')

if	big.font	is	not	None:

				big	=	big.font

print	'Condition:',	big.contents[0].string.strip()

temp	=	big.contents[3].string	or	big.contents[4].string		#	can	be	either

print	'Temperature:',	temp.replace('&deg;',	'	')

tr	=	soup.find('b',	text='Humidity').parent.parent.parent

print	'Humidity:',	tr('td')[1].string

print

Selectors

http://www.w3.org/TR/xpath/
http://codespeak.net/lxml/tutorial.html#using-xpath-to-find-text
http://codespeak.net/lxml/xpathxslt.html
http://www.w3.org/TR/CSS2/selector.html
http://codespeak.net/lxml/cssselect.html
http://codespeak.net/lxml/tutorial.html#elementpath
http://www.crummy.com/software/BeautifulSoup/documentation.html


Take	into	account	that	for	running	this	you	also	need	to	have	the	lxm	module	installed.

http://lxml.de/installation.html


This	chapter	focuses	on	the	actual	act	of	programming.	Every	other	issue	that	we	consider	will	be	in	the	service	of	this
overarching	goal:	to	create	a	new	web	service	using	Python	as	our	language.

Web	Applications



Acceptable	web	site	performance	generally	requires	the	ability	to	serve	several	users	concurrently.

To	avoid	corrupting	in-memory	data	structures,	C	Python	employs	a	Global	Interpreter	Lock	(GIL),	so	that	only	one	thread
in	a	multi-threaded	program	can	actually	be	executing	Python	code	at	any	given	time.	Thus	Python	will	let	you	create	as
many	threads	as	you	want	in	a	given	process;	however,	only	one	thread	can	run	code	at	a	time,	as	though	your	threads
were	confined	to	a	single	processor.

A	typical	web	application	receives	and	parses	the	user's	request,	then	makes	a	corresponding	request	to	the	database
behind	it;	while	that	thread	is	waiting	for	a	response	from	the	database,	the	GIL	is	available	for	any	other	threads	that	need
to	run	Python	code.	Finally	the	database	answers;	the	waiting	thread	reacquires	the	GIL;	and,	in	a	quick	blaze	of	CPU
activity,	the	data	is	turned	into	an	attractive	web	page,	and	the	response	is	sent	winging	its	way	back	to	the	user.

Thus	threads	can	sometimes	at	least	perform	decently.	Nevertheless,	multiple	processes	are	the	more	general	way	to
scale.	This	is	because,	as	a	service	gets	bigger,	additional	processes	can	be	brought	up	on	additional	machines,	rather
than	being	confined	to	a	single	machine.	Threads,	no	matter	their	other	merits,	cannot	do	that!	There	are	two	general
approaches	to	running	a	Python	web	application	inside	of	a	collector	of	identical	worker	processes:

The	Apache	web	server	can	be	combined	with	the	popular		mod_wsgi		module	to	host	a	separate	Python	interpreter	in
every	Apache	worker	process.

The	web	application	can	be	run	inside	of	either	the	flup	server	or	the	uWSGI	server.	Both	of	these	servers	will	manage
a	pool	of	worker	processes	where	each	process	hosts	a	Python	interpreter	running	your	application.	The	front-end	web
server	can	submit	requests	to	flup	using	either	the	standard	Fast	CGI	(FCGI)	or	Simple	CGI	(SCGI)	protocol,	while	it
has	to	speak	to	uWSGI	in	its	own	special	“uwsgi”	protocol	(whose	name	is	all	lowercase	to	distinguish	it	from	the	name
of	the	server).

Web	Servers	and	Python



All	of	the	popular	open	source	web	servers	can	be	used	to	serve	Python	web	applications,	so	the	full	range	of	modern
options	is	available:

Apache	HTTP	Server:	Since	taking	the	lead	as	the	most	popular	HTTP	server	back	in	1996.	Its	stated	goal	is	flexibility
and	modularity;	it	is	reasonably	fast,	but	it	will	not	win	speed	records	against	more	recent	servers	that	focus	only	on
speed.	Its	configuration	files	can	be	a	bit	long	and	verbose,	but	through	them	Apache	offers	very	powerful	options	for
applying	different	rules	and	behaviors	to	different	directories	and	URLs.	A	variety	of	extension	modules	are	available
(many	of	which	come	bundled	with	it),	and	user	directories	can	have	separate		.htaccess	configuration	files	that	make
further	adjustments	to	the	main	configuration.

nginx	(“engine	X”):	The	nginx	server	has	become	a	great	favorite	of	organizations	with	a	large	volume	of	content	that
needs	to	be	served	quickly.	It	is	considered	fairly	easy	to	configure.	lighttpd	(“lighty”):	First	written	to	demonstrate	an
architecture	that	could	support	tens	of	thousands	of	open	client	sockets	(both	nginx	and	Cherokee	are	also	contenders
in	this	class),	this	server	is	known	for	being	very	easy	to	configure.	Some	system	administrators	complain	about	its
memory	usage,	but	many	others	have	observed	no	problems	with	it.

Cherokee:	Not	only	does	this	server	offer	performance	that	might	edge	out	even	nginx	and	lighttpd,	but	it	lets	you
configure	the	server	through	a	built-in	web	interface.

So	tocombine	each	of	these	servers	with	Python;	for	example	in	the	case	of	Apache:the	mod_wsgi	module	has	a	daemon
mode	where	it	internally	runs	your	Python	code	inside	a	stack	of	dedicated	server	processes	that	are	separate	from
Apache.	Each	Web	Server	Gateway	Interface(WSGI)	process	can	even	run	as	a	different	user.	If	you	really	want	to	use
Apache	as	your	front	end,	this	is	one	of	the	best	options	available.

But	the	most	strongly	recommended	approach	today	is	to	set	up	one	of	the	three	fast	servers	to	provide	your	static	content,
and	then	use	one	of	the	following	three	techniques	to	run	your	Python	code	behind	them:

Use	HTTP	proxying	so	that	your		nginx	,		lighttpd	,	or	Cherokee	front-end	server	delivers	HTTP	requests	for	dynamic
web	pages	to	a	back-end	Apache	instance	running		mod_wsgi	.

Use	the	FastCGI	protocol	or	SCGI	protocol	to	talk	to	a	flup	instance	running	your	Python	code.

Use	the		uwsgi		protocol	to	talk	to	a	uWSGI	instance	running	your	Python	code.

At	this	point,	you	understand	something	of	the	larger	context	in	which	Python	web	applications	are	usually	run;	you	are	now
ready	to	turn	your	attention	to	the	task	of	programming.

Choosing	a	Web	Server

https://docs.python.org/2/library/multiprocessing.html?highlight=mod_wsgi


Integrating	Python	with	web	servers	was	much	improved	by	the	creation	of	PEP	333,	which	defines	the	Python	Web	Server
Gateway	Interface	(WSGI):	http://legacy.python.org/dev/peps/pep-0333/.

WSGI	introduced	a	single	calling	convention	that	every	web	server	could	implement,	thereby	making	that	web	server
instantly	compatible	with	all	of	the	Python	web	applications	and	web	frameworks	that	also	support	WSGI.

At	the	Python	library	you	can	get	more	information	about	the	wsgiref	module.This	module	provides	a	variety	of	utility
functions	for	working	with	WSGI	environments.The		wsgiref		package,	whose		simple_server		we	will	use	in	the	example,
also	contains	several	utilities	for	working	with	WSGI.	It	includes	functions	for	examining,	further	unpacking,	and	modifying
the	environ	object;	a	prebuilt	iterator	for	streaming	large	files	back	to	the	server;	and	even	a	validate	sub-module	whose
routines	can	check	a	WSGI	application	to	see	whether	it	complies	with	the	specification	when	presented	with	a	series	of
representative	requests.

Developers	generally	avoid	writing	raw.	WSGI	applications	because	the	conveniences	of	even	a	simple	web	framework
make	code	so	much	easier	to	write	and	maintain.	But,	for	the	sake	of	illustration,		wsgi_app.py		shows	a	small	WSGI
application	whose	front	page	asks	the	user	to	type	a	string.	Submitting	the	string	takes	the	user	to	a	second	web	page,
where	he	can	see	its	base64	encoding.	From	there,	a	link	will	take	him	back	to	the	first	page	to	repeat	the	process.

import	cgi,	base64

from	wsgiref.simple_server	import	make_server

def	page(content,	*args):

				yield	'<html><head><title>wsgi_app.py</title></head><body>'

				yield	content	%	args

				yield	'</body>'

def	simple_app(environ,	start_response):

				gohome	=	'<br><a	href="/">Return	to	the	home	page</a>'

				q	=	cgi.parse_qs(environ['QUERY_STRING'])

				if	environ['PATH_INFO']	==	'/':

								if	environ['REQUEST_METHOD']	!=	'GET'	or	environ['QUERY_STRING']:

												start_response('400	Bad	Request',	[('Content-Type',	'text/plain')])

												return	['Error:	the	front	page	is	not	a	form']

								start_response('200	OK',	[('Content-Type',	'text/html')])

								return	page('Welcome!	Enter	a	string:	<form	action="encode">'

																				'<input	name="mystring"><input	type="submit"></form>')

				elif	environ['PATH_INFO']	==	'/encode':

								if	environ['REQUEST_METHOD']	!=	'GET':

												start_response('400	Bad	Request',	[('Content-Type',	'text/plain')])

												return	['Error:	this	form	does	not	support	POST	parameters']

								if	'mystring'	not	in	q	or	not	q['mystring'][0]:

												start_response('400	Bad	Request',	[('Content-Type',	'text/plain')])

												return	['Error:	this	form	requires	a	"mystring"	parameter']

								my	=	q['mystring'][0]

								start_response('200	OK',	[('Content-Type',	'text/html')])

								return	page('<tt>%s</tt>	base64	encoded	is:	<tt>%s</tt>'	+	gohome,

																				cgi.escape(repr(my)),	cgi.escape(base64.b64encode(my)))

				else:

								start_response('404	Not	Found',	[('Content-Type',	'text/plain')])

								return	['That	URL	is	not	valid']

print	'Listening	on	localhost:8000'

make_server('localhost',	8000,	simple_app).serve_forever()

import	cgi,	base64	from	wsgiref.simple_server	import	make_server

def	page(content,	*args):	yield	'	'	yield	content	%	args	yield	''

WSGI

http://legacy.python.org/dev/peps/pep-0333/
https://docs.python.org/2/library/wsgiref.html?highlight=wsgi#wsgiref


def	simple_app(environ,	start_response):	gohome	=	'
Return	to	the	home	page'	q	=	cgi.parse_qs(environ['QUERY_STRING'])

if	environ['PATH_INFO']	==	'/':

				if	environ['REQUEST_METHOD']	!=	'GET'	or	environ['QUERY_STRING']:

								start_response('400	Bad	Request',	[('Content-Type',	'text/plain')])

								return	['Error:	the	front	page	is	not	a	form']

				start_response('200	OK',	[('Content-Type',	'text/html')])

				return	page('Welcome!	Enter	a	string:	<form	action="encode">'

																'<input	name="mystring"><input	type="submit"></form>')

elif	environ['PATH_INFO']	==	'/encode':

				if	environ['REQUEST_METHOD']	!=	'GET':

								start_response('400	Bad	Request',	[('Content-Type',	'text/plain')])

								return	['Error:	this	form	does	not	support	POST	parameters']

				if	'mystring'	not	in	q	or	not	q['mystring'][0]:

								start_response('400	Bad	Request',	[('Content-Type',	'text/plain')])

								return	['Error:	this	form	requires	a	"mystring"	parameter']

				my	=	q['mystring'][0]

				start_response('200	OK',	[('Content-Type',	'text/html')])

				return	page('<tt>%s</tt>	base64	encoded	is:	<tt>%s</tt>'	+	gohome,

																cgi.escape(repr(my)),	cgi.escape(base64.b64encode(my)))

else:

				start_response('404	Not	Found',	[('Content-Type',	'text/plain')])

				return	['That	URL	is	not	valid']

The	first	thing	to	note	in	this	code	listing	is	that	two	very	different	objects	are	being	created:	a	WSGI	server	that	knows	how
to	use	HTTP	to	talk	to	a	web	browser	and	an	application	written	to	respond	correctly	when	invoked	per	the	WSGI	calling
convention.	Note	that	these	two	pieces—the	client	and	server—could	easily	be	swapped	out.	This	code	example	should
make	the	calling	convention	clear	enough:

For	each	incoming	request,	the	application	is	called	with	an	environ	object,	giving	it	the	details	of	the	HTTP	request
and	a	live,	callable,	and	named		start_response()	.

Once	the	application	has	decided	what	HTTP	response	code	and	headers	need	to	be	returned,	it	makes	a	single	call
to		start_response()	.	Its	headers	will	be	combined	with	any	headers	that	the	WSGI	server	might	already	provide	to	the
client.

Finally,	the	application	needs	only	to	return	the	actual	content—either	a	list	of	strings	or	a	generator	yielding	strings.
Either	way,	the	strings	will	be	concatenated	by	the	WSGI	server	to	produce	the	response	body	that	is	transmitted	back
to	the	client.	Generators	are	useful	for	cases	where	it	would	be	unwise	for	an	application	to	try	loading	all	of	the
content	(like	large	files)	into	memory	at	once.



Standard	interfaces	like	WSGI	make	it	possible	for	developers	to	create	wrappers—a	design-patterns	person	would	call
these	adapters—that	accept	a	request	from	a	server;	modify,	adjust,	or	record	the	request;	and	then	call	a	normal	WSGI
application	with	the	modified	environment.	Such	middleware	can	also	inspect	and	adjust	the	outgoing	data	stream;
everything,	in	fact,	is	up	for	grabs,	and	essential	arbitrary	changes	can	be	made	both	to	the	circumstances	under	which	a
WSGI	application	runs,	as	well	as	to	the	content	that	it	returns.

If	several	WSGI	applications	need	to	live	at	a	single	web	site	under	different	URLs,	then	a	piece	of	middleware	can	be
given	the	URLs.	(you	can	read	more	in	http://pythonpaste.org/)

If	each	WSGI	application	on	a	web	site	were	to	keep	its	own	list	of	passwords	and	honor	only	its	own	session	cookies,
then	users	would	have	to	log	in	again	each	time	they	crossed	an	application	boundary.	By	delegating	authentication	to
WSGI	middleware,	applications	can	be	relieved	even	of	the	duty	to	provide	their	own	login	page;	instead,	the
middleware	asks	a	user	who	lacks	a	session	cookie	to	log	in;	once	a	user	is	authenticated,	the	middleware	can	pass
along	the	user's	identity	to	the	applications	by	putting	the	user's	information	in	the		environ		argument.	Both
	repoze.who		and		repoze.what		can	help	site	integrators	assert	site-wide	control	over	users	and	their	permissions.

Theming	can	be	a	problem	when	several	small	applications	are	combined	to	form	a	larger	web	site.	This	is	because
each	application	typically	has	its	own	approach	to	theming.This	has	led	to	the	development	of	two	competing	tools,	xdv
and	Deliverance,	that	let	you	build	a	single	HTML	theme	and	then	provide	simple	rules	that	pull	text	out	of	your	back-
end	applications	and	drop	it	into	your	theme	in	the	right	places.

Debuggers	can	be	created	that	call	a	WSGI	application	and,	if	an	uncaught	Python	exception	is	raised,	display	an
annotated	traceback	to	support	debugging.	WebError	actually	provides	the	developer	with	a	live,	in-browser	Python
command	line	prompt	for	every	level	in	a	stack	trace	at	which	the	developer	can	investigate	a	failure.	Another	popular
tool	is	repoze.profile,	which	watches	the	application	as	it	processes	requests	and	produces	a	report	on	which	functions
are	consuming	the	most	CPU	cycles.

If	you	are	interested	in	what	WSGI	middleware	is	available,	then	you	can	visit	this	pair	of	sites	to	learn	more:

http://wsgi.org/wsgi/Middleware_and_Utilities
http://repoze.org/repoze_components.html#middleware

Today	there	are	at	least	three	major	competing	approaches	in	the	Python	community	for	crafting	modular	components	that
can	be	used	to	build	web	sites:

The	WSGI	middleware	approach	thinks	that	code	reuse	can	often	best	be	achieved	through	a	component	stack,	where
each	component	uses	WSGI	to	speak	to	the	next.	Here,	all	interaction	has	to	somehow	be	made	to	fit	the	model	of	a
dictionary	of	strings	being	handed	down	and	then	content	being	passed	back	up.

Everything	built	atop	the	Zope	Toolkit	uses	formal	Design	Pattern	concepts	like	interfaces	and	factories	to	let
components	discover	one	another	and	be	configured	for	operation.	Thanks	to	adapters,	components	can	often	be	used
with	widgets	that	were	not	originally	designed	with	a	given	type	of	component	in	mind.

Several	web	frameworks	have	tried	to	adopt	conventions	that	would	make	it	easy	for	third-party	pieces	of	functionality
to	be	added	to	an	application	easily.	The	Django	community	seems	to	have	traveled	the	farthest	in	this	direction,	but	it
also	looks	as	though	it	has	encountered	quite	serious	roadblocks	in	cases	where	a	component	needs	to	add	its	own
tables	to	the	database	that	have	foreign-key	relationships	with	user	tables.

These	examples	illustrate	an	important	fact:	WSGI	middleware	is	a	good	idea	that	has	worked	very	well	for	a	small	class	of
problems	where	the	idea	of	wrapping	an	application	with	concentric	functionality	makes	solid	sense.	However,	most	web
programmers	seem	to	want	to	use	more	typical	Python	mechanisms	like	APIs,	classes,	and	objects	to	combine	their	own
code	with	existing	components.
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Now	we	are	going	to	talk	about	an	entirely	different	discipline:	web	application	development.

Network	programmers	think	about	things	like	sockets,	port	numbers,	protocols,	packet	loss,	latency,	framing,	and
encodings.	Although	all	of	these	concepts	must	also	be	in	the	back	of	a	web	developer's	mind,	her	actual	attention	is
focused	on	a	set	of	technologies	so	intricate	and	fast-changing	that	the	actual	packets	and	latencies	are	recalled	to	mind
only	when	they	are	causing	trouble.	The	web	developer	needs	to	think	instead	about	HTML,	GET,	POST,	forms,	REST,
CSS,	JavaScript,	Ajax,	APIs,	sprites,	compression,	and	emerging	technologies	like	HTML5	and	WebSocket.	The	web	site
exists	in	her	mind	primarily	as	a	series	of	documents	that	users	will	traverse	to	accomplish	goals.

Web	frameworks	exist	to	help	programmers	step	back	from	the	details	of	HTTP—which	is,	after	all,	an	implementation
detail	most	users	never	even	become	aware	of—and	to	write	code	that	focuses	on	the	nouns	of	web	design.		wsgi_app.py	
shows	how	even	a	very	modest	Python	microframework	can	be	used	to	reorient	the	attention	of	a	web	programmer.

You	can	install	the	framework	bottle	and	run	the	listing	once	you	have	activated	a	virtual	environment,	like	this:

The		bottle_app.py	:

import	base64,	bottle

bottle.debug(True)

app	=	bottle.Bottle()

@app.route('/encode')

@bottle.view('bottle_template.html')

def	encode():

				mystring	=	bottle.request.GET.get('mystring')

				if	mystring	is	None:

								bottle.abort(400,	'This	form	requires	a	"mystring"	parameter')

				return	dict(mystring=mystring,	myb=base64.b64encode(mystring))

@app.route('/')

@bottle.view('bottle_template.html')

def	index():

				return	dict(mystring=None)

bottle.run(app=app,	host='localhost',	port=8080)

root@erlerobot:~/Python_files#	pip	install	bottle

root@erlerobot:~/Python_files#	python	bottle_app.py

The		wsgi_app.py	:

import	cgi,	base64

from	wsgiref.simple_server	import	make_server

def	page(content,	*args):

				yield	'<html><head><title>wsgi_app.py</title></head><body>'

				yield	content	%	args

				yield	'</body>'

def	simple_app(environ,	start_response):

				gohome	=	'<br><a	href="/">Return	to	the	home	page</a>'

				q	=	cgi.parse_qs(environ['QUERY_STRING'])

				if	environ['PATH_INFO']	==	'/':

								if	environ['REQUEST_METHOD']	!=	'GET'	or	environ['QUERY_STRING']:

												start_response('400	Bad	Request',	[('Content-Type',	'text/plain')])

												return	['Error:	the	front	page	is	not	a	form']

								start_response('200	OK',	[('Content-Type',	'text/html')])

								return	page('Welcome!	Enter	a	string:	<form	action="encode">'

																				'<input	name="mystring"><input	type="submit"></form>')
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				elif	environ['PATH_INFO']	==	'/encode':

								if	environ['REQUEST_METHOD']	!=	'GET':

												start_response('400	Bad	Request',	[('Content-Type',	'text/plain')])

												return	['Error:	this	form	does	not	support	POST	parameters']

								if	'mystring'	not	in	q	or	not	q['mystring'][0]:

												start_response('400	Bad	Request',	[('Content-Type',	'text/plain')])

												return	['Error:	this	form	requires	a	"mystring"	parameter']

								my	=	q['mystring'][0]

								start_response('200	OK',	[('Content-Type',	'text/html')])

								return	page('<tt>%s</tt>	base64	encoded	is:	<tt>%s</tt>'	+	gohome,

																				cgi.escape(repr(my)),	cgi.escape(base64.b64encode(my)))

				else:

								start_response('404	Not	Found',	[('Content-Type',	'text/plain')])

								return	['That	URL	is	not	valid']

print	'Listening	on	localhost:8000'

make_server('localhost',	8000,	simple_app).serve_forever()

In		bottle_app.py		the	attention	was	on	the	single	incoming	HTTP	request,	and	the	branches	in	our	logic	explored	all	of	the
possible	lifespans	for	that	particular	protocol	request.		wsgi_app.py		changes	the	focus	to	the	pages	that	actually	exist	on	the
site	and	giving	each	of	these	pages	reasonable	behaviors.	The	same	tree	of	possibilities	exists,	but	the	tree	exists	implicitly
thanks	to	the	possible	URLs	defined	in	the	code,	not	because	the	programmer	has	written	a	large	if	statement.

%#	The	page	template	that	goes	with	bottle_app.py.

%#

<html><head><title>bottle_app.py</title></head>

<body>

		%if	mystring	is	None:

				Welcome!	Enter	a	string:

				<form	action="encode"><input	name="mystring"><input	type="submit"></form>

		%else:

				<tt>{{mystring}}</tt>	base64	encoded	is:	<tt>{{myb}}</tt><br>

				<a	href="/">Return	to	the	home	page</a>

		%end

</body>

It	might	seem	merely	a	pleasant	convenience	that	we	can	use	the	`Bottle	SimpleTemplate	to	insert	our	variables	into	a	web
page	and	know	that	they	will	be	escaped	correctly.	But	the	truth	is	that	templates	serve,	just	like	schemes	for	URL	dispatch,
to	re-orient	our	attention:	instead	of	the	resulting	web	page	existing	in	our	minds	as	what	will	result	when	the	strings	in	our
program	listing	are	finally	concatenated,	we	get	to	lay	out	its	HTML	intact,	in	order,	and	in	a	file	that	can	actually	take	an
.html	extension	and	be	highlighted	and	indented	as	HTML	in	our	editor.	The	Python	program	will	no	longer	impede	our
relationship	with	our	markup.

And	full-fledged	Python	frameworks	abstract	away	even	more	implementation	details.	A	very	important	feature	they
typically	provide	is	data	abstraction:	instead	of	talking	to	a	database	using	its	raw	APIs,	a	programmer	can	define	models,
laying	out	the	data	fields	so	they	are	easy	to	instantiate,	search,	and	modify.	And	some	frameworks	can	provide	entire
RESTful	APIs	that	allow	creation,	inspection,	modification,	and	deletion	with	PUT,	GET,	POST,	and	DELETE.	The
programmer	merely	needs	to	define	the	structure	of	his	data	document,	and	then	name	the	URL	at	which	the	tree	of	REST
objects	should	be	based.

When	looking	for	a	web	framework,	you	will	find	that	the	various	frameworks	differ	on	a	few	major	points.	The	upcoming
sections	will	walk	you	through	what	these	points	are,	and	how	they	might	affect	your	development	experience.



The	various	Python	web	frameworks	tend	to	handle	URL	dispatch	quite	differently.

Some	small	frameworks	like	Bottle	and	Flask	let	you	create	small	applications	by	decorating	a	series	of	callables	with
URL	patterns;	small	applications	can	then	be	combined	later	by	placing	them	beneath	one	or	more	top-level
applications.

Others	frameworks,	like	Django,	Pylons,	and	Werkzeug,	encourage	each	application	to	define	its	URLs	all	in	one
place.	This	breaks	your	code	into	two	levels,	where	URL	dispatch	happens	in	one	location	and	rendering	in	another.
This	separation	makes	it	easier	to	review	all	of	the	URLs	that	an	application	supports;	it	also	means	that	you	can
attach	code	to	new	URLs	without	having	to	modify	the	functions	themselves.

Another	approach	has	you	define	controllers,	which	are	classes	that	represent	some	point	in	the	URL	hierarchy—say,
the	path	/cart—and	then	write	methods	on	the	controller	class	named		view()		and		edit()		if	you	want	to	support	sub-
pages	named	/cart/view	and	/cart/edit.	CherryPy,	TurboGears2,	and	Pylons	(if	you	use	controllers	instead	of	Routes)
all	support	this	approach.	While	determining	later	what	URLs	are	supported	can	mean	traversing	a	maze	of	different
connected	classes,	this	approach	does	allow	for	dynamic,	recursive	URL	spaces	that	exist	only	at	runtime	as	classes
hand	off	dispatch	requests	based	on	live	data	about	the	site	structure.

A	large	community	with	its	own	conferences	exists	around	the	Zope	framework.

The	various	mechanisms	for	URL	dispatch	can	all	be	used	to	produce	fairly	clean	design,	and	choosing	from	among	them
is	largely	a	matter	of	taste.
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Almost	all	web	frameworks	expect	you	to	produce	web	pages	by	combining	Python	code	called	a	view	with	an	HTML
template;	you	saw	this	approach	in	action	in		wsgi_app.py	.	This	approach	has	gained	traction	because	of	its	eminent
maintainability:	building	a	dictionary	of	information	is	best	performed	in	plain	Python	code,	and	the	items	fetched	and
arranged	by	the	view	can	then	easily	be	included	by	the	template,	so	long	as	the	template	language	supports	basic	actions
like	iteration	and	some	form	of	expression	evaluation.	(A	template	is	a	document	consisting	of	rows	and	tables,	with
different	ranges	and	sizes,	which	facilitates	the	development	of	web	pages,	letters	or	other	content).	It	is	one	of	the	glories
of	Python	that	we	use	views	and	templates,	and	one	of	the	shames	of	traditional	PHP	development	that	developers	would
freely	intermix	HTML	and	extensive	PHP	code	to	produce	a	single,	unified	mess.

Views	can	also	become	more	testable	when	their	only	job	is	to	generate	a	dictionary	of	data.	A	good	framework	will	let	you
write	tests	that	simply	check	the	raw	data	returned	by	the	function	instead	of	making	you	peek	repeatedly	into	fully
rendered	templates	to	see	if	the	view	corralled	its	data	correctly.

There	seem	to	be	two	major	differences	of	opinion	among	the	designers	and	users	of	the	various	template	languages	about
what	constitutes	the	best	way	to	use	templates:

Should	templates	be	valid	HTML	with	iteration	and	expressions	hidden	in	element	attributes?	Or	should	the	template
language	use	its	own	style	of	markup	that	festoons	and	wraps	the	literal	HTML	of	the	web	page?	While	the	former	can
let	the	developer	run	HTML	validation	against	template	files	before	they	are	ever	rendered	and	be	assured	that
rendering	will	not	change	the	validator's	verdict,	most	developers	seem	to	find	the	latter	approach	much	easier	to	read
and	maintain.

Should	templates	allow	arbitrary	Python	expressions	in	template	code,	or	lock	down	the	available	options	to	primitive
operations	like	dictionary	get-item	and	object	get-attribute?	Many	popular	frameworks	choose	the	latter	option,
requiring	even	lazy	programmers	to	push	complex	operations	into	their	Python	code	“where	it	belongs.”	But	several
template	languages	reason	that,	if	Python	programmers	do	so	well	without	type	checking,	then	maybe	they	should	also
be	trusted	with	the	choice	of	which	expressions	belong	in	the	view	and	which	in	the	template.

Since	many	Python	frameworks	let	you	plug	in	your	template	language	of	choice,	and	only	a	few	of	them	lock	you	down	to
one	option,	you	might	find	that	you	can	pair	your	favorite	approaches.

Templates



A	fun	way	to	demonstrate	that	Python	comes	with	“batteries	included”	is	to	enter	a	directory	on	your	system	and	run	the
SimpleHTTPServer	Standard	Library	module	as	a	stand-alone	program:

root@erlerobot:~/Python_files#	python	-m	SimpleHTTPServer

Serving	HTTP	on	0.0.0.0	port	8000	...

If	you	direct	your	browser	to	localhost:8000,	you	will	see	the	contents	of	this	script's	current	directory	displayed	for
browsing,	such	as	the	listings	provided	by	Apache	when	a	site	leaves	a	directory	browsable.	Documents	and	images	will
load	in	your	web	browser	when	selected,	based	on	the	content	types	chosen	through	the	best	guesses	of	the	mimetypes
Standard	Library	module.	The		mimetypes		module	converts	between	a	filename	or	URL	and	the	MIME	type	associated	with
the	filename	extension.	Conversions	are	provided	from	filename	to	MIME	type	and	from	MIME	type	to	filename	extension;
encodings	are	not	supported	for	the	latter	conversion.

Yoday,	we	use	namespaces,	callables,	and	duck-typed	objects	to	provide	much	cleaner	forms	of	extensibility.	For	example,
today	an	object	like		start_response		is	provided	as	an	argument	(dependency	injection),	and	the	WSGI	standard	specifies
its	behavior	rather	than	its	inheritance	tree	(duck	typing).The	Standard	Library	includes	two	other	HTTP	servers:

CGIHTTPServer	takes	the	SimpleHTTPServer	and,	instead	of	just	serving	static	files	off	of	the	disk,	it	adds	the	ability
to	run	CGI	scripts	.

SimpleXMLRPCServer	and	DocXMLRPCServer	each	provide	a	server	endpoint	against	which	client	programs	can
make	XML-RPC	remote	procedure	calls.	This	protocol	uses	XML	files	submitted	through	HTTP	requests.

Note	that	none	of	the	preceding	servers	is	typically	intended	for	production	use;	instead,	they	are	useful	for	small	internal
tasks	for	which	you	just	need	a	quick	HTTP	endpoint	to	be	used	by	other	services	internal	to	a	system	or	subnet.	And	while
most	Python	web	frameworks	will	provide	a	way	to	run	your	application	from	the	command	line	for	debugging.	These	pure-
Python	web	servers	can	be	very	useful	if	you	are	writing	an	application	that	users	will	be	installing	locally,	and	you	want	to
provide	a	web	interface	without	having	to	ship	a	separate	web	server	like	Apache	or	nginx.
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When	the	first	experiments	were	taking	place	with	dynamically	generated	web	pages,a	calling	convention	was	necessary,
and	so	the	Common	Gateway	Interface	(CGI)	was	defined.	It	allowed	programs	in	all	sorts	of	languages—C,	the	various
Unix	shells,	awk,	Perl,	Python,	PHP,	and	so	forth—to	be	partners	in	generating	dynamic	content.

Today,	the	design	of	CGI	is	considered	something	of	a	disaster.	Running	a	new	process	from	scratch	is	just	about	the	most
expensive	single	operation	that	you	can	perform	on	a	modern	operating	system,	and	requiring	that	this	take	place	for	every
single	incoming	HTTP	request	is	simply	madness.	You	should	avoid	CGI	under	all	circumstances.	But	it	is	possible	you
might	someday	have	to	connect	Python	code	to	a	legacy	HTTP	server	that	does	not	support	at	least	FastCGI	or	SCGI,	so	I
will	outline	CGI's	essential	features.	Three	standard	lines	of	communication	that	already	existed	between	parent	and	child
processes	on	Unix	systems	were	used	by	web	servers	when	invoking	a	CGI	script:

The	Unix	environment—a	list	of	strings	provided	to	each	process	upon	its	invocation	that	traditionally	includes	things
like	TZ=EST	(the	time	zone)	and	COLUMNS=80	(user's	screen	width)—was	instead	stuffed	full	of	information	about
the	HTTP	request	that	the	CGI	script	was	being	called	upon	to	answer.	The	various	parts	of	the	request's	URL;	the
user	agent	string;	basic	information	about	the	web	server;	and	even	a	cookie	could	be	included	in	the	list	of	colon-
separated	keyvalue	pairs.

The	standard	input	to	the	script	could	be	read	to	end-of-file	to	receive	whatever	data	had	been	submitted	in	the	body	of
the	HTTP	request	using	POST.	Whether	a	request	was	indeed	a	POST	could	be	checked	by	examining	the
REQUEST_METHOD	environment	variable.

Finally,	the	script	would	produce	content,	which	it	did	by	writing	HTTP	headers,	a	blank	line,	and	then	a	response	body
to	its	standard	output.	To	be	a	valid	response,	a	Content-Type	header	was	generally	necessary	at	a	minimum—though
in	its	absence,	some	web	servers	would	instead	accept	a	Location	header	as	a	signal	that	they	should	send	a	redirect.

Should	you	ever	need	to	run	Python	behind	an	HTTP	server	that	only	supports	CGI,	then	I	recommend	that	you	use	the
CGIHandler	module	from	the		wsgiref		Standard	Library	package(This	is	useful	when	you	have	a	WSGI	application	and
want	to	run	it	as	a	CGI	script).	This	lets	you	use	a	normal	Python	web	framework	to	write	your	service—or,	alternatively,	to
roll	up	your	sleeves	and	write	a	raw	WSGI	application—and	then	offer	the	HTTP	server	a	CGI	script,	as	shown	here:

import	CGIHandler,	MyWSGIApp

my_wsgi_app	=	MyWSGIApp()	#	configuration	necessary	here?

CGIHandler().run(my_wsgi_app)

Be	sure	to	check	whether	your	web	framework	of	choice	already	provides	a	way	to	invoke	it	as	a	CGI	script;	if	so,	your	web
framework	will	already	know	all	of	the	steps	involved	in	loading	and	configuring	your	application.

Common	Gateway	Interface	(CGI)
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As	it	became	clear	that	CGI	was	both	inefficient	and	inflexible—CGI	scripts	could	not	flexibly	set	the	HTTP	return	code,	for
example—it	became	fashionable	to	start	embedding	programming	languages	directly	in	web	servers.

Back	in	the	early	days,	embedding	was	also	possible,	through	a	somewhat	different	approach	that	actually	made	Python	an
extension	language	for	much	of	the	internals	of	Apache	itself.	The	module	that	supported	this	was		mod_python	,	and	for
years	it	was	by	far	the	most	popular	way	to	connect	Python	to	the	World	Wide	Web.	The	`mod_python	Apache	module	put
a	Python	interpreter	inside	of	every	worker	process	spawned	by	Apache.	Programmers	could	arrange	for	their	Python	code
to	be	invoked	by	writin.	directives	into	their	Apache	configuration.

Today,	mod_python	is	mainly	of	historical	interest.	I	have	outlined	its	features	here,	not	only	because	you	might	be	called
upon	to	maintain	or	upgrade	a	service	that	is	still	running	on	mod_python,	but	because	it	still	provides	unique	Apache
integration	points	where	Python	cannot	get	involved	in	any	other	way.	If	you	run	into	either	situation,	you	can	find	its
documentation	at	http://modpython.org/

mod_python
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Here,	we	will	learn	about	the	actual	payload	that	is	carried	by	all	of	the	protocols	involved	in	ways	as	a	message	is
transmitted	and	received	(Authenticated	SMTP,POP,IMAP),	that	is,	the	format	of	e-mail	messages	themslves.

E-mail	Composition	and	Decoding



Each	traditional	e-mail	message	contains	two	distinct	parts:	headers	and	the	body.	Here	is	a	very	simple	e-mail	message
so	that	you	can	see	what	the	two	sections	look	like:

From:	Jane	Smith	<jsmith@example.com>

To:	Alan	Jones	<ajones@example.com>

Subject:	Testing	This	E-Mail	Thing

Hello	Alan,

This	is	just	a	test	message.	Thanks.

The	first	section	is	called	the	headers,	which	contain	all	of	the	metadata	about	the	message,	like	the	sender,	the
destination,	and	the	subject	of	the	message	—everything	except	the	text	of	the	message	itself.	The	body	then	follows	and
contains	the	message	text	itself.	There	are	three	basic	rules	of	Internet	e-mail	formatting:

At	least	during	actual	transmission,	every	line	of	an	e-mail	message	should	be	terminated	by	the	two-character
sequence	carriage	return,	newline,	represented	in	Python	by	'\r\n'.	E-mail	clients	running	on	your	laptop	or	desktop
machine	tend	to	make	different	decisions	about	whether	to	store	messages	in	this	format,	or	replace	these	two-
character	line	endings	with	whatever	ending	is	native	to	your	operating	system.

The	first	few	lines	of	an	e-mail	are	headers,	which	consist	of	a	header	name,	a	colon,	a	space,	and	a	value.	A	header
can	be	several	lines	long	by	indenting	the	second	and	following	lines	from	the	left	margin	as	a	signal	that	they	belong
to	the	header	above	them.

The	headers	end	with	a	blank	line	(that	is,	by	two	line	endings	back-to-back	without	intervening	text)	and	then	the
message	body	is	everything	else	that	follows.	The	body	is	also	sometimes	called	the	payload.

The	headers	are	there	for	the	benefit	of	the	person	who	reads	the	e-mail	message,	and	the	most	important	headers	are
these:

From:	This	identifies	the	message	sender.	It	can	also,	in	the	absence	of	a	Reply-to	header,	be	used	as	the	destination
when	the	reader	clicks	the	e-mail	client’s	“Reply”	button.

Reply-To:	This	sets	an	alternative	address	for	replies,	in	case	they	should	go	to	someone	besides	the	sender	named	in
the	From	header.

Subject:	This	is	a	short	several-word	description	of	the	e-mail’s	purpose,	used	by	most	clients	when	displaying	whole
mailboxes	full	of	e-mail	messages.

Date:	This	is	a	header	that	can	be	used	to	sort	a	mailbox	in	the	order	in	which	emails	arrived.

Message-ID	and	In-Reply-To:	Each	ID	uniquely	identifies	a	message,	and	these	IDs	are	then	used	in	e-mail	replies	to
specify	exactly	which	message	was	being	replied	to.	This	can	help	sophisticated	mail	readers	perform	“threading,”
arranging	messages	so	that	replies	are	grouped	directly	beneath	the	messages	to	which	they	reply.

E-mail	Messages



How	can	we	generate	a	traditional	e-mail	in	Python	without	having	to	implement	the	formatting	details	ourselves?	The
answer	is	to	use	the	modules	within	the	powerful	email	package.	The	email	package	is	a	library	for	managing	email
messages,	including	MIME	and	other	RFC	2822-based	message	documents.

As	our	first	example,		trad_gen_simple.py		shows	a	program	that	generates	a	simple	message.	Note	that	when	you	generate
messages	this	way,	manually	setting	the	payload	with	the	Message	class,	you	should	limit	yourself	to	using	plain	7-bit
ASCII	text.

from	email.message	import	Message

text	=	"""Hello,

This	is	a	test	message.

--	Anonymous"""

msg	=	Message()

msg['To']	=	'recipient@example.com'

msg['From']	=	'Test	Sender	<sender@example.com>'

msg['Subject']	=	'Test	Message'

msg.set_payload(text)

print	msg.as_string()

The	program	is	simple.	It	creates	a	Message	object,	sets	the	headers	and	body,	and	prints	the	result.	When	you	run	this
program,	you	will	get	a	nice	formatted	message	with	proper	headers:

root@erlerobot:~/Python_files#	python	trad_gen_simple.py

To:	recipient@example.com

From:	Test	Sender	<sender@example.com>

Subject:	Test	Message

Hello,

This	is	a	test	message.

--	Anonymous

root@erlerobot:~/Python_files#

While	technically	correct,	this	message	is	actually	a	bit	deficient	when	it	comes	to	providing	enough	headers	to	really
function	in	the	modern	world.	For	one	thing,	most	e-mails	should	have	a	Date	header,	in	a	format	specific	to	e-mail
messages.	Python	provides	an		email.utils.formatdate()		routine	that	will	generate	dates	in	the	right	format.	You	should
add	a	Message-ID	header	to	messages.	This	header	should	be	generated	in	such	a	way	that	no	other	e-mail,	anywhere	in
history,	will	ever	have	the	same	Message-ID.	This	might	sound	difficult,	but	Python	provides	a	function	to	help	do	that	as
well:		email.utils.make_msgid()	.	So	take	a	look	at		trad_gen_newhdrs.py	,	which	fleshes	out	our	first	sample	program	into	a
more	complete	example	that	sets	these	additional	headers.

import	email.utils

from	email.message	import	Message

message	=	"""Hello,

This	is	a	test	message.

--	Anonymous"""

msg	=	Message()

msg['To']	=	'recipient@example.com'

msg['From']	=	'Test	Sender	<sender@example.com>'

msg['Subject']	=	'Test	Message'

msg['Date']	=	email.utils.formatdate(localtime	=	1)

msg['Message-ID']	=	email.utils.make_msgid()

Composing	Traditional	Messages
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msg.set_payload(message)

print	msg.as_string()

If	you	run	the	program,	you	will	notice	two	new	headers	in	the	output.

root@erlerobot:~/Python_files#	python	trad_gen_newhdrs.py

To:	recipient@example.com

From:	Test	Sender	<sender@example.com>

Subject:	Test	Message

Date:	Mon,	14	Jul	2014	14:31:50	+0200

Message-ID:	<20140714123150.987.14344@root-erlerobot.local>

Hello,

This	is	a	test	message.

--	Anonymous

root@erlerobot:~/Python_files#



What	happens	when	you	receive	an	incoming	message	as	a	raw	block	of	text	and	want	to	look	inside?	Well,	the		email	
module	also	provides	support	for	parsing	e-mail	messages,	re-constructing	the	same	Message	object	that	would	have	been
used	to	create	the	message	in	the	first	place.	(Of	course,	it	does	not	matter	whether	the	e-mail	you	are	parsing	was
originally	created	in	Python	through	the	Message	class,	or	whether	some	other	e-mail	program	created	it;	the	format	is
standard,	so	Python’s	parsing	should	work	either	way.)	After	parsing	the	message,	you	can	easily	access	individual
headers	and	the	body	of	the	message	using	the	same	conventions	as	you	used	to	create	messages:	headers	look	like	the
dictionary	key-values	of	the	Message,	and	the	body	can	be	fetched	with	a	function.

A	simple	example	of	a	parser	is	shown	in	trad_parse.py.	All	of	the	actual	parsing	takes	place	in	the	one-line	function
	message_from_file()	;	everything	else	in	the	program	listing	is	simply	an	illustration	of	how	a	Message	object	can	be	mined
for	headers	and	data.

import	email

banner	=	'-'	*	48

popular_headers	=	('From',	'To',	'Subject',	'Date')

msg	=	email.message_from_file(open('message.txt'))

headers	=	sorted(msg.keys())

print	banner

for	header	in	headers:

				if	header	not	in	popular_headers:

								print	header	+	':',	msg[header]

print	banner

for	header	in	headers:

				if	header	in	popular_headers:

								print	header	+	':',	msg[header]

print	banner

if	msg.is_multipart():

				print	"This	program	cannot	handle	MIME	multipart	messages."

else:

				print	msg.get_payload()

The	output	should	be	like	this

root@erlerobot:~/Python_files#	python	trad_parse.py

------------------------------------------------

Message-ID:	<20140714123150.987.14344@root-erlerobot.local>

------------------------------------------------

Date:		Mon,	14	Jul	2014	14:33:54	+0200

From:	Test	Sender	<sender@example.com>

Subject:	Test	Message,	Chapter	12

To:	recipient@example.com

------------------------------------------------

Hello,

This	is	a	test	message.

--	Anonymous

root@erlerobot:~/Python_files#

As	you	can	see,	the	Python	Standard	Library	makes	it	quite	easy	both	to	create	and	then	to	parse	standard	Internet	e-mail
messages.	Note	that	the	email	package	also	offers	a		message_from_string()		function	that,	instead	of	taking	a	file,	can
simply	be	handed	the	string	containing	an	e-mail	message.

Parsing	Traditional	Messages



The		email		package	provides	two	functions	that	work	together	as	a	team	to	help	you	parse	the	Date	field	of	e-mail
messages,	whose	format	you	can	see	in	the	preceding	example:	a	date	and	time,	followed	by	a	time	zone	expressed	as
hours	and	minutes	(two	digits	each)	relative	to	UTC.	Countries	in	the	eastern	hemisphere	experience	sunrise	early,	so	their
time	zones	are	expressed	as	positive	numbers,	like	the	following:

Date:	Sun,	27	May	2007	11:34:43	+1000

Those	of	us	in	the	western	hemisphere	have	to	wait	longer	for	the	sun	to	rise,	so	our	time	zones	lag	behind;	Eastern
Daylight	Time,	for	example,	runs	four	hours	behind	UTC:

Date:	Sun,	27	May	2007	08:36:37	-0400

To	figure	out	what	moment	of	time	is	really	meant	by	a	Date	header,	simply	call	two	functions	in	a	row:

Call		parsedate_tz()		to	extract	the	time	and	time	zone.
Use		mktime_tz()		to	add	or	subtract	the	time	zone.
The	result	with	be	a	standard	Unix	timestamp.

For	example,	consider	the	two	Date	headers	shown	previously.	If	you	just	compared	their	bare	times,	the	first	date	looks
later:	11:34	a.m.	is,	after	all,	after	8:36	a.m.	But	the	second	time	is	in	fact	the	much	later	one,	because	it	is	expressed	in	a
time	zone	that	is	so	much	farther	west.	We	can	test	this	by	using	the	functions	previously	named.	First,	turn	the	top	date
into	a	timestamp:

>>>	from	email.utils	import	parsedate_tz,	mktime_tz

>>>	timetuple1	=	parsedate_tz('Sun,	27	May	2007	11:34:43	+1000')

>>>	print	timetuple1

(2007,	5,	27,	11,	34,	43,	0,	1,	-1,	36000)

>>>	timestamp1	=	mktime_tz(timetuple1)

>>>	print	timestamp1

1180229683.0

Then	turn	the	second	date	into	a	timestamp	as	well,	and	the	dates	can	be	compared	directly:

>>>	timetuple2	=	parsedate_tz('Sun,	27	May	2007	08:36:37	-0400')

>>>	timestamp2	=	mktime_tz(timetuple2)

>>>	print	timestamp2

1180269397.0

>>>	timestamp1	<	timestamp2

True

If	you	have	never	seen	a	timestamp	value	before,	they	represent	time	very	plainly:	as	the	number	of	seconds	that	have
passed	since	the	beginning	of	1970.	You	will	find	functions	in	Python’s	old	time	module	for	doing	calculations	with
timestamps,	and	you	will	also	find	that	you	can	turn	them	into	normal	Python	datetime	objects	quite	easily:

>>>	from	datetime	import	datetime

>>>	datetime.fromtimestamp(timestamp2)

datetime.datetime(2007,	5,	27,	8,	36,	37)

In	the	real	world,	many	poorly	written	e-mail	clients	generate	their	Date	headers	incorrectly.	While	the	routines	previously
shown	do	try	to	be	flexible	when	confronted	with	a	malformed	Date,	they	sometimes	can	simply	make	no	sense	of	it	and
	parsedate_tz()		has	to	give	up	and	return	None.	So	when	checking	a	real-world	e-mail	message	for	a	date,	remember	to
do	it	in	three	steps:	first	check	whether	a	Date	header	is	present	at	all;	then	be	prepared	for	None	to	be	returned	when	you
parse	it;	and	finally	apply	the	time	zone	conversion	to	get	a	real	timestamp	that	you	can	work	with.

Parsing	Dates



So	far	we	have	discussed	e-mail	messages	that	are	plain	text:	the	characters	after	the	blank	line	that	ends	the	headers	are
to	be	presented	literally	to	the	user	as	the	content	of	the	e-mail	message.	Today,	only	a	fraction	of	the	messages	sent
across	the	Internet	are	so	simple.

The	Multipurpose	Internet	Mail	Extensions	(MIME)	standard	is	a	set	of	rules	for	encoding	data,	rather	than	simple	plain	text,
inside	e-mails.	MIME	provides	a	system	for	things	like	attachments,	alternative	message	formats,	and	text	that	is	stored	in
alternate	encodings.	Because	MIME	messages	have	to	be	transmitted	and	delivered	through	many	of	the	same	old	e-mail
services	that	were	originally	designed	to	handle	plain-text	e-mails,	MIME	operates	by	adding	headers	to	an	e-mail	message
and	then	giving	it	content	that	looks	like	plain	text	to	the	machine	but	that	can	actually	be	decoded	by	an	e-mail	client	into
HTML,	images,	or	attachments.

The	most	important	features	of	MIME	are,	first,	that	MIME	supports	multipart	messages.	A	normal	e-mail	message,	as	we
have	seen,	contains	some	headers	and	a	body.	But	a	MIME	message	can	squeeze	several	different	parts	into	the	message
body.	These	parts	might	be	things	to	be	presented	to	the	user	in	order,	like	a	plain-text	message,	an	image	file	attachment,
and	then	a	PDF	attachment.	Or,	they	could	be	alternative	multiparts,	which	represent	the	same	content	in	different	ways	—
usually,	by	encoding	a	message	in	both	plain	text	and	HTML.	Second,	MIME	supports	different	transfer	encodings.
Traditional	e-mail	messages	are	limited	to	7-	bit	data,	which	renders	them	unusable	for	international	alphabets.	MIME	has
several	ways	of	transforming	8-bit	data	so	it	fits	within	the	confines	of	e-mail	systems:

The	“plain”	encoding	is	the	same	as	you	would	see	in	traditional	messages,	and	passes	7-bit	text	unmodified.

“Base-64”	is	a	way	of	encoding	raw	binary	data	that	turns	it	into	normal	alphanumeric	data.	Most	of	the	attachments
you	send	and	receive	—such	as	images,	PDFs,	and	ZIP	files	—are	encoded	with	base-64.

“Quoted-printable”	is	a	hybrid	that	tries	to	leave	plain	English	text	alone	so	that	it	remains	readable	in	old	mail	readers,
while	also	letting	unusual	characters	be	included	as	well.

MIME	also	provides	content	types,	which	tell	the	recipient	what	kind	of	content	is	present.	For	instance,	a	content	type	of
text/plain	indicates	a	plain-text	message,	while	image/jpeg	is	a	JPEG	image.

You	will	recall	that	MIME	messages	must	work	within	the	limited	plain-text	framework	of	traditional	email	messages.	To	do
that,	the	MIME	specification	defines	some	headers	and	some	rules	about	formatting	the	body	text.

For	non-multipart	messages	that	are	a	single	block	of	data,	MIME	simply	adds	some	headers	to	specify	what	kind	of
content	the	e-mail	contains,	along	with	its	character	set.	But	the	body	of	the	message	is	still	a	single	piece,	although	it
might	be	encoded	with	one	of	the	schemes	already	described.

For	multipart	messages,	things	get	trickier:	MIME	places	a	special	marker	in	the	e-mail	body	everywhere	that	it	needs	to
separate	one	part	from	the	next.	Each	part	can	then	have	its	own	limited	set	of	headers	—which	occur	at	the	start	of	the
part	—followed	by	data.	By	convention,	the	most	basic	content	in	an	e-mail	comes	first	(like	a	plain-text	message,	if	one
has	been	included),	so	that	people	without	MIME-aware	readers	will	see	the	plain	text	immediately	without	having	to	scroll
down	through	dozens	or	hundreds	of	pages	of	MIME	data.

Understanding	MIME

How	MIME	works
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We	will	start	by	looking	at	how	to	create	MIME	messages.	To	compose	a	message	with	attachments,	you	will	generally
follow	these	steps:

1.	 Create	a	MIMEMultipart	object	and	set	its	message	headers.
2.	 Create	a	MIMEText	object	with	the	message	body	text	and	attach	it	to	the	MIMEMultipart	object.
3.	 Create	appropriate	MIME	objects	for	each	attachment	and	attach	them	to	the	MIMEMultipart	object.
4.	 Finally,	call	as_string()		on	the	MIMEMultipart	object	to	write	out	the	resulting	message.

Take	a	look	at		mime_gen_basic.py		for	a	program	that	implements	this	algorithm.	You	can	see	that	parts	of	the	code	look
similar	to	logic	that	we	used	to	generate	a	traditional	e-mail.	After	creating	the	message	and	its	text	body,	the	program
loops	over	each	file	given	on	the	command	line	and	attaches	it	to	the	growing	message.

from	email.mime.base	import	MIMEBase

from	email.mime.multipart	import	MIMEMultipart

from	email.mime.text	import	MIMEText

from	email	import	utils,	encoders

import	mimetypes,	sys

def	attachment(filename):

				fd	=	open(filename,	'rb')

				mimetype,	mimeencoding	=	mimetypes.guess_type(filename)

				if	mimeencoding	or	(mimetype	is	None):

								mimetype	=	'application/octet-stream'

				maintype,	subtype	=	mimetype.split('/')

				if	maintype	==	'text':

								retval	=	MIMEText(fd.read(),	_subtype=subtype)

				else:

								retval	=	MIMEBase(maintype,	subtype)

								retval.set_payload(fd.read())

								encoders.encode_base64(retval)

				retval.add_header('Content-Disposition',	'attachment',

												filename	=	filename)

				fd.close()

				return	retval

message	=	"""Hello,

This	is	a	test	message.

--	Anonymous"""

msg	=	MIMEMultipart()

msg['To']	=	'recipient@example.com'

msg['From']	=	'Test	Sender	<sender@example.com>'

msg['Subject']	=	'Test	Message'

msg['Date']	=	utils.formatdate(localtime	=	1)

msg['Message-ID']	=	utils.make_msgid()

body	=	MIMEText(message,	_subtype='plain')

msg.attach(body)

for	filename	in	sys.argv[1:]:

				msg.attach(attachment(filename))

print	msg.as_string()

The		attachment()		function	does	the	work	of	creating	a	message	attachment	object.	First,	it	determines	the	MIME	type	of
each	file	by	using	Python’s	built-in	mimetypes	module.	If	the	type	can’t	be	determined,	or	it	will	need	a	special	kind	of
encoding,	then	a	type	is	declared	that	promises	only	that	the	data	is	made	of	a	“stream	of	octets”	(sequence	of	bytes)	but
without	any	further	promise	about	what	they	mean.	If	the	file	is	a	text	document	whose	MIME	type	starts	with	text/,	a
MIMEText	object	is	created	to	handle	it;	otherwise,	a	MIMEBase)	generic	object	is	created.	In	the	latter	case,	the	contents
are	assumed	to	be	binary,	so	they	are	encoded	with	base-64.	Finally,	an	appropriate	Content-Disposition	header	is	added
to	that	section	of	the	MIME	file	so	that	mail	readers	will	know	that	they	are	dealing	with	an	attachment.

The	result	of	running	this	program	is	shown	below	:

Composing	MIME	Attachments
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root@erlerobot:~/Python_files#	echo	"This	is	a	test"	>	test.txt

root@erlerobot:~/Python_files#	gzip	<	test.txt	>	test.txt.gz

root@erlerobot:~/Python_files#	python	mime_gen_basic.py	test.txt	test.txt.gz

Content-Type:	multipart/mixed;	boundary="===============1623374356=="

MIME-Version:	1.0

To:	recipient@example.com

From:	Test	Sender	<sender@example.com>

Subject:	Test	Message

Date:	Mon,	14	Jul	2014	14:36:07	+0200

Message-ID:		<20140714123150.987.14344@root-erlerobot.local>

--===============1623374356==

Content-Type:	text/plain;	charset="us-ascii"

MIME-Version:	1.0

Content-Transfer-Encoding:	7bit

Hello,

This	is	a	test	message.

--	Anonymous

--===============1623374356==

Content-Type:	text/plain;	charset="us-ascii"

MIME-Version:	1.0

Content-Transfer-Encoding:	7bit

Content-Disposition:	attachment;	filename="test.txt"

This	is	a	test

--===============1623374356==

Content-Type:	application/octet-stream

MIME-Version:	1.0

Content-Transfer-Encoding:	base64

Content-Disposition:	attachment;	filename="test.txt.gz"

H4sIAP3o2D8AAwvJyCxWAKJEhZLU4hIuAIwtwPoPAAAA

--===============1623374356==--

The	message	starts	off	looking	quite	similar	to	the	traditional	ones	we	created	earlier;	you	can	see	familiar	headers	like	To,
From,	and	Subject	just	like	before.	Note	the	Content-Type	line,	however:	it	indicates	multipart/mixed.	That	tells	the	mail
reader	that	the	body	of	the	message	contains	multiple	MIME	parts,	and	that	the	string	containing	equals	signs	will	be	the
separator	between	them.	Next	comes	the	message’s	first	part.	Notice	that	it	has	its	own	Content-Type	header!	The	second
part	looks	similar	to	the	first,	but	has	an	additional	Content-Disposition	header;	this	will	signal	most	e-mail	readers	that	the
part	should	be	displayed	as	a	file	that	the	user	can	save	rather	than	being	immediately	displayed	to	the	screen.	Finally
comes	the	part	containing	the	binary	file,	encoded	with	base-64,	which	makes	it	not	directly	readable.



MIME	“alternative”	parts	let	you	generate	multiple	versions	of	a	single	document.	The	user’s	mail	reader	will	then
automatically	decide	which	one	to	display,	depending	on	which	content	type	it	likes	best;	some	mail	readers	might	even
show	the	user	radio	buttons,	or	a	menu,	and	let	them	choose.	The	process	of	creating	alternatives	is	similar	to	the	process
for	attachments,	and	is	illustrated	in		mime_gen_alt.py	:

from	email.mime.base	import	MIMEBase

from	email.mime.multipart	import	MIMEMultipart

from	email.mime.text	import	MIMEText

from	email	import	utils,	encoders

def	alternative(data,	contenttype):

				maintype,	subtype	=	contenttype.split('/')

				if	maintype	==	'text':

								retval	=	MIMEText(data,	_subtype=subtype)

				else:

								retval	=	MIMEBase(maintype,	subtype)

								retval.set_payload(data)

								encoders.encode_base64(retval)

				return	retval

messagetext	=	"""Hello,

This	is	a	*great*	test	message.

--	Anonymous"""

messagehtml	=	"""Hello,<P>

This	is	a	<B>great</B>	test	message	from	Chapter	12.		I	hope	you	enjoy

it!<P>

--	<I>Anonymous</I>"""

msg	=	MIMEMultipart('alternative')

msg['To']	=	'recipient@example.com'

msg['From']	=	'Test	Sender	<sender@example.com>'

msg['Subject']	=	'Test	Message,	Chapter	12'

msg['Date']	=	utils.formatdate(localtime	=	1)

msg['Message-ID']	=	utils.make_msgid()

msg.attach(alternative(messagetext,	'text/plain'))

msg.attach(alternative(messagehtml,	'text/html'))

print	msg.as_string()

Notice	the	differences	between	an	alternative	message	and	a	message	with	attachments!	With	the	alternative	message,	no
Content-Disposition	header	is	inserted.	Also,	the	MIMEMultipart	object	is	passed	the	alternative	subtype	to	tell	the	mail
reader	that	all	objects	in	this	multipart	are	alternative	views	of	the	same	thing.	Note	again	that	it	is	always	most	polite	to
include	the	plain-text	object	first	for	people	with	ancient	or	incapable	mail	readers,	which	simply	show	them	the	entire
message	as	text.

MIME	Alternative	Parts



Although	you	have	seen	how	MIME	can	encode	message	body	parts	with	base-64	to	allow	8-bit	data	to	pass	through,	that
does	not	solve	the	problem	of	special	characters	in	headers.	For	instance,	if	your	name	was	Michael	Müller	(with	an	umlaut
over	the	“u”),	you	would	have	trouble	representing	your	name	accurately	in	your	own	alphabet.	The	“u”	would	come	out
bare.	Therefore,	MIME	provides	a	way	to	encode	data	in	headers.	Take	a	look	at		mime_headers.py	for	how	to	do	it	in	Python.

from	email.mime.text	import	MIMEText

from	email.header	import	Header

message	=	"""Hello,

This	is	a	test	message	.

--	Anonymous"""

msg	=	MIMEText(message)

msg['To']	=	'recipient@example.com'

fromhdr	=	Header()

fromhdr.append(u"Michael	M\xfcller")

fromhdr.append('<mmueller@example.com>')

msg['From']	=	fromhdr

msg['Subject']	=	'Test	Message'

print	msg.as_string()

The	code	'\xfc'	in	the	Unicode	string	(strings	in	Python	source	files	that	are	prefixed	with	u	can	contain	arbitrary	Unicode
characters,	rather	than	being	restricted	to	characters	whose	value	is	between	0	and	255).

root@erlerobot:~/Python_files#	python	mime_headers.py

Content-Type:	text/plain;	charset="us-ascii"

MIME-Version:	1.0

Content-Transfer-Encoding:	7bit

To:	recipient@example.com

From:	=?iso-8859-1?q?Michael_M=FCller?=	<mmueller@example.com>

Subject:	Test	Message

Date:	Mon,	14	Jul	2014	14:46:33	+0200

Message-ID:	<20140714123150.987.14344@root-erlerobot.local>

Hello,

This	is	a	test	message.

--	Anonymous

Composing	Non-English	Headers



Now	that	you	know	how	to	generate	a	message	with	alternatives	and	one	with	attachments,	you	may	be	wondering	how	to
do	both.	To	do	that,	you	create	a	standard	multipart	for	the	main	message.	Then	you	create	a	multipart/alternative	inside
that	for	your	body	text,	and	attach	your	message	formats	to	it.	Finally,	you	attach	the	various	files.	Take	a	look	at
	mime_gen_both.py		for	the	complete	solution.

from	email.mime.text	import	MIMEText

from	email.mime.multipart	import	MIMEMultipart

from	email.mime.base	import	MIMEBase

from	email	import	utils,	encoders

import	mimetypes,	sys

def	genpart(data,	contenttype):

				maintype,	subtype	=	contenttype.split('/')

				if	maintype	==	'text':

								retval	=	MIMEText(data,	_subtype=subtype)

				else:

								retval	=	MIMEBase(maintype,	subtype)

								retval.set_payload(data)

								encoders.encode_base64(retval)

				return	retval

def	attachment(filename):

				fd	=	open(filename,	'rb')

				mimetype,	mimeencoding	=	mimetypes.guess_type(filename)

				if	mimeencoding	or	(mimetype	is	None):

								mimetype	=	'application/octet-stream'

				retval	=	genpart(fd.read(),	mimetype)

				retval.add_header('Content-Disposition',	'attachment',

												filename	=	filename)

				fd.close()

				return	retval

messagetext	=	"""Hello,

This	is	a	*great*	test	message	from	Chapter	12.		I	hope	you	enjoy	it!

--	Anonymous"""

messagehtml	=	"""Hello,<P>

This	is	a	<B>great</B>	test	message	<P>

--	<I>Anonymous</I>"""

msg	=	MIMEMultipart()

msg['To']	=	'recipient@example.com'

msg['From']	=	'Test	Sender	<sender@example.com>'

msg['Subject']	=	'Test	Message'

msg['Date']	=	utils.formatdate(localtime	=	1)

msg['Message-ID']	=	utils.make_msgid()

body	=	MIMEMultipart('alternative')

body.attach(genpart(messagetext,	'text/plain'))

body.attach(genpart(messagehtml,	'text/html'))

msg.attach(body)

for	filename	in	sys.argv[1:]:

				msg.attach(attachment(filename))

print	msg.as_string()

Composing	Nested	Multiparts



Python’s		email	module	can	read	a	message	from	a	file	or	a	string,	and	generate	the	same	kind	of	inmemory	object	tree
that	we	were	generating	ourselves	in	the	aforementioned	listings.	To	understand	the	e-mail’s	content,	all	you	have	to	do

is	step	through	its	structure.	Show	an	example	at	mime_structure.py`:

import	sys,	email

def	printmsg(msg,	level	=	0):

				prefix	=	"|		"	*	level

				prefix2	=	prefix	+	"|"

				print	prefix	+	"+	Message	Headers:"

				for	header,	value	in	msg.items():

								print	prefix2,	header	+	":",	value

				if	msg.is_multipart():

								for	item	in	msg.get_payload():

												printmsg(item,	level	+	1)

msg	=	email.message_from_file(sys.stdin)

printmsg(msg)

This	program	is	short	and	simple.	For	each	object	it	encounters,	it	checks	to	see	if	it	is	multipart;	if	so,	the	children	of	that
object	are	displayed	as	well.	Individual	parts	of	a	message	can	easily	be	extracted.	You	will	recall	that	there	are	several
ways	that	message	data	may	be	encoded;	fortunately,	the	email	module	can	decode	them	all!		mime_decode.py	shows	a
program	that	will	let	you	decode	and	save	any	component	of	a	MIME	message:

import	sys,	email

counter	=	0

parts	=	[]

def	printmsg(msg,	level	=	0):

				global	counter

				l	=	"|		"	*	level

				if	msg.is_multipart():

								print	l	+	"Found	multipart:"

								for	item	in	msg.get_payload():

												printmsg(item,	level	+	1)

				else:

								disp	=	['%d.	Decodable	part'	%	(counter	+	1)]

								if	'content-type'	in	msg:

												disp.append(msg['content-type'])

								if	'content-disposition'	in	msg:

												disp.append(msg['content-disposition'])

								print	l	+	",	".join(disp)

								counter	+=	1

								parts.append(msg)

inputfd	=	open(sys.argv[1])

msg	=	email.message_from_file(inputfd)

printmsg(msg)

while	1:

				print	"Select	part	number	to	decode	or	q	to	quit:	"

				part	=	sys.stdin.readline().strip()

				if	part	==	'q':

								sys.exit(0)

				try:

								part	=	int(part)

								msg	=	parts[part	-	1]

				except:

								print	"Invalid	selection."

								continue

				print	"Select	file	to	write	to:"

				filename	=	sys.stdin.readline().strip()

				try:

								fd	=	open(filename,	'wb')

				except:

								print	"Invalid	filename."

								continue

Parsing	MIME	Messages



				fd.write(msg.get_payload(decode	=	1))

This	program	steps	through	the	message,	like	the	last	example.	We	skip	asking	the	user	about	message	components	that
are	multipart	because	those	exist	only	to	contain	other	message	objects,	like	text	and	attachments;	multipart	sections	have
no	actual	payload	of	their	own.



The	last	trick	that	we	should	cover	regarding	MIME	messages	is	decoding	headers	that	may	have	been	encoded	with
foreign	languages.	The	function		decode_header()		takes	a	single	header	and	returns	a	list	of	pieces	of	the	header;	each
piece	is	a	binary	string	together	with	its	encoding	(named	as	a	string	if	it	is	something	besides	7-bit	ASCII,	else	the	value
None):

>>>	x	=	'=?iso-8859-1?q?Michael_M=FCller?=	<mmueller@example.com>'

>>>	import	email.header

>>>	pieces	=	email.header.decode_header(x)

>>>	print	pieces

[('Michael	M\xfcller',	'iso-8859-1'),	('<mmueller@example.com>',	None)]

Of	course,	this	raw	information	is	likely	to	be	of	little	use	to	you.	To	instead	see	the	actual	text	inside	the	encoding,	use	the
	decode()		function	of	each	binary	string	in	the	list	(falling	back	to	an	‘ascii’	encoding	if	None	was	returned)	and	paste	the
result	together	with	spaces:

>>>	print	'	'.join(	s.decode(enc	or	'ascii')	for	s,enc	in	pieces	)

Michael	Müller	<mmueller@example.com>

It	is	always	good	practice	to	use		decode_header()		on	any	of	the	“big	three”	headers	—From,	To,	and	Subject	—before
displaying	them	to	the	user.	If	no	special	encoding	was	used,	then	the	result	will	simply	be	a	one-element	list	containing	the
header	string	with	a	None	encoding.

Decoding	Headers



The	actual	movement	of	e-mail	between	systems	is	accomplished	through	SMTP:	the	“Simple	Mail	Transport	Protocol.”	In
this	chapter	we	will	analyze	SMTP	in	depth.

Simple	Mail	Transport	Protocol	(SMTP)



The	role	of	SMTP	in	message	submission,	where	the	user	presses	“Send”	and	expects	a	message	to	go	winging	its	way
across	the	Internet,	will	probably	be	least	confusing	if	we	trace	the	history	of	how	users	have	historically	worked	with
Internet	mail.	The	key	concept	to	understand	as	we	begin	this	history	is	that	users	have	never	been	asked	to	sit	around	and
wait	for	an	e-mail	message	to	actually	be	delivered.	This	process	can	often	take	quite	a	bit	of	time—and	up	to	several
dozen	repeated	attempts—before	an	e-mail	message	is	actually	delivered	to	its	destination.	Any	number	of	things	could
cause	delays:	a	message	could	have	to	wait	because	other	messages	are	already	being	transmitted	across	a	link	of	limited
bandwidth;	the	destination	server	might	be	down	for	a	few	hours,	or	its	network	might	not	be	currently	accessible	because
of	a	glitch;	and	if	the	mail	is	destined	for	a	large	organization,	then	it	might	have	to	make	several	different	“hops”	as	it
arrives	at	the	big	university	server,	then	is	directed	to	a	smaller	college	e-mail	machine,	and	then	finally	is	directed	to	a
departmental	e-mail	server.

The	role	of	SMTP	in	message	submission,	where	the	user	presses	“Send”	and	expects	a	message	to	go	winging	its	way
across	the	Internet,	will	probably	be	least	confusing	if	we	trace	the	history	of	how	users	have	historically	worked	with
Internet	mail.	The	key	concept	to	understand	as	we	begin	this	history	is	that	users	have	never	been	asked	to	sit	around	and
wait	for	an	e-mail	message	to	actually	be	delivered.	This	process	can	often	take	quite	a	bit	of	time—and	up	to	several
dozen	repeated	attempts—before	an	e-mail	message	is	actually	delivered	to	its	destination.	Any	number	of	things	could
cause	delays:	a	message	could	have	to	wait	because	other	messages	are	already	being	transmitted	across	a	link	of	limited
bandwidth;	the	destination	server	might	be	down	for	a	few	hours,	or	its	network	might	not	be	currently	accessible	because
of	a	glitch;	and	if	the	mail	is	destined	for	a	large	organization,	then	it	might	have	to	make	several	different	“hops”	as	it
arrives	at	the	big	university	server,	then	is	directed	to	a	smaller	college	e-mail	machine,	and	then	finally	is	directed	to	a
departmental	e-mail	server.

E-mail	browsing	and	submission,	therefore,	become	a	black	box:	your	browser	interacts	with	a	web	API,	and	on	the	other
end,	you	will	see	plain	old	SMTP	connections	originating	from	and	going	to	the	large	organization	as	mail	is	delivered	in
each	direction.	But	in	the	world	of	webmail,	client	protocols	are	removed	from	the	equation,	taking	us	back	to	the	old	days
of	pure	server-to-server	unauthenticated	SMTP.

E-mail	Clients,	Webmail	Services



The	foregoing	narrative	has	hopefully	helped	you	structure	your	thinking	about	Internet	e-mail	protocols,	and	realize	how
they	fit	together	in	the	bigger	picture	of	getting	messages	to	and	from	users.	But	the	subject	of	this	chapter	is	a	narrower
one—the	Simple	Mail	Transport	Protocol	in	particular.	And	we	should	start	by	stating	the	basics:

SMTP	is	a	TCP/IP-based	protocol.
Connections	can	be	authenticated,	or	not.
Connections	can	be	encrypted,	or	not.

Most	e-mail	connections	across	the	Internet	these	days	seem	to	lack	any	attempt	at	encryption,	which	means	that	whoever
owns	the	Internet	backbone	routers	are	theoretically	in	a	position	to	read	simply	staggering	amounts	of	other	people’s	mail.

What	are	the	two	ways	that	SMTP	is	used?	First,	SMTP	can	be	used	for	e-mail	submission	between	a	client	e-mail	program
like	Thunderbird	or	Outlook,	claiming	that	a	user	wants	to	send	e-mail,	and	a	server	at	an	organization	that	has	given	that
user	an	e-mail	address.	These	connections	generally	use	authentication,	so	that	spammers	cannot	connect	and	send
millions	of	messages	on	a	user’s	behalf	without	his	or	her	password.	Once	received,	the	server	puts	the	message	in	a
queue	for	delivery	(and	often	makes	its	first	attempt	at	sending	it	moments	later),	and	the	client	can	forget	about	the
message	and	presume	the	server	will	keep	trying	to	deliver	it.	Second,	SMTP	is	used	between	Internet	mail	servers	as	they
move	e-mail	from	its	origin	to	its	destination.	This	typically	involves	no	authentication;	after	all,	big	organizations	like
Google,	Yahoo!,	and	Microsoft	do	not	know	the	passwords	of	each	other’s	users,	so	when	Yahoo!	receives	an	e-mail	from
Google	claiming	that	it	was	sent	from	an	@gmail.com	user,	Yahoo!	just	has	to	believe	them	(or	not—	sometimes
organizations	blacklist	each	other	if	too	much	spam	is	making	it	through	their	servers,	as	happened	to	a	friend	of	mine	the
other	day	when	Hotmail	stopped	accepting	his	client’s	newsletters	from	GoDaddy’s	servers	because	of	alleged	problems
with	spam).

So,	typically,	no	authentication	takes	place	between	servers	talking	SMTP	to	each	other—and	even	encryption	against
snooping	routers	seems	to	be	used	only	rarely.	Because	of	the	problem	of	spammers	connecting	to	e-mail	servers	and
claiming	to	be	delivering	mail	from	another	organization’s	users,	there	has	been	an	attempt	made	to	lock	down	who	can
send	email	on	an	organization’s	behalf.	Though	controversial,	some	e-mail	servers	consult	the	Sender	Policy	Framework
(SPF),	defined	in	RFC	4408,	to	see	whether	the	server	they	are	talking	to	really	has	the	authority	to	deliver	the	e-mails	it	is
transmitting.	But	the	SPF	and	other	anti-spam	technologies	are	unfortunately	beyond	the	scope	of	this	book,	which	must
limit	itself	to	the	question	of	using	the	basic	protocols	themselves	from	Python.	So	we	now	turn	to	the	more	technical
question	of	how	you	will	actually	use	SMTP	from	your	Python	programs.

How	SMTP	Is	Used



Successfully	sending	e-mail	generally	requires	a	queue	where	a	message	can	sit	for	seconds,	minutes,	or	days	until	it	can
be	successfully	transmitted	toward	its	destination.	So	you	typically	do	not	want	your	programs	using	Python’s	smtplib	to
send	mail	directly	to	a	message’s	destination—because	if	your	first	transmission	attempt	fails,	then	you	will	be	stuck	with
the	job	of	writing	a	full	“mail	transfer	agent”	(MTA),	as	the	RFCs	call	an	e-mail	server,	and	give	it	a	full	standards-compliant
re-try	queue.	This	is	not	only	a	big	job,	but	also	one	that	has	already	been	done	well	several	times,	and	you	will	be	wise	to
take	advantage	of	one	of	the	existing	MTAs	(look	at	postfix,	exim,	and	qmail)	before	trying	to	write	something	of	your	own.

So	only	rarely	will	you	be	making	SMTP	connections	out	into	the	world	from	Python.	More	usually,	your	system
administrator	will	tell	you	one	of	two	things:

That	you	should	make	an	authenticated	SMTP	connection	to	an	existing	e-mail	server,	using	a	username	and
password	that	will	belong	to	your	application,	and	give	it	permission	to	use	the	e-mail	server	to	queue	outgoing
messages

That	you	should	run	a	local	binary	on	the	system—like	the	sendmail	program—	that	the	system	administrator	has
already	gone	to	the	trouble	to	configure	so	that	local	programs	can	send	mail.

Sending	E-Mail
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Python’s	built-in	SMTP	implementation	is	in	the	Python	Standard	Library	module	smtplibPython’s	built-in	SMTP
implementation	is	in	the	Python	Standard	Library	module	smtplib,	which	makes	it	easy	to	do	simple	tasks	with	SMTP.

In	the	examples	that	follow,	the	programs	are	designed	to	take	several	command-line	arguments:	the	name	of	an	SMTP
server,	a	sender	address,	and	one	or	more	recipient	addresses.	Please	use	them	cautiously;	name	only	an	SMTP	server
that	you	yourself	run	or	that	you	know	will	be	happy	receiving	your	test	messages,	lest	you	wind	up	getting	an	IP	address
banned	for	sending	spam!	If	you	don’t	know	where	to	find	an	SMTP	server,	you	might	try	running	a	mail	daemon	like	postfix
or	exim	locally	and	then	pointing	these	example	programs	at	localhost.	Many	UNIX,	Linux,	and	Mac	OS	X	systems	have	an
SMTP	server	like	one	of	these	already	listening	for	connections	from	the	local	machine.

Otherwise,	consult	your	network	administrator	or	Internet	provider	to	obtain	a	proper	hostname	and	port.	Note	that	you
usually	cannot	just	pick	a	mail	server	at	random;	many	store	or	forward	mail	only	from	certain	authorized	clients.	So,	take	a
look	at	simple.py	for	a	very	simple	SMTP	program:

import	sys,	smtplib

if	len(sys.argv)	<	4:

				print	"usage:	%s	server	fromaddr	toaddr	[toaddr...]"	%	sys.argv[0]

				sys.exit(2)

server,	fromaddr,	toaddrs	=	sys.argv[1],	sys.argv[2],	sys.argv[3:]

message	=	"""To:	%s

From:	%s

Subject:	Test	Message	from	simple.py

Hello,

This	is	a	test	message	sent	to	you	from	the	simple.py	program.

"""	%	(',	'.join(toaddrs),	fromaddr)

s	=	smtplib.SMTP(server)

s.sendmail(fromaddr,	toaddrs,	message)

print	"Message	successfully	sent	to	%d	recipient(s)"	%	len(toaddrs)

So,	take	a	look	at		simple.py		for	a	very	simple	SMTP	program.

python

import	sys,	smtplib

if	len(sys.argv)	<	4:

				print	"usage:	%s	server	fromaddr	toaddr	[toaddr...]"	%	sys.argv[0]

				sys.exit(2)

server,	fromaddr,	toaddrs	=	sys.argv[1],	sys.argv[2],	sys.argv[3:]

message	=	"""To:	%s

From:	%s

Subject:	Test	Message	from	simple.py

Hello,

This	is	a	test	message	sent	to	you	from	the	simple.py	program.

"""	%	(',	'.join(toaddrs),	fromaddr)

s	=	smtplib.SMTP(server)

s.sendmail(fromaddr,	toaddrs,	message)

print	"Message	successfully	sent	to	%d	recipient(s)"	%	len(toaddrs)

It	starts	by	generating	a	simple	message	from	the	user’s	command-line	arguments	.	Then	it	creates	an		smtplib.SMTP		object
that	connects	to	the	specified	server.	Finally,	all	that’s	required	is	a	call	to		sendmail()	.	If	that	returns	successfully,	then	you

Introducing	the	SMTP	Library
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know	that	the	message	was	sent.

When	you	run	the	program,	it	will	look	like	this:

root@erlerobot:~/Python_files#	python	simple.py	localhost	sender@example.com	recipient@example.com

Message	successfully	sent	to	2	recipient(s)

Thanks	to	the	hard	work	that	the	authors	of	the	Python	Standard	Library	have	put	into	the		sendmail()		method,	it	might	be
the	only	SMTP	call	you	ever	need.



There	are	several	different	exceptions	that	might	be	raised	while	you’re	programming	with		smtplib	.	They	are:

	socket.gaierror		for	errors	looking	up	address	information.

	socket.error		for	general	I/O	and	communication	problems.

	socket.herror		for	other	addressing	errors.

	smtplib.SMTPException		or	a	subclass	of	it	for	SMTP	conversation	problems.

The		smtplib		module	also	provides	a	way	to	get	a	series	of	detailed	messages	about	the	steps	it	takes	to	send	an	e-mail.
To	enable	that	level	of	detail,	you	can	call		smtpobj.set_debuglevel(1)		With	this	option,	you	should	be	able	to	track	down
any	problems.	Take	a	a	look	at		debug.py		for	an	example	program	that	provides	basic	error	handling	and	debugging.

import	sys,	smtplib,	socket

if	len(sys.argv)	<	4:

				print	"usage:	%s	server	fromaddr	toaddr	[toaddr...]"	%	sys.argv[0]

				sys.exit(2)

server,	fromaddr,	toaddrs	=	sys.argv[1],	sys.argv[2],	sys.argv[3:]

message	=	"""To:	%s

From:	%s

Subject:	Test	Message	from	simple.py

Hello,

This	is	a	test	message	sent	to	you	from	the	debug.py	program.

"""	%	(',	'.join(toaddrs),	fromaddr)

try:

				s	=	smtplib.SMTP(server)

				s.set_debuglevel(1)

				s.sendmail(fromaddr,	toaddrs,	message)

except	(socket.gaierror,	socket.error,	socket.herror,

								smtplib.SMTPException),	e:

				print	"	***	Your	message	may	not	have	been	sent!"

				print	e

				sys.exit(1)

else:

				print	"Message	successfully	sent	to	%d	recipient(s)"	%	len(toaddrs)

This	program	looks	similar	to	the	last	one.	However,	the	output	will	be	very	different.

root@erlerobot:~/Python_files#	python	debug.py	localhost	foo@example.com	jgoerzen@complete.org

send:	'ehlo	localhost\r\n'

reply:	'250-localhost\r\n'

reply:	'250-PIPELINING\r\n'

reply:	'250-SIZE	20480000\r\n'

reply:	'250-VRFY\r\n'

reply:	'250-ETRN\r\n'

reply:	'250-STARTTLS\r\n'

...

Message	successfully	sent	to	1	recipient(s)

From	this	example,	you	can	see	the	conversation	that		smtplib		is	having	with	the	SMTP	server	over	the	network.Let’s	look
at	what’s	happening:	First,	the	client	(the		smtplib		library)	sends	an	EHLO	command	(an	“extended”	successor	to	a	more
ancient	command	that	was	named,	more	readably,	HELO)	with	your	hostname	in	it.	The	remote	server	responds	with	its
hostname,	and	lists	any	optional	SMTP	features	that	it	supports.	Next,	the	client	sends	the	mail	from	command,	which
states	the	“envelope	sender”	e-mail	address	and	the	size	of	the	message.	The	server	at	this	moment	has	the	opportunity	to
reject	the	message	(for	example,	because	it	thinks	you	are	a	spammer);	but	in	this	case,	it	responds	with	250	Ok.	(Note
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that	in	this	case,	the	code	250	is	what	matters;	the	remaining	text	is	just	a	human-readable	comment	and	varies	from
server	to	server.)	Then	the	client	sends	a		rcpt		to	command,	with	the	“envelope	recipient”	that	we	talked	so	much	about
earlier	in	this	chapter;	you	can	finally	see	that,	indeed,	it	is	transmitted	separately	from	the	text	of	the	message	itself	when
using	the	SMTP	protocol.	If	you	were	sending	the	message	to	more	than	one	recipient,	they	would	each	be	listed	on	the
rcpt	to	line.	Finally,	the	client	sends	a	data	command,	transmits	the	actual	message	(using	verbose	carriagereturn-	linefeed
line	endings,	you	will	note,	per	the	Internet	e-mail	standard),	and	finishes	the	conversation.

The		smtplib		module	is	doing	all	this	automatically	for	you	in	this	example.	In	the	rest	of	the	chapter,	we	will	look	at	how	to
take	more	control	of	the	process	so	you	can	take	advantage	of	some	more	advanced	features.



Sometimes	it	is	nice	to	know	about	what	kind	of	messages	a	remote	SMTP	server	will	accept.	For	instance,	most	SMTP
servers	have	a	limit	on	what	size	message	they	permit,	and	if	you	fail	to	check	first,	then	you	may	transmit	a	very	large
message	only	to	have	it	rejected	when	you	have	completed	transmission.

Some	servers	do	not	support	ESMTP.	On	those	servers,	EHLO	will	just	return	an	error.	In	that	case,	you	must	send	a	HELO
command	instead.	In	the	previous	examples,	we	used		sendmail()		immediately	after	creating	our	SMTP	object,	so	smtplib
had	to	send	its	own	“hello”	message	to	the	server.	But	if	it	sees	you	attempt	to	send	the	EHLO	or	HELO	command	on	your
own,	then		sendmail()		will	no	longer	attempt	to	send	these	commands	itself.		ehlo.py		shows	a	program	that	gets	the
maximum	size	from	the	server,	and	returns	an	error	before	sending	if	a	message	would	be	too	large.

import	sys,	smtplib,	socket

if	len(sys.argv)	<	4:

				print	"usage:	%s	server	fromaddr	toaddr	[toaddr...]"	%	sys.argv[0]

				sys.exit(2)

server,	fromaddr,	toaddrs	=	sys.argv[1],	sys.argv[2],	sys.argv[3:]

message	=	"""To:	%s

From:	%s

Subject:	Test	Message	from	simple.py

Hello,

This	is	a	test	message	sent	to	you	from	the	ehlo.py	program.

"""	%	(',	'.join(toaddrs),	fromaddr)

try:

				s	=	smtplib.SMTP(server)

				code	=	s.ehlo()[0]

				uses_esmtp	=	(200	<=	code	<=	299)

				if	not	uses_esmtp:

								code	=	s.helo()[0]

								if	not	(200	<=	code	<=	299):

												print	"Remote	server	refused	HELO;	code:",	code

												sys.exit(1)

				if	uses_esmtp	and	s.has_extn('size'):

								print	"Maximum	message	size	is",	s.esmtp_features['size']

								if	len(message)	>	int(s.esmtp_features['size']):

												print	"Message	too	large;	aborting."

												sys.exit(1)

				s.sendmail(fromaddr,	toaddrs,	message)

except	(socket.gaierror,	socket.error,	socket.herror,

								smtplib.SMTPException),	e:

				print	"	***	Your	message	may	not	have	been	sent!"

				print	e

				sys.exit(1)

else:

				print	"Message	successfully	sent	to	%d	recipient(s)"	%	len(toaddrs)

If	you	run	this	program,	and	the	remote	server	provides	its	maximum	message	size,	then	the	program	will	display	the	size
on	your	screen	and	verify	that	its	message	does	not	exceed	that	size	before	sending.	Here	is	what	running	this	program
might	look	like:

root@erlerobot:~/Python_files#	python	ehlo.py	localhost	foo@example.com	jgoerzen@complete.org	Maximum	message	size	is	10240000

Message	successfully	sent	to	1	recipient(s)

Take	a	look	at	the	part	of	the	code	that	verifies	the	result	from	a	call	to		ehlo()		or		helo()	.	Those	two	functions	return	a	list;
the	first	item	in	the	list	is	a	numeric	result	code	from	the	remote	SMTP	server.

Getting	Information	from	EHLO





E-mails	sent	in	plain	text	over	SMTP	can	be	read	by	anyone	with	access	to	an	Internet	gateway	or	router	across	which	the
packets	happen	to	pass.	The	best	solution	to	this	problem	is	to	encrypt	each	e-mail	with	a	public	key	whose	private	key	is
possessed	only	by	the	person	to	whom	you	are	sending	the	e-mail;	there	are	freely	available	systems	such	as	PGP	and
GPG	for	doing	exactly	this.	But	regardless	of	whether	the	messages	themselves	are	protected,	individual	SMTP
conversations	between	particular	pairs	of	machines	can	be	encrypted	and	authenticated	using	a	method	known	as
SSL/TLS.

The	general	procedure	for	using	TLS	in	SMTP	is	as	follows:

1.	 Create	the	SMTP	object,	as	usual.
2.	 Send	the	EHLO	command.	If	the	remote	server	does	not	support	EHLO,	then	it	will	not	support	TLS.
3.	 Check		s.has_extn()		to	see	if	starttls	is	present.	If	not,	then	the	remote	server	does	not	support	TLS	and	the	message

can	only	be	sent	normally,	in	the	clear.
4.	 Call		starttls()		to	initiate	the	encrypted	channel.
5.	 Call		ehlo()		a	second	time;	this	time,	it’s	encrypted.
6.	 Finally,	send	your	message.

The	first	question	you	have	to	ask	yourself	when	working	with	TLS	is	whether	you	should	return	an	error	if	TLS	is	not
available.	Depending	on	your	application,	you	might	want	to	raise	an	error	for	any	of	the	following:

There	is	no	support	for	TLS	on	the	remote	side.

The	remote	side	fails	to	establish	a	TLS	session	properly.

The	remote	server	presents	a	certificate	that	cannot	be	validated.

	tls.py		acts	as	a	TLS-capable	general-purpose	client.	It	will	connect	to	a	server	and	use	TLS	if	it	can;	otherwise,	it	will	fall
back	and	send	the	message	as	usual.	(But	it	will	die	with	an	error	if	the	attempt	to	start	TLS	fails	while	talking	to	an
ostensibly	capable	server).

import	sys,	smtplib,	socket

if	len(sys.argv)	<	4:

				print	"Syntax:	%s	server	fromaddr	toaddr	[toaddr...]"	%	sys.argv[0]

				sys.exit(2)

server,	fromaddr,	toaddrs	=	sys.argv[1],	sys.argv[2],	sys.argv[3:]

message	=	"""To:	%s

From:	%s

Subject:	Test	Message	from	simple.py

Hello,

This	is	a	test	message	sent	to	you	from	the	tls.py	program

in	Foundations	of	Python	Network	Programming.

"""	%	(',	'.join(toaddrs),	fromaddr)

try:

				s	=	smtplib.SMTP(server)

				code	=	s.ehlo()[0]

				uses_esmtp	=	(200	<=	code	<=	299)

				if	not	uses_esmtp:

								code	=	s.helo()[0]

								if	not	(200	<=	code	<=	299):

												print	"Remove	server	refused	HELO;	code:",	code

												sys.exit(1)

				if	uses_esmtp	and	s.has_extn('starttls'):

								print	"Negotiating	TLS...."

								s.starttls()

								code	=	s.ehlo()[0]

								if	not	(200	<=	code	<=	299):
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												print	"Couldn't	EHLO	after	STARTTLS"

												sys.exit(5)

								print	"Using	TLS	connection."

				else:

								print	"Server	does	not	support	TLS;	using	normal	connection."

				s.sendmail(fromaddr,	toaddrs,	message)

except	(socket.gaierror,	socket.error,	socket.herror,

								smtplib.SMTPException),	e:

				print	"	***	Your	message	may	not	have	been	sent!"

				print	e

				sys.exit(1)

else:

				print	"Message	successfully	sent	to	%d	recipient(s)"	%	len(toaddrs)

If	you	run	this	program	and	give	it	a	server	that	understands	TLS,	the	output	will	look	like	this:

root@erlerobot:~/Python_files#	python	tls.py	jgoerzen@complete.org	jgoerzen@complete.org

Negotiating	TLS....

Using	TLS	connection.

Message	successfully	sent	to	1	recipient(s)

Notice	that	the	call	to		sendmail()		in	these	last	few	listings	is	the	same,	regardless	of	whether	TLS	is	used.



We	reach	the	topic	of	Authenticated	SMTP,	where	your	ISP,	university,	or	company	e-mail	server	needs	you	to	log	in	with	a
username	and	password	to	prove	that	you	are	not	a	spammer	before	they	allow	you	to	send	e-mail.

For	maximum	security,	TLS	should	be	used	in	conjunction	with	authentication;	otherwise	your	password	(and	username,	for
that	matter)	will	be	visible	to	anyone	observing	the	connection.	The	proper	way	to	do	this	is	to	establish	the	TLS	connection
first,	and	then	send	your	authentication	information	only	over	the	encrypted	communications	channel.

But	using	authentication	itself	is	simple;		smtplib		provides	a		login()		function	that	takes	a	username	and	a	password.
	login.py		shows	an	example.	To	avoid	repeating	code	already	shown	in	previous	listings,	this	listing	does	not	take	the
advice	of	the	previous	paragraph,	and	sends	the	username	and	password	over	an	un-authenticated	connection	that	will
send	them	in	the	clear.

import	sys,	smtplib,	socket

from	getpass	import	getpass

if	len(sys.argv)	<	4:

				print	"Syntax:	%s	server	fromaddr	toaddr	[toaddr...]"	%	sys.argv[0]

				sys.exit(2)

server,	fromaddr,	toaddrs	=	sys.argv[1],	sys.argv[2],	sys.argv[3:]

message	=	"""To:	%s

From:	%s

Subject:	Test	Message	from	simple.py

Hello,

This	is	a	test	message	sent	to	you	from	the	login.py	program

in	Foundations	of	Python	Network	Programming.

"""	%	(',	'.join(toaddrs),	fromaddr)

sys.stdout.write("Enter	username:	")

username	=	sys.stdin.readline().strip()

password	=	getpass("Enter	password:	")

try:

				s	=	smtplib.SMTP(server)

				try:

								s.login(username,	password)

				except	smtplib.SMTPException,	e:

								print	"Authentication	failed:",	e

								sys.exit(1)

				s.sendmail(fromaddr,	toaddrs,	message)

except	(socket.gaierror,	socket.error,	socket.herror,

								smtplib.SMTPException),	e:

				print	"	***	Your	message	may	not	have	been	sent!"

				print	e

				sys.exit(1)

else:

				print	"Message	successfully	sent	to	%d	recipient(s)"	%	len(toaddrs)

You	can	run	this	program	just	like	the	previous	examples.	If	you	run	it	with	a	server	that	does	support	authentication,	you
will	be	prompted	for	a	username	and	password.	If	they	are	accepted,	then	the	program	will	proceed	to	transmit	your
message.

Authenticated	SMTP



The	Post	Office	Protocol,	is	a	simple	protocol	that	is	used	to	download	e-mail	from	a	mail	server,	and	is	typically	used
through	an	e-mail	client	like	Thunderbird	or	Outlook.	POP	does	not	support	multiple	mailboxes	on	the	remote	side,	nor	does
it	provide	any	reliable,	persistent	message	identification.	This	means	that	you	cannot	use	POP	as	a	protocol	for	mail
synchronization.	The	Python	Standard	Library	provides	the	poplib	module,	which	provides	a	convenient	interface	for	using
POP.	In	this	chapter,	you	will	learn	how	to	use	poplib	to	connect	to	a	POP	server,	gather	summary	information	about	a
mailbox,	download	messages,	and	delete	the	originals	from	the	server.

Post	Office	Protocol	(POP)
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POP	supports	several	authentication	methods.	The	two	most	common	are	basic	username-password	authentication,	and
APOP,	which	is	an	optional	extension	to	POP	that	helps	protect	passwods	from	being	sent	in	plain-text	if	you	are	using	an
ancient	POP	server	that	does	not	support	SSL.

The	process	of	connecting	and	authenticating	to	a	remote	server	looks	like	this	in	Python:

1.	 Create	a	POP3_SSL	or	just	a	plain	POP3	object,	and	pass	the	remote	hostname	and	port	to	it.
2.	 Call		user()		and		pass_()		to	send	the	username	and	password.	Note	the	underscore	in		pass_()	.	It	is	present	because

pass	is	a	keyword	in	Python	and	cannot	be	used	for	a	method	name.
3.	 If	the	exception		poplib.error_proto		is	raised,	it	means	that	the	login	has	failed	and	the	string	value	of	the	exception

contains	the	error	explanation	sent	by	the	server.

The	choice	between	POP3	and	POP3_SSL	is	governed	by	whether	your	e-mail	provider	offers—or,	in	this	day	and	age,
even	requires—that	you	connect	over	an	encrypted	connection.

	popconn.py		uses	the	foregoing	steps	to	log	in	to	a	remote	POP	server.	Once	connected,	it	calls		stat()	,	which	returns	a
simple	tuple	giving	the	number	of	messages	in	the	mailbox	and	the	messages’	total	size.	Finally,	the	program	calls		quit()	,
which	closes	the	POP	connection.

import	getpass,	poplib,	sys

if	len(sys.argv)	!=	3:

				print	'usage:	%s	hostname	user'	%	sys.argv[0]

				exit(2)

hostname,	user	=	sys.argv[1:]

passwd	=	getpass.getpass()

p	=	poplib.POP3_SSL(hostname)		#	or	"POP3"	if	SSL	is	not	supported

try:

				p.user(user)

				p.pass_(passwd)

except	poplib.error_proto,	e:

				print	"Login	failed:",	e

else:

				status	=	p.stat()

				print	"You	have	%d	messages	totaling	%d	bytes"	%	status

finally:

				p.quit()

You	can	test	this	program	if	you	have	a	POP	account	somewhere.	The	program	will	then	prompt	you	for	your	password.
Finally,	it	will	display	the	mailbox	status,	without	touching	or	altering	any	of	your	mail.

When	POP	servers	do	not	support	SSL	to	protect	your	connection	from	snooping,	they	sometimes	at	least	support	an
alternate	authentication	protocol	called	APOP,	which	uses	a	challenge-response	scheme	to	assure	that	your	password	is
not	sent	in	the	clear.	(But	all	of	your	e-mail	will	still	be	visible	to	any	third	party	watching	the	packets	go	by)	The	Python
Standard	Library	makes	this	very	easy	to	attempt:	just	call	the		apop()		method,	then	fall	back	to	basic	authentication	if	the
POP	server	you	are	talking	to	does	not	understand.	To	use	APOP	but	fall	back	to	plain	authentication,	you	could	use	a
stanza	like	the	one	shown	below	inside	your	POP	program	(like		ponconn.py	).

	print	"Attempting	APOP	authentication..."

try:

		p.apop(user,	passwd)

except	poplib.error_proto:

		print	"Attempting	standard	authentication..."

		try:

				p.user(user)

				p.pass_(passwd)

		except	poplib.error_proto,	e:

				print	"Login	failed:",	e
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				sys.exit(1)



The	preceding	example	showed	you		stat()	,	which	returns	the	number	of	messages	in	the	mailbox	and	their	total	size.
Another	useful	POP	command	is		list()	,	which	returns	more	detailed	information	about	each	message.	The	most
interesting	part	is	the	message	number,	which	is	required	to	retrieve	messages	later.	Note	that	there	may	be	gaps	in
message	numbers:	a	mailbox	may,	for	example,	contain	message	numbers	1,	2,	5,	6,	and	9.	Also,	the	number	assigned	to
a	particular	message	may	be	different	on	each	connection	you	make	to	the	POP	server.		mailbox.py		shows	how	to	use	the
	list()		command	to	display	information	about	each	message.

import	getpass,	poplib,	sys

if	len(sys.argv)	!=	3:

				print	'usage:	%s	hostname	user'	%	sys.argv[0]

				exit(2)

hostname,	user	=	sys.argv[1:]

passwd	=	getpass.getpass()

p	=	poplib.POP3_SSL(hostname)

try:

				p.user(user)

				p.pass_(passwd)

except	poplib.error_proto,	e:

				print	"Login	failed:",	e

else:

				response,	listings,	octet_count	=	p.list()

				for	listing	in	listings:

								number,	size	=	listing.split()

								print	"Message	%s	has	%s	bytes"	%	(number,	size)

finally:

				p.quit()

The		list()		function	returns	a	tuple	containing	three	items;	you	should	generally	pay	attention	to	the	second	item.	Here	is
its	raw	output	for	one	of	my	POP	mailboxes	at	the	moment,	which	has	three	messages	in	it:

('+OK	3	messages	(5675	bytes)',	['1	2395',	'2	1626',

'3	1654'],	24)

The	three	strings	inside	the	second	item	give	the	message	number	and	size	for	each	of	the	three	messages	in	my	in-box.

Obtaining	Mailbox	Information



You	should	now	be	getting	the	hang	of	POP:	when	using		poplib		you	get	to	issue	small	atomic	commands	that	always
return	a	tuple	inside	which	are	various	strings	and	lists	of	strings	showing	you	the	result.	We	are	now	ready	to	actually
manipulate	messages!	The	three	relevant	methods,	which	all	identify	messages	using	the	same	integer	identifiers	that	are
returned	by		list()	,	are	these:

	retr(num)	:	This	method	downloads	a	single	message	and	returns	a	tuple	containing	a	result	code	and	the	message
itself,	delivered	as	a	list	of	lines.	This	will	cause	most	POP	servers	to	set	the	“seen”	flag	for	the	message	to	“true,”
barring	you	from	ever	seeing	it	from	POP	again	(unless	you	have	another	way	into	your	mailbox	that	lets	you	set
messages	back	to	“Unread”).

	top(num,	body_lines)	:This	method	returns	its	result	in	the	same	format	as		retr()		without	marking	the	message	as
“seen.”	But	instead	of	returning	the	whole	message,	it	just	returns	the	headers	plus	however	many	lines	of	the	body
you	ask	for	in		body_lines	.	This	is	useful	for	previewing	messages	if	you	want	to	let	the	user	decide	which	ones	to
download.

	dele(num)	:	This	method	marks	the	message	for	deletion	from	the	POP	server,	to	take	place	when	you	quit	this	POP
session.	Typically	you	would	do	this	only	if	the	user	directly	requests	irrevocable	destruction	of	the	message,	or	if	you
have	stored	the	message	to	disk	and	used	something	like		fsync()		to	assure	the	data’s	safety.

To	put	everything	together,	take	a	look	at		download-and-delete.py	,	which	is	a	fairly	functional	e-mail	client	that	speaks	POP.
It	checks	your	in-box	to	determine	how	many	messages	there	are	and	to	learn	what	their	numbers	are;	then	it	uses		top()	
to	offer	a	preview	of	each	one;	and,	at	the	user’s	option,	it	can	retrieve	the	whole	message,	and	can	also	delete	it	from	the
mailbox.

import	email,	getpass,	poplib,	sys

if	len(sys.argv)	!=	3:

				print	'usage:	%s	hostname	user'	%	sys.argv[0]

				exit(2)

hostname,	user	=	sys.argv[1:]

passwd	=	getpass.getpass()

p	=	poplib.POP3_SSL(hostname)

try:

				p.user(user)

				p.pass_(passwd)

except	poplib.error_proto,	e:

				print	"Login	failed:",	e

else:

				response,	listings,	octets	=	p.list()

				for	listing	in	listings:

								number,	size	=	listing.split()

								print	'Message',	number,	'(size	is',	size,	'bytes):'

								print

								response,	lines,	octets	=	p.top(number,	0)

								message	=	email.message_from_string('\n'.join(lines))

								for	header	in	'From',	'To',	'Subject',	'Date':

												if	header	in	message:

																print	header	+	':',	message[header]

								print

								print	'Read	this	message	[ny]?'

								answer	=	raw_input()

								if	answer.lower().startswith('y'):

												response,	lines,	octets	=	p.retr(number)

												message	=	email.message_from_string('\n'.join(lines))

												print	'-'	*	72

												for	part	in	message.walk():

																if	part.get_content_type()	==	'text/plain':

																				print	part.get_payload()

																				print	'-'	*	72

								print

								print	'Delete	this	message	[ny]?'

								answer	=	raw_input()
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								if	answer.lower().startswith('y'):

												p.dele(number)

												print	'Deleted.'

finally:

				p.quit()

If	you	run	this	program,	you’ll	see	output	similar	to	this:

root@erlerobot:~/Python_files#	python	download-and-delete.py	pop.gmail.com	my_gmail_acct

Message	1	(size	is	1847	bytes):

From:	root@server.example.com

To:	Brandon	Rhodes	<brandon.craig.rhodes@gmail.com>

Subject:	Backup	complete

Date:	Tue,	13	Apr	2010	16:56:43	-0700	(PDT)

Read	this	message	[ny]?

n

Delete	this	message	[ny]?

y

Deleted.



Such	as	POP,	IMAP	is	a	way	that	a	laptop	or	desktop	computer	can	connect	to	a	larger	Internet	server	to	view	and
manipulate	a	user’s	e-mail.	Whereas	the	capabilities	of	POP	are	rather	anemicthe	IMAP	protocol	offers	such	a	full	array	of
capabilities	that	many	users	store	their	e-mail	permanently	on	the	server,	keeping	it	safe	from	a	laptop	or	desktop	hard
drive	crash.

This	chapter	will	teach	just	the	basics,	with	a	focus	on	how	to	best	connect	from	Python.

Internet	Message	Access	Protocol	(IMAP)



The	Python	Standard	Library	contains	an	IMAP	client	interface	named	imaplib,	which	does	offer	rudimentary	access	to	the
protocol.	Unfortunately,	it	limits	itself	to	knowing	how	to	send	requests	and	deliver	their	responses	back	to	your	code.	It
makes	no	attempt	to	actually	implement	the	detailed	rules	in	the	IMAP	specification	for	parsing	the	returned	data.

As	an	example	of	how	values	returned	from	imaplib	are	usually	too	raw	to	be	usefully	used	in	a	program,	take	a	look	at
	open_imaplib.py	.	It	is	a	simple	script	that	uses	imaplib	to	connect	to	an	IMAP	account,	list	the	“capabilities”	that	the	server
advertises,	and	then	display	the	status	code	and	data	returned	by	the	LIST	command.

import	getpass,	sys

from	imapclient	import	IMAPClient

try:

				hostname,	username	=	sys.argv[1:]

except	ValueError:

				print	'usage:	%s	hostname	username'	%	sys.argv[0]

				sys.exit(2)

c	=	IMAPClient(hostname,	ssl=True)

try:

				c.login(username,	getpass.getpass())

except	c.Error,	e:

				print	'Could	not	log	in:',	e

				sys.exit(1)

print	'Capabilities:',	c.capabilities()

print	'Listing	mailboxes:'

data	=	c.list_folders()

for	flags,	delimiter,	folder_name	in	data:

				print	'		%-30s%s	%s'	%	('	'.join(flags),	delimiter,	folder_name)

c.logout()

If	you	run	this	script	with	appropriate	arguments,	it	will	start	by	asking	for	your	password—IMAP	authentication	is	almost
always	accomplished	through	a	username	and	password:

root@erlerobot:~/Python_files#	python	open_imaplib.py	imap.example.com	brandon@example.com

Password:

If	your	password	is	correct,	it	will	then	print	out	a	response	that	looks	something	like	the	result	shown	below:

Capabilities:	('IMAP4REV1',	'UNSELECT',	'IDLE',	'NAMESPACE',	'QUOTA',

'XLIST',	'CHILDREN',	'XYZZY',	'SASL-IR',	'AUTH=XOAUTH')

Listing	mailboxes

Status:	'OK'

Data:

'(\\HasNoChildren)	"/"	"INBOX"'

'(\\HasNoChildren)	"/"	"Personal"'

'(\\HasNoChildren)	"/"	"Receipts"'

'(\\HasNoChildren)	"/"	"Travel"'

'(\\HasNoChildren)	"/"	"Work"'

'(\\Noselect	\\HasChildren)	"/"	"[Gmail]"'

'(\\HasChildren	\\HasNoChildren)	"/"	"[Gmail]/All	Mail"'

'(\\HasNoChildren)	"/"	"[Gmail]/Drafts"'

'(\\HasChildren	\\HasNoChildren)	"/"	"[Gmail]/Sent	Mail"'

'(\\HasNoChildren)	"/"	"[Gmail]/Spam"'

'(\\HasNoChildren)	"/"	"[Gmail]/Starred"'

'(\\HasChildren	\\HasNoChildren)	"/"	"[Gmail]/Trash"'

There	are	two	main	problems:	First,	we	have	been	returned	its	status	code	manually	and	second,	imaplib		gives	us	no	help
in	interpreting	the	results.

So	unless	you	want	to	implement	several	details	of	the	protocol	yourself,	you	will	want	a	more	capable	IMAP	client	library.

Understanding	IMAP	in	Python
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Fortunately,	a	popular	and	battle-tested	IMAP	library	for	Python	does	exist,	and	is	available	for	easy	installation	from	the
Python	Package	Index.	The	IMAPClient	package	is	written	by	a	friendly	Python	programmer	named	Menno	Smits,	and	in
fact	uses	the	Standard	Library	Once	installed,	you	can	use	the	python	interpreter	in	the	virtual	environment	to	run	the
program	shown	in		open_imap.py	.

import	getpass,	sys

from	imapclient	import	IMAPClient

try:

				hostname,	username	=	sys.argv[1:]

except	ValueError:

				print	'usage:	%s	hostname	username'	%	sys.argv[0]

				sys.exit(2)

c	=	IMAPClient(hostname,	ssl=True)

try:

				c.login(username,	getpass.getpass())

except	c.Error,	e:

				print	'Could	not	log	in:',	e

				sys.exit(1)

print	'Capabilities:',	c.capabilities()

print	'Listing	mailboxes:'

data	=	c.list_folders()

for	flags,	delimiter,	folder_name	in	data:

				print	'		%-30s%s	%s'	%	('	'.join(flags),	delimiter,	folder_name)

c.logout()

You	can	see	immediately	from	the	code	that	more	details	of	the	protocol	exchange	are	now	being	handled	on	our	behalf.
For	example,	we	no	longer	get	a	status	code	back	that	we	have	to	check	every	time	we	run	a	command;	instead,	the	library
is	doing	that	check	for	us	and	will	raise	an	exception	to	stop	us	in	our	tracks	if	anything	goes	wrong.	Second,	you	can	see
that	each	result	from	the	LIST	command—which	in	this	library	is	offered	as	the		list_folders()		method	instead	of	the
	list()		method	offered	by	imaplib—has	already	been	parsed	into	Python	data	types	for	us.	Each	line	of	data	comes	back
as	a	tuple	giving	us	the	folder	flags,	folder	name	delimiter,	and	folder	name,	and	the	flags	themselves	are	a	sequence	of
strings.	Take	a	look	at	the	code	below,for	what	the	output	of	this	second	script	looks	like:

Capabilities:	('IMAP4REV1',	'UNSELECT',	'IDLE',	'NAMESPACE',	'QUOTA',	'XLIST',	'CHILDREN',

'XYZZY',	'SASL-IR',	'AUTH=XOAUTH')

Listing	mailboxes:

\HasNoChildren	/	INBOX

\HasNoChildren	/	Personal

\HasNoChildren	/	Receipts

\HasNoChildren	/	Travel

\HasNoChildren	/	Work

\Noselect	\HasChildren	/	[Gmail]

\HasChildren	\HasNoChildren	/	[Gmail]/All	Mail

\HasNoChildren	/	[Gmail]/Drafts

\HasChildren	\HasNoChildren	/	[Gmail]/Sent	Mail

\HasNoChildren	/	[Gmail]/Spam

\HasNoChildren	/	[Gmail]/Starred

\HasChildren	\HasNoChildren	/	[Gmail]/Trash

The	standard	flags	listed	for	each	folder	may	be	zero	or	more	of	the	following:

\Noinferiors:	This	means	that	the	folder	does	not	contain	any	sub-folders	and	that	it	is	not	possible	for	it	to	contain	sub-
folders	in	the	future.	Your	IMAP	client	will	receive	an	error	if	it	tries	to	create	a	sub-folder	under	this	folder.

\Noselect:	This	means	that	it	is	not	possible	to	run		select_folder()		on	this	folder—that	is,	this	folder	does	not	and
cannot	contain	any	messages.	(Perhaps	it	exists	just	to	allow	sub-folders	beneath	it,	as	one	possibility.)

\Marked:	This	means	that	the	server	considers	this	box	to	be	interesting	in	some	way;	generally,	this	indicates	that	new
messages	have	been	delivered	since	the	last	time	the	folder	was	selected.	However,	the	absence	of	\Marked	does	not
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guarantee	that	the	folder	does	not	contain	new	messages;	some	servers	simply	do	not	implement	\Marked	at	all.

\Unmarked:	This	guarantees	that	the	folder	doesn’t	contain	new	messages.



IMAP	provides	two	different	ways	to	refer	to	a	specific	message	within	a	folder:	by	a	temporary	message	number	(which
typically	goes	1,	2,	3,	and	so	forth)	or	by	a	UID	(unique	identifier).	The	difference	between	the	two	lies	with	persistence.
Message	numbers	are	assigned	right	when	you	select	the	folder.	This	means	they	can	be	pretty	and	sequential,	but	it	also
means	that	if	you	revisit	the	same	folder	later,	then	a	given	message	may	have	a	different	number.	For	programs	such	as
live	mail	readers	or	simple	download	scripts,	this	behavior	(which	is	the	same	as	POP)	is	fine;	you	do	not	need	the
numbers	to	stay	the	same.	But	a	UID,	by	contrast,	is	designed	to	remain	the	same	even	if	you	close	your	connection	to	the
server	and	do	not	reconnect	again	for	another	week.	If	a	message	had	UID	1053	today,	then	the	same	message	will	have
UID	1053	tomorrow,	and	no	other	message	in	that	folder	will	ever	have	UID	1053.	If	you	are	writing	a	synchronization	tool,
this	behavior	is	quite	useful!	It	will	allow	you	to	verify	with	100%	percent	certainty	that	actions	are	being	taken	against	the
correct	message.	This	is	one	of	the	things	that	make	IMAP	so	much	more	fun	than	POP.

Most	IMAP	commands	that	work	with	specific	messages	can	take	either	message	numbers	or	UIDs.	Normally,		IMAPClient	
always	uses	UIDs	and	ignores	the	temporary	message	numbers	assigned	by	IMAP.	But	if	you	want	to	see	the	temporary
numbers	instead,	simply	instantiate		IMAPClient		with	a		use_uid=False		argument—or,	you	can	even	set	the	value	of	the
class’s		use_uid		attribute	to	False	and	True	on	the	fly	during	your	IMAP	session.

Message	Numbers	vs.	UIDs



When	you	first	select	a	folder,	the	IMAP	server	provides	some	summary	information	about	it—about	the	folder	itself	and
also	about	its	messages.	The	summary	is	returned	by		IMAPClient		as	a	dictionary.	Here	are	the	keys	that	most	IMAP
servers	will	return	when	you	run		select_folder()	:

EXISTS:	An	integer	giving	the	number	of	messages	in	the	folder.

FLAGS:	A	list	of	the	flags	that	can	be	set	on	messages	in	this	folder.

RECENT:	Specifies	the	server’s	approximation	of	the	number	of	messages	that	have	appeared	in	the	folder	since	the
last	time	an	IMAP	client	ran		select_folder()		on	it.

PERMANENTFLAGS:	Specifies	the	list	of	custom	flags	that	can	be	set	on	messages;	this	is	usually	empty.

UIDNEXT:	The	server’s	guess	about	the	UID	that	will	be	assigned	to	the	next	incoming	(or	uploaded)	message

UIDVALIDITY:	A	string	that	can	be	used	by	clients	to	verify	that	the	UID	numbering	has	not	changed;	if	you	come	back
to	a	folder	and	this	is	a	different	value	than	the	last	time	you	connected,	then	the	UID	number	has	started	over	and
your	stored	UID	values	are	no	longer	valid.

UNSEEN:	Specifies	the	message	number	of	the	first	unseen	message	(one	without	the	\Seen	flag)	in	the	folder.

Of	these	flags,	servers	are	only	required	to	return	FLAGS,	EXISTS,	and	RECENT,	though	most	will	include	at	least
UIDVALIDITY	as	well.

	folder_info.py	shows	an	example	program	that	reads	and	displays	the	summary	information	of	my	INBOX	mail	folder:

import	getpass,	sys

from	imapclient	import	IMAPClient

try:

				hostname,	username	=	sys.argv[1:]

except	ValueError:

				print	'usage:	%s	hostname	username'	%	sys.argv[0]

				sys.exit(2)

c	=	IMAPClient(hostname,	ssl=True)

try:

				c.login(username,	getpass.getpass())

except	c.Error,	e:

				print	'Could	not	log	in:',	e

				sys.exit(1)

else:

				select_dict	=	c.select_folder('INBOX',	readonly=True)

				for	k,	v	in	select_dict.items():

								print	'%s:	%r'	%	(k,	v)

				c.logout()

When	run,	this	program	displays	results	such	as	this:

```

root@erlerobot:~/Python_files#	python	folder_info.py	imap.example.com	brandon@example.com	Password:	EXISTS:	3
PERMANENTFLAGS:	('\Answered',	'\Flagged',	'\Draft',	'\Deleted',	'\Seen',	'\*')	READ-WRITE:	True	UIDNEXT:	2626	FLAGS:
('\Answered',	'\Flagged',	'\Draft',	'\Deleted',	'\Seen')	UIDVALIDITY:	1	RECENT:	0

```

Summary	Information



That	shows	that	my	INBOX	folder	contains	three	messages,	none	of	which	have	arrived	since	I	last	checked.	If	your
program	is	interested	in	using	UIDs	that	it	stored	during	previous	sessions,	remember	to	compare	the	UIDVALIDITY	to	a
stored	value	from	a	previous	session.



With	IMAP,	the	FETCH	command	is	used	to	download	mail,	which	IMAPClient	exposes	as	its	`fetch()	method.	The	simplest
way	to	fetch	involves	downloading	all	messages	at	once,	in	a	single	big	gulp.	While	this	is	simplest	and	requires	the	least
network	traffic	(since	you	do	not	have	to	issue	repeated	commands	and	receive	multiple	responses),	it	does	mean	that	all
of	the	returned	messages	will	need	to	sit	in	memory	Download	from	together	as	your	program	examines	them.For	very
large	mailboxes	whose	messages	have	lots	of	attachments,	this	is	obviously	not	practical.

	mailbox_summary.py		downloads	all	of	the	messages	from	my	INBOX	folder	into	your	computer’s	memory	in	a	Python	data
structure,	and	then	displays	a	bit	of	summary	information	about	each	one.

import	email,	getpass,	sys

from	imapclient	import	IMAPClient

try:

				hostname,	username,	foldername	=	sys.argv[1:]

except	ValueError:

				print	'usage:	%s	hostname	username	folder'	%	sys.argv[0]

				sys.exit(2)

c	=	IMAPClient(hostname,	ssl=True)

try:

				c.login(username,	getpass.getpass())

except	c.Error,	e:

				print	'Could	not	log	in:',	e

				sys.exit(1)

c.select_folder(foldername,	readonly=True)

msgdict	=	c.fetch('1:*',	['BODY.PEEK[]'])

for	message_id,	message	in	msgdict.items():

				e	=	email.message_from_string(message['BODY[]'])

				print	message_id,	e['From']

				payload	=	e.get_payload()

				if	isinstance(payload,	list):

								part_content_types	=	[	part.get_content_type()	for	part	in	payload	]

								print	'		Parts:',	'	'.join(part_content_types)

				else:

								print	'		',	'	'.join(payload[:60].split()),	'...'

c.logout()

Remember	that	IMAP	is	stateful:	first	we	use		select_folder()		to	put	us	“inside”	the	given	folder,	and	then	we	can	run
fetch()	to	ask	for	message	content.	The	range	'1:*'	means	“the	first	message	through	the	end	of	the	mail	folder”,	because
message	IDs—whether	temporary	or	UIDs—are	always	positive	integers.

Here	is	what	it	looks	like	to	run	this	script:

root@erlerobot:~/Python_files#	python		mailbox_summary.py	imap.example.com	brandon	INBOX

Password:

2590	"Amazon.com"	<order-update@amazon.com>

Dear	Brandon,	Portable	Power	Systems,	Inc.	shipped	the	follo	...

2469	Meetup	Reminder	<info@meetup.com>

Parts:	text/plain	text/html

2470	billing@linode.com

Thank	you.	Please	note	that	charges	will	appear	as	"Linode.c	...

Downloading	an	Entire	Mailbox



E-mail	messages	can	be	quite	large,	and	so	can	mail	folders—many	mail	systems	permit	users	to	have	hundreds	or
thousands	of	messages,	that	can	each	be	10MB	or	more.	That	kind	of	mailbox	can	easily	exceed	the	RAM	on	the	client
machine	if	its	contents	are	all	downloaded	at	once,	as	in	the	previous	example.	To	help	network-based	mail	clients	that	do
not	want	to	keep	local	copies	of	every	message,	IMAP	supports	several	operations	besides	the	big	“fetch	the	whole
message”	command	that	we	saw	in	the	previous	section.

An	e-mail’s	headers	can	be	downloaded	as	a	block	of	text,	separately	from	the	message.

Particular	headers	from	a	message	can	be	requested	and	returned.

The	server	can	be	asked	to	recursively	explore	and	return	an	outline	of	the	MIME	structure	of	a	message.

The	text	of	particular	sections	of	the	message	can	be	returned.

This	allows	IMAP	clients	to	perform	very	efficient	queries	that	download	only	the	information	they	need	to	display	for	the
user,	decreasing	the	load	on	the	IMAP	server	and	the	network,	and	allowing	results	to	be	displayed	more	quickly	to	the
user.	For	an	example	of	how	a	simple	IMAP	client	works,	examine		simple_client.py	,	which	puts	together	a	number	of
ideas	about	browsing	an	IMAP	account.	Hopefully	this	provides	more	context	than	would	be	possible	if	these	features	were
spread	out	over	a	half-dozen	shorter	program	listings	at	this	point	in	the	chapter.	You	can	see	that	the	client	consists	of
three	concentric	loops	that	each	take	input	from	the	user	as	he	or	she	views	the	list	of	mail	folders,	then	the	list	of
messages	within	a	particular	mail	folder,	and	finally	the	sections	of	a	specific	message.

import	getpass,	sys

from	imapclient	import	IMAPClient

try:

				hostname,	username	=	sys.argv[1:]

except	ValueError:

				print	'usage:	%s	hostname	username'	%	sys.argv[0]

				sys.exit(2)

banner	=	'-'	*	72

c	=	IMAPClient(hostname,	ssl=True)

try:

				c.login(username,	getpass.getpass())

except	c.Error,	e:

				print	'Could	not	log	in:',	e

				sys.exit(1)

def	display_structure(structure,	parentparts=[]):

				"""Attractively	display	a	given	message	structure."""

				#	The	whole	body	of	the	message	is	named	'TEXT'.

				if	parentparts:

								name	=	'.'.join(parentparts)

				else:

								print	'HEADER'

								name	=	'TEXT'

				#	Print	this	part's	designation	and	its	MIME	type.

				is_multipart	=	isinstance(structure[0],	list)

				if	is_multipart:

								parttype	=	'multipart/%s'	%	structure[1].lower()

				else:

								parttype	=	('%s/%s'	%	structure[:2]).lower()

				print	'%-9s'	%	name,	parttype,

				#	For	a	multipart	part,	print	all	of	its	subordinate	parts;	for

				#	other	parts,	print	their	disposition	(if	available).

				if	is_multipart:
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								print

								subparts	=	structure[0]

								for	i	in	range(len(subparts)):

												display_structure(subparts[i],	parentparts	+	[	str(i	+	1)	])

				else:

								if	structure[6]:

												print	'size=%s'	%	structure[6],

								if	structure[8]:

												disposition,	namevalues	=	structure[8]

												print	disposition,

												for	i	in	range(0,	len(namevalues),	2):

																print	'%s=%r'	%	namevalues[i:i+2]

								print

def	explore_message(c,	uid):

				"""Let	the	user	view	various	parts	of	a	given	message."""

				msgdict	=	c.fetch(uid,	['BODYSTRUCTURE',	'FLAGS'])

				while	True:

								print

								print	'Flags:',

								flaglist	=	msgdict[uid]['FLAGS']

								if	flaglist:

												print	'	'.join(flaglist)

								else:

												print	'none'

								display_structure(msgdict[uid]['BODYSTRUCTURE'])

								print

								reply	=	raw_input('Message	%s	-	type	a	part	name,	or	"q"	to	quit:	'

																										%	uid).strip()

								print

								if	reply.lower().startswith('q'):

												break

								key	=	'BODY[%s]'	%	reply

								try:

												msgdict2	=	c.fetch(uid,	[key])

								except	c._imap.error:

												print	'Error	-	cannot	fetch	section	%r'	%	reply

								else:

												content	=	msgdict2[uid][key]

												if	content:

																print	banner

																print	content.strip()

																print	banner

												else:

																print	'(No	such	section)'

def	explore_folder(c,	name):

				"""List	the	messages	in	folder	`name`	and	let	the	user	choose	one."""

				while	True:

								c.select_folder(name,	readonly=True)

								msgdict	=	c.fetch('1:*',	['BODY.PEEK[HEADER.FIELDS	(FROM	SUBJECT)]',

																																		'FLAGS',	'INTERNALDATE',	'RFC822.SIZE'])

								print

								for	uid	in	sorted(msgdict):

												items	=	msgdict[uid]

												print	'%6d		%20s		%6d	bytes		%s'	%	(

																uid,	items['INTERNALDATE'],	items['RFC822.SIZE'],

																'	'.join(items['FLAGS']))

												for	i	in	items['BODY[HEADER.FIELDS	(FROM	SUBJECT)]'].splitlines():

																print	'	'	*	6,	i.strip()

								reply	=	raw_input('Folder	%s	-	type	a	message	UID,	or	"q"	to	quit:	'

																										%	name).strip()

								if	reply.lower().startswith('q'):

												break

								try:

												reply	=	int(reply)

								except	ValueError:

												print	'Please	type	an	integer	or	"q"	to	quit'

								else:

												if	reply	in	msgdict:

																explore_message(c,	reply)

				c.close_folder()

def	explore_account(c):

				"""Display	the	folders	in	this	IMAP	account	and	let	the	user	choose	one."""

				while	True:



								print

								folderflags	=	{}

								data	=	c.list_folders()

								for	flags,	delimiter,	name	in	data:

												folderflags[name]	=	flags

								for	name	in	sorted(folderflags.keys()):

												print	'%-30s	%s'	%	(name,	'	'.join(folderflags[name]))

								print

								reply	=	raw_input('Type	a	folder	name,	or	"q"	to	quit:	').strip()

								if	reply.lower().startswith('q'):

												break

								if	reply	in	folderflags:

												explore_folder(c,	reply)

								else:

												print	'Error:	no	folder	named',	repr(reply)

if	__name__	==	'__main__':

				explore_account(c)

You	can	see	that	the	outer	function	uses	a	simple		list_folders()		call	to	present	the	user	with	a	list	of	his	or	her	mail
folders,	like	some	of	the	program	listings	we	have	seen	already.	Each	folder’s	IMAP	flags	are	also	displayed.	This	lets	the
program	give	the	user	a	choice	between	folders:

INBOX	\HasNoChildren

Receipts	\HasNoChildren

Travel	\HasNoChildren

Work	\HasNoChildren

Type	a	folder	name,	or	"q"	to	quit:

``

Once	a	user	has	selected	a	folder,	things	become	more	interesting:	a	summary	has	to	be	printed	for

each	message.Note	that	it	is	careful	to	use	BODY.PEEK	instead	of	BODY	to	fetch	these	items,	since	the	IMAP

server	would	otherwise	mark	the	messages	as	\Seen	merely	because	they	had	been	displayed	in	a

summary.

The	results	of	this	`fetch()`	call	are	printed	to	the	screen	once	an	e-mail	folder	has	been	selected:

2703	2010-09-28	21:32:13	19129	bytes	\Seen	From:	Brandon	Craig	Rhodes	Subject:	Digested	Articles	2704	2010-09-28
23:03:45	15354	bytes	Subject:	Re:	[venv]	Building	a	virtual	environment	for	offline	testing	From:	"W.	Craig	Trader"	2705
2010-09-29	08:11:38	10694	bytes	Subject:	Re:	[venv]	Building	a	virtual	environment	for	offline	testing	From:	Hugo	Lopes
Tavares	Folder	INBOX	-	type	a	message	UID,	or	"q"	to	quit:		̀ `	As	you	can	see,	the	fact	that	several	items	of	interest

can	be	supplied	to	the	IMAP	fetch()`	command	lets	us	build	fairly	sophisticated	message	summaries	with	only	a	single
round-trip	to	the	server.	One	final	note	about	the	fetch()	command:	it	lets	you	not	only	pull	just	the	parts	of	a	message	that
you	need	at	any	given	moment,	but	also	truncate	them	in	case	they	are	quite	long	and	you	just	want	to	provide	an	excerpt
from	the	beginning	to	tantalize	the	user.



You	might	have	noticed,	while	trying	out		simple_client.py		or	reading	its	example	output	just	shown,	that	IMAP	marks
messages	with	attributes	called	“flags,”	which	typically	take	the	form	of	a	backslashprefixed	word,	like	\Seen	for	one	of	the
messages	just	cited.	Several	of	these	are	standard,	and	are	defined	in	RFC	3501	for	use	on	all	IMAP	servers.	Here	is	what
the	most	important	ones	mean:

\Answered:	The	user	has	replied	to	the	message.

\Draft:	The	user	has	not	finished	composing	the	message.

\Flagged:	The	message	has	somehow	been	singled	out	specially;	the	purpose	and	meaning	of	this	flag	vary	between
mail	readers.

\Recent:	No	IMAP	client	has	seen	this	message	before.	This	flag	is	unique,	in	that	the	flag	cannot	be	added	or
removed	by	normal	commands;	it	is	automatically	removed	after	the	mailbox	is	selected.

\Seen:	The	message	has	been	read.

The	IMAPClient	library	supports	several	methods	for	working	with	flags.	The	simplest	retrieves	the	flags	as	though	you	had
done	a		fetch()		asking	for	'FLAGS',	but	goes	ahead	and	removes	the	dictionary	around	each	answer:

>>>	c.get_flags(2703)

{2703:	('\\Seen',)}

There	are	also	calls	to	add	and	remove	flags	from	a	message:

c.remove_flags(2703,	['\\Seen'])

c.add_flags(2703,	['\\Answered'])

In	case	you	want	to	completely	change	the	set	of	flags	for	a	particular	message	without	figuring	out	the	correct	series	of
adds	and	removes,	you	can	use		set_flags()		to	unilaterally	replace	the	whole	list	of	message	flags	with	a	new	one:

c.set_flags(2703,	['\\Seen',	'\\Answered'])

Any	of	these	operations	can	take	a	list	of	message	UIDs	instead	of	the	single	UID	shown	in	these	examples.

One	last	interesting	use	of	flags	is	that	it	is	how	IMAP	supports	message	deletion.	The	process,	for	safety,	takes	two	steps:
first	the	client	marks	one	or	more	messages	with	the	\Delete	flag;	then	it	calls		expunge()		to	perform	the	deletions	as	a
single	operation.	The	IMAPClient	library	does	not	make	you	do	this	by	hand,	however	(though	that	would	work);	instead	it
hides	the	fact	that	flags	are	involved	behind	a	simple		delete_messages()		routine	that	marks	the	messages	for	you.	It	still
has	to	be	followed	by		expunge()		if	you	actually	want	the	operation	to	take	effect,	though:

c.delete_messages([2703,	2704])

c.expunge()

Flagging	and	Deleting	Messages
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Searching	is	another	issue	that	is	very	important	for	a	protocol	designed	to	let	you	keep	all	your	mail	on	the	mail	server
itself:	without	search,	an	e-mail	client	would	have	to	download	all	of	a	user’s	mail	anyway	the	first	time	he	or	she	wanted	to
perform	a	full-text	search	to	find	an	e-mail	message.	The	essence	of	search	is	simple:	you	call	the		search()		method	on	an
IMAP	client	instance,	and	are	returned	the	UIDs	(assuming,	of	course,	that	you	accept	the	IMAPClient	default	of
use_uid=True	for	your	client)	of	the	messages	that	match	your	criteria:

>>>	c.select_folder('INBOX')

>>>	c.search('SINCE	20-Aug-2010	TEXT	Apress')

[2590L,	2652L,	2653L,	2654L,	2655L,	2699L]

There	are	many	criteria	that	you	can	combine	in	order	to	form	a	query.	Like	the	rest	of	IMAP,	they	are	specified	in	RFC
3501.	Some	criteria	are	quite	simple,	and	refer	to	binary	attributes	like	flags:

ALL:	Every	message	in	the	mailbox

UID	(id,	...):	Messages	with	the	given	UIDs

LARGER	n:	Messages	more	than	n	octets	in	length

SMALLER	m:	Messages	less	than	m	octets	in	length

ANSWERED:	Have	the	flag	\Answered

DELETED:	Have	the	flag	\Deleted

DRAFT:	Have	the	flag	\Draft

FLAGGED:	Have	the	flag	\Flagged

KEYWORD	flag:	Have	the	given	keyword	flag	set

NEW:	Have	the	flag	\Recent

OLD:	Lack	the	flag	\Recent

UNANSWERED:	Lack	the	flag	\Answered

UNDELETED:	Lack	the	flag	\Deleted

UNDRAFT:	Lack	the	flag	\Draft

UNFLAGGED:	Lack	the	flag	\Flagged

UNKEYWORD	flag:	Lack	the	given	keyword	flag

UNSEEN:	Lack	the	flag	\Seen

There	are	two	sets	of	criteria	for	dates,	depending	on	which	date	you	want	to	query	by:	the	internal	Date	header(sned	date)
and	the	at	whcich	arrived	at	the	IMAP	server.

Finally,	there	are	two	search	operations	that	refer	to	the	text	of	the	message	itself—these	are	the	big	workhorses	that
support	full-text	search	of	the	kind	your	users	are	probably	expecting	when	they	type	into	a	search	field	in	an	e-mail	client:

BODY	string:	The	message	body	must	contain	the	string.

TEXT	string:	The	entire	message,	either	body	or	header,	must	contain	the	string	somewhere.

Creating	or	deleting	folders	is	done	quite	simply	in	IMAP,	by	providing	the	name	of	the	folder:

c.create_folder('Personal')

c.delete_folder('Work')

Some	IMAP	servers	or	configurations	may	not	permit	these	operations,	or	may	have	restrictions	on	naming;	be	sure	to
have	error	checking	in	place	when	calling	them.	There	are	two	operations	that	can	create	new	e-mail	messages	in	your
IMAP	account	besides	the	“normal”	means	of	waiting	for	people	to	send	them	to	you.	First,	you	can	copy	an	existing
message	from	its	home	folder	over	into	another	folder.	Start	by	using		select_folder()		to	visit	the	folder	where	the
messages	live,	and	then	run	the	copy	method	like	this:

c.select_folder('INBOX')
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c.copy([2653L,	2654L],	'TODO')

Finally,	it	is	possible	to	add	a	message	to	a	mailbox	with	IMAP.	You	do	not	need	to	send	the	message	first	with	SMTP;
IMAP	is	all	that	is	needed.	Adding	a	message	is	a	simple	process,	though	there	are	a	couple	of	things	to	be	aware	of.

You	must	also	be	cautious	in	how	carefully	you	change	the	line	endings,	because	some	messages	may	use	'\r\n'
somewhere	inside	despite	using	only	'\n'	for	the	first	few	dozen	lines,	and	IMAP	clients	have	been	known	to	fail	if	a
message	uses	both	different	line	endings!	The	solution	is	a	simple	one,	thanks	to	Python’s	powerful		splitlines()	string
method	that	recognizes	all	three	possible	line	endings;	simply	call	the	function	on	your	message	and	then	re-join	the	lines
with	the	standard	line	ending:

>>>	'one\rtwo\nthree\r\nfour'.splitlines()

['one',	'two',	'three',	'four']

>>>	'\r\n'.join('one\rtwo\nthree\r\nfour'.splitlines())

'one\r\ntwo\r\nthree\r\nfour'

The	actual	act	of	appending	a	message,	once	you	have	the	line	endings	correct,	is	to	call	the		append()		method	on	your
IMAP	client:

c.append('INBOX',	my_message)

You	can	also	supply	a	list	of	flags	as	a	keyword	argument,	as	well	as	a		msg_time		to	be	used	as	its	arrival	time	by	passing	a
normal	Python	datetime	object.



The	“command	line”	is	the	topic	of	this	chapter:	how	you	can	access	it	over	the	network,	together	with	enough	discussion
about	its	typical	behavior	to	get	you	through	any	frustrations	you	might	encounter	while	trying	to	use	it.

Telnet	and	SSH



Before	getting	into	the	details	of	how	the	command	line	works,	and	how	you	can	access	it	over	the	network,	we	should
pause	and	note	that	there	exist	many	systems	today	for	automating	the	entire	process.If	you	have	dozens	or	hundreds	of
machines	to	maintain	and	you	need	to	start	sending	them	all	the	same	commands,	then	you	might	find	that	tools	already
exist	—tools	that	already	provide	ways	to	write	command	scripts,	push	them	out	for	execution	across	a	cloud	of	machines,
batch	up	any	error	messages	or	responses	for	your	review,	and	even	save	commands	in	a	queue	to	be	re-tried	later	in	case
a	machine	is	down	and	cannot	be	reached	at	the	moment.

What	are	the	options?	First,	the	Fabric	library	is	very	popular	with	Python	programmers	who	need	to	run	commands	and
copy	files	to	remote	server	machines.	As	you	can	see	in		fabfile.py	,	a	Fabric	script	calls	very	simple	functions	with	names
like		put()	,		cd()	,	and		run()		to	perform	operations	on	the	machines	to	which	it	connects.	But	you	can	learn	more	about	it
at	its	web	site:	http://fabfile.org/.	Although		fabfile.py		is	designed	to	be	run	by	Fabric's	own	fab	command-line	tool,	Fabric
can	also	be	used	from	inside	your	own	Python	programs;	again,	consult	their	documentation	for	details.

from	fabric.api	import	*

def	versions():

				with	cd('/usr/bin'):

								with	settings(hide('warnings'),	warn_only=True):

												for	version	in	'2.4',	'2.5',	'2.6',	'2.7',	'3.0',	'3.1':

																result	=	run('python%s	-c	"None"'	%	version)

																if	not	result.failed:

																				print	"Host",	env.host,	"has	Python",	version

Another	project	to	check	out	is	Silver	Lining.	It	is	still	very	immature,	but	if	you	are	an	experienced	programmer	who	needs
its	specific	capabilities,	then	you	might	find	that	it	solves	your	problems	well.	This	library	goes	beyond	batching	commands
across	many	different	servers:	it	will	actually	create	and	initialize	Ubuntu	servers	through	the	“libcloud”	Python	API,	and
then	install	your	Python	web	applications	there	for	you.	You	can	learn	more	about	this	promising	project	at
http://cloudsilverlining.org/.

On	the	other	hand,	there	is	“pexpect.”	While	it	is	not,	technically,	a	program	that	itself	knows	how	to	use	the	network,	it	is
often	used	to	control	the	system	“ssh”	or	“telnet”	command	when	a	Python	programmer	wants	to	automate	interactions	with
a	remote	prompt	of	some	kind.	This	typically	takes	place	in	a	situation	where	no	API	for	a	device	is	available,	and
commands	simply	have	to	be	typed	each	time	the	command-line	prompt	appears.	Configuring	simple	network	hardware
often	requires	this	kind	of	clunky	step-by-step	interaction.	You	can	learn	more	about	“pexpect”	here:
http://pypi.python.org/pypi/pexpect.

Finally,	there	are	more	specific	projects	that	provide	mechanisms	for	remote	systems	administration.	Red	Hat	and	Fedora
users	might	look	at	func,	which	uses	an	SSL-encrypted	XML-RPC	service	that	lets	you	write	Python	programs	that	perform
system	configuration	and	maintenance:	https://fedorahosted.org/func/.
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If	you	have	ever	typed	many	commands	at	a	Unix	command	prompt,	you	will	be	aware	that	not	every	character	you	type	is
interpreted	literally.	Consider	this	command,	for	example:

root@erlerobot:~#	echo	*

Hello.txt	Python-3.4.1	Python-3.4.1.tgz	Python_files	build	gmapenv	hola.txt	otro	text.txt	virtualenv-1.11.6	virtualenv-1.11.6.tar.gz

root@erlerobot:~#

The	asterisk	*	in	this	command	was	not	interpreted	to	mean	“print	out	an	asterisk	character	to	the	screen”;	instead,	the	shell
thought	I	was	trying	to	write	a	pattern	that	would	match	all	of	the	file	names	in	the	current	directory.	To	actually	print	out	an
asterisk,	I	have	to	use	another	special	character—an	“escape”	character,	because	it	lets	me	“escape”	from	the	shell's
normal	meaning—to	tell	it	that	I	just	mean	the	asterisk	literally:

root@erlerobot:~#	echo	Here	is	a	lone	asterisk:	\*

Here	is	a	lone	asterisk:	*

root@erlerobot:~#	echo	And	here	are	'*'	two	"*"	more	asterisks

And	here	are	*	two	*	more	asterisks

root@erlerobot:~#

The	rules	by	which	modern	shells	interpret	the	special	characters	in	your	command	line	have	become	quite	complex.
Instead,	to	use	the	command	line	effectively,	you	just	have	to	understand	two	points:

Special	characters	are	interpreted	as	special	by	the	shell	you	are	using,	like	bash.

When	passing	commands	to	a	shell	either	locally	or	across	the	network,	you	need	to	escape	the	special	characters
you	use	so	that	they	are	not	expanded	into	unintended	values	on	the	remote	system.

Command-Line	Expansion	and	Quoting



Like	many	very	useful	statements,	the	bold	claim	of	the	title	of	this	section	is,	alas,	a	lie.	There	is,	in	fact,	a	character	that
Unix	considers	special.	But,	in	general,	Unix	has	no	special	characters,	and	this	is	a	very	important	fact	for	you	to	grasp.

On	the	one	hand,	it	makes	it	very	easy	to,	say,	name	all	of	the	files	in	the	current	directory	as	arguments	to	a	command;	but
on	the	other	hand,	it	can	be	very	difficult	to	echo	a	message	to	the	screen	that	mixes	single	quotes	and	double-quotes.

The	simple	lesson	of	this	section	is	that	the	whole	set	of	conventions	to	which	you	are	accustomed	has	nothing	to	do	with
your	operating	system;	they	are	simply	and	entirely	a	behavior	of	the	bash	shell,	or	of	whichever	of	the	other	popular	(or
arcane)	shells	that	you	are	using.	It	does	not	matter	how	familiar	the	rules	seem,	or	how	difficult	it	is	for	you	to	imagine
using	a	Unix-like	system	without	them.	If	you	take	bash	away,	they	are	simply	not	there.	You	can	observe	this	quite	simply
by	taking	control	of	the	operating	system's	process	launcher	yourself	and	trying	to	throw	some	special	characters	at	a
familiar	command:

>>>	import	subprocess

>>>	args	=	['echo',	'Sometimes	an',	'*',	'just	means	an',	'*']

>>>	subprocess.call(args)

Sometimes	an	just	means	an	Here,	we	are	bypassing	all	of	the	shell	applications	that	are	available	for	interpreting
commands,	and	we	are	telling	the	operating	system	to	start	a	new	process	using	precisely	the	list	of	arguments	we	have
provided.	And	the	process—the	echo	command,	in	this	case—is	getting	exactly	those	characters,	instead	of	having	the	*
turned	into	a	list	of	file	names	first.	Though	we	rarely	think	about	it,	the	most	common	“special”	character	is	one	we	use	all
the	time:	the	space	character.	Rather	than	assume	that	you	actually	mean	each	space	character	to	be	passed	to	the
command	you	are	invoking,	the	shell	instead	interprets	it	as	the	delimiter	separating	the	actual	text	you	want	the	command
to	see.	This	causes	endless	entertainment	when	people	include	spaces	in	Unix	file	names,	and	then	try	to	move	the	file
somewhere	else:

root@erlerobot:~#	mv	Smith	Contract.txt	~/Documents

mv:	cannot	stat	`Smith':	No	such	file	or	directory

mv:	cannot	stat	`Contract.txt':	No	such	file	or	directory

To	make	the	shell	understand	that	you	are	talking	about	one	file	with	a	space	in	its	name,	not	two	files,	you	have	to	contrive
something	like	one	of	these	possible	command	lines:

root@erlerobot:~#	mv	Smith\	Contract.txt	~/Documents

root@erlerobot:~#	mv	"Smith	Contract.txt"	~/Documents

root@erlerobot:~#	mv	Smith*Contract.txt	~/Documents

That	last	possibility	obviously	means	something	quite	different—since	it	will	match	any	file	name	that	happens	to	start	with
Smith	and	end	with	Contract.txt,	regardless	of	whether	the	text	between	them	is	a	simple	space	character	or	some	much
longer	sequence	of	text—but	I	have	seen	many	people	type	it	in	frustration	who	are	still	learning	shell	conventions	and
cannot	remember	how	to	type	a	literal	space	character	for	the	shell.	If	you	want	to	convince	yourself	that	none	of	the
characters	that	the	bash	shell	has	taught	you	to	be	careful	about	is	special,		shell.py	shows	a	simple	shell,	written	in
Python,	that	treats	only	the	space	as	special	but	passes	everything	else	through	literally	to	the	command.

import	subprocess

while	True:

				args	=	raw_input(']	').split()

				if	not	args:

								pass

				elif	args	==	['exit']:

								break

				elif	args[0]	==	'show':

								print	"Arguments:",	args[1:]

Unix	Has	No	Special	Characters



				else:

								subprocess.call(args)

Running	this	file,	result	on:

root@erlerobot:~#		python	shell.py

]	echo	Hi	there!

Hi	there!

]	echo	An	asterisk	*	is	not	special.

An	asterisk	*	is	not	special.

]	echo	The	string	$HOST	is	not	special,	nor	are	"double	quotes".

The	string	$HOST	is	not	special,	nor	are	"double	quotes".

]	echo	What?	No	*<>!$	special	characters?

What?	No	*<>!$	special	characters?

]	show	"The	'show'	built-in	lists	its	arguments."

Arguments:	['"The',	"'show'",	'built-in',	'lists',	'its',	'arguments."']

]	exit

You	can	see	here	absolute	evidence	that	Unix	commands—in	this	case,	the	/bin/echo	command	that	we	are	calling	over
and	over	again—do	not	generally	attempt	to	interpret	their	arguments	as	anything	other	than	strings.	The	echo	command
happily	accepts	double-quotes,	dollar	signs,	and	asterisks,	and	treats	them	all	as	literal	characters.	As	the	foregoing	show
command	illustrates,	Python	is	simply	reducing	our	arguments	to	a	list	of	strings	for	the	operating	system	to	use	in	creating
a	new	process.	What	if	we	fail	to	split	our	command	into	separate	arguments?

>>>	import	subprocess

>>>	subprocess.call(['echo	hello'])

Traceback	(most	recent	call	last):

...

OSError:	[Errno	2]	No	such	file	or	directory

The	operating	system	does	not	know	that	spaces	should	be	special;	that	is	a	quirk	of	shell	programs,	not	of	Unix-like
operating	systems	themselves!	So	the	system	thinks	that	it	is	being	asked	to	run	a	command	literally	named	echo	[space]
hello,	and,	unless	you	have	created	such	a	file	in	the	current	directory,	it	fails	to	find	it	and	raises	an	exception.

To	prevent	you	from	making	this	mistake,	Python	stops	you	in	your	tracks	if	you	include	a	null	character	in	a	commandline
argument:

>>>	import	subprocess

>>>	subprocess.call(['echo',	'Sentences	can	end\0	abruptly.'])

Traceback	(most	recent	call	last):

...

TypeError:	execv()	arg	2	must	contain	only	strings

Since	every	command	on	the	system	is	designed	to	live	within	this	limitation,	you	will	generally	find	there	is	never	any
reason	to	put	null	characters	into	command-line	arguments	anyway.



In	the	foregoing	section,	we	used	routines	in	Python's	subprocess	module	to	directly	invoke	commands.(The	subprocess
module	allows	you	to	spawn	new	processes,	connect	to	their	input/output/error	pipes,	and	obtain	their	return	codes.	)	This
was	great,	and	let	us	pass	characters	that	would	have	been	special	to	a	normal	interactive	shell.	If	you	have	a	big	list	of	file
names	with	spaces	and	other	special	characters	in	them,	it	can	be	wonderful	to	simply	pass	them	into	a	subprocess	call
and	have	the	command	on	the	receiving	end	understand	you	perfectly.

But	when	you	are	using	remote-shell	protocols	over	the	network	(which,	you	will	recall,	is	the	subject	of	this	chapter!),	you
are	generally	going	to	be	talking	to	a	shell	like	bash	instead	of	getting	to	invoke	commands	directly	like	you	do	through	the
subprocess	module.	This	means	that	remote-shell	protocols	will	feel	more	like	the	s	ystem()		routine	from	the	os	module,
which	does	invoke	a	shell	to	interpret	your	command	line,	and	therefore	involves	you	in	all	of	the	complexities	of	the	Unix
command	line:

>>>	import	os

>>>	os.system('echo	*')

Hello.txt	Python-3.4.1	Python-3.4.1.tgz	Python_files	build	gmapenv	hola.txt	otro	text.txt	virtualenv-1.11.6	virtualenv-

Of	course,	if	the	other	end	of	a	remote-shell	connection	is	using	some	sort	of	shell	with	which	you	are	unfamiliar,	there	is
little	that	Python	can	do.	The	authors	of	the	Standard	Library	have	no	idea	how,	say,	a	Motorola	DSL	router's	Telnet-based
command	line	might	handle	special	characters,	or	even	whether	it	pays	attention	to	quotes	at	all.	But	if	the	other	end	of	a
network	connection	is	a	standard	Unix	shell	of	the	sh	family,	like	bash	or	zsh,	then	you	are	in	luck:	the	fairly	obscure	Python
pipes	module,	which	is	normally	used	to	build	complex	shell	command	lines,	contains	a	helper	function	that	is	perfect	for
escaping	arguments.	It	is	called	quote,	and	can	simply	be	passed	a	string:

>>>	from	pipes	import	quote

>>>	print	quote("filename")

filename

'file	with	spaces'

>>>	print	quote("file	'single	quoted'	inside!")

"file	'single	quoted'	inside!"

>>>	print	quote("danger!;	rm	-r	*")

'danger!;	rm	-r	*'

So	preparing	a	command	line	for	remote	execution	generally	just	involves	running	quote()	on	each	argument	and	then
pasting	the	result	together	with	spaces.	Note	that	using	a	remote	shell	with	Python	does	not	involve	you	in	the	terrors	of	two
levels	of	shell	quoting!	If	you	have	ever	tried	to	build	a	remote	SSH	command	line	that	uses	fancy	quoting,	by	typing	a	local
command	line	into	your	own	shell.	The	attempt	tends	to	generate	a	series	of	experiments	like	this:

$	echo	$HOST

guinness

$	ssh	asaph	echo	$HOST

guinness

$	ssh	asaph	echo	\$HOST

asaph

$	ssh	asaph	echo	\\$HOST

guinness

$	ssh	asaph	echo	\\\$HOST

$HOST

$	ssh	asaph	echo	\\\\$HOST

\guinness

using	a	remote-shell	protocol	through	Python	does	not	involve	two	levels	of	shell	like	this.	Instead,	you	get	to	construct	a
literal	string	in	Python	that	then	directly	becomes	what	is	executed	by	the	remote	shell;	no	local	shell	is	involved.	So	if	using
a	shell-within-a-shell	has	you	convinced	that	passing	strings	and	file	names	safely	to	a	remote	shell	is	a	very	hard	problem,
relax:	no	local	shell	will	be	involved	in	our	following	examples.

Quoting	Characters	for	Protection

https://docs.python.org/2/library/subprocess.html?highlight=subprocess#subprocess
https://docs.python.org/2/library/pipes.html?highlight=pipes#pipes


You	will	probably	talk	to	more	programs	than	just	the	shell	over	your	Python-powered	remote-shell	connection,	of	course.
You	will	often	want	to	watch	the	incoming	data	stream	for	the	information	and	errors	printed	out	by	the	commands	you	are
running.	And	sometimes	you	will	even	want	to	send	data	back,	either	to	provide	the	remote	programs	with	input,	or	to
respond	to	questions	and	prompts	that	they	present.

When	performing	tasks	like	this,	you	might	be	surprised	to	find	that	programs	hang	indefinitely	without	ever	finishing	the
output	that	you	are	waiting	on,	or	that	data	you	send	seems	to	not	be	getting	through.	To	help	you	through	situations	like
this,	a	brief	discussion	of	Unix	terminals	is	in	order.

A	terminal	typically	names	a	device	into	which	a	user	types	text,	and	on	whose	screen	the	computer's	response	can	be
displayed.	If	a	Unix	machine	has	physical	serial	ports	that	could	possibly	host	a	physical	terminal,	then	the	device	directory
will	contain	entries	like	/dev/ttyS1	with	which	programs	can	send	and	receive	strings	to	that	device.	But	most	terminals
these	days	are,	in	reality,	other	programs:	an	xterm	terminal,	or	a	Gnome	or	KDE	terminal	program,	or	a	PuTTY	client	on	a
Windows	machine	that	has	connected	via	a	remote-shell	protocol	of	the	kind	we	will	discuss.

But	the	programs	running	inside	the	terminal	on	your	laptop	or	desktop	machine	still	need	to	know	that	they	are	talking	to	a
person—they	still	need	to	feel	like	they	are	talking	through	the	mechanism	of	a	terminal	device	connected	to	a	display.	So
the	Unix	operating	system	provides	a	set	of	“pseudoterminal”	devices	(which	might	have	less	confusingly	been	named
“virtual”	terminals)	with	names	like	/dev/tty42.	When	someone	brings	up	an	xterm	or	connects	through	SSH,	the	xterm	or
SSH	daemon	grabs	a	fresh	pseudo-terminal,	configures	it,	and	runs	the	user's	shell	behind	it.	The	shell	examines	its
standard	input,	sees	that	it	is	a	terminal,	and	presents	a	prompt	since	it	believes	itself	to	be	talking	to	a	person.

This	is	a	crucial	distinction	to	understand:	the	shell	presents	a	prompt	because,	and	only	because,	it	thinks	it	is	connected
to	a	terminal!	If	you	start	up	a	shell	and	give	it	a	standard	input	that	is	not	a	terminal—like,	say,	a	pipe	from	another
command—then	no	prompt	will	be	printed,	yet	it	will	still	respond	to	commands:

root@erlerobot:~#	cat	|	bash

echo	Here	we	are	inside	of	bash,	with	no	prompt!

Here	we	are	inside	of	bash,	with	no	prompt!

python

print	'Python	has	not	printed	a	prompt,	either.'

import	sys

print	'Is	this	a	terminal?',	sys.stdin.isatty()

You	can	see	that	Python,	also,	does	not	print	its	usual	startup	banner,	nor	does	it	present	any	prompts.

There	are	even	changes	in	how	some	commands	format	their	output	depending	on	whether	they	are	talking	to	a	terminal.
Some	commands	with	long	lines	of	output—the	ps	command	comes	to	mind—	will	truncate	their	lines	to	your	terminal	width
if	used	interactively,	but	produce	arbitrarily	wide	output	if	connected	to	a	pipe	or	file.	And,	entertainingly	enough,	the	familiar
column-based	output	of	the	ls	command	gets	turned	off	and	replaced	with	a	file	name	on	each	line	(which	is,	you	must
admit,	an	easier	format	for	reading	by	another	program)	if	its	output	is	a	pipe	or	file:

root@erlerobot:~#	ls

Hello.txt									Python_files		hola.txt		virtualenv-1.11.6

Python-3.4.1						build									otro						virtualenv-1.11.6.tar.gz

Python-3.4.1.tgz		gmapenv							text.txt

root@erlerobot:~#	ls|cat

Hello.txt

Python-3.4.1

Python-3.4.1.tgz

Python_files

build

gmapenv

hola.txt

otro

text.txt

virtualenv-1.11.6

virtualenv-1.11.6.tar.gz

Things	Are	Different	in	a	Terminal



root@erlerobot:~#

A	program	running	behind	Telnet,	for	example,	always	thinks	it	is	talking	to	a	terminal;	so	your	scripts	or	programs	must
always	expect	to	see	a	prompt	each	time	the	shell	is	ready	for	input,	and	so	forth.	But	when	you	make	a	connection	over
the	more	sophisticated	SSH	protocol,	you	will	actually	have	your	choice	of	whether	the	program	thinks	that	its	input	is	a
terminal	or	just	a	plain	pipe	or	file.	You	can	test	this	easily	from	the	command	line	if	there	is	another	computer	you	can
connect	to:

root@erlerobot:~#	ssh	-t	asaph

asaph$	echo	"Here	we	are,	at	a	prompt."

Here	we	are,	at	a	prompt.

So	when	you	spawn	a	command	through	a	modern	protocol	like	SSH,	you	need	to	consider	whether	you	want	the	program
on	the	remote	end	thinking	that	you	are	a	person	typing	at	it	through	a	terminal,	or	whether	it	had	best	think	it	is	talking	to
raw	data	coming	in	through	a	file	or	pipe.

Programs	are	not	actually	required	to	act	any	differently	when	talking	to	a	terminal;	it	is	just	for	our	convenience	that	they
vary	their	behavior:

Programs	that	are	often	used	interactively	will	present	a	human-readable	prompt	when	they	are	talking	to	a	terminal.
But	when	they	think	input	is	coming	from	a	file,	they	avoid	printing	a	prompt.

Sophisticated	interactive	programs,	these	days,	usually	turn	on	command-line	editing	when	their	input	is	a	TTY.

Many	programs	read	only	one	line	of	input	at	a	time	when	listening	to	a	terminal,	because	humans	like	to	get	an
immediate	response	to	every	command	they	type.	But	when	reading	from	a	pipe	or	file,	these	same	programs	will	wait
until	thousands	of	characters	have	arrived	before	they	try	to	interpret	their	first	batch	of	input.

It	is	even	more	common	for	programs	to	adjust	their	output	based	on	whether	they	are	talking	to	a	terminal.

Both	of	the	last	two	issues,	which	involve	buffering,	cause	all	sorts	of	problems	when	you	take	a	process	that	you	usually
do	manually	and	try	to	automate	it—because	in	doing	so	you	often	move	from	terminal	input	to	input	provided	through	a	file
or	pipe,	and	suddenly	you	find	that	the	programs	behave	quite	differently,	and	might	even	seem	to	be	hanging	because
“print”	statements	are	not	producing	immediate	output,	but	are	instead	saving	up	their	results	to	push	out	all	at	once	when
their	output	buffer	is	full.

You	can	see	this	easily	with	a	simple	Python	program	(since	Python	is	one	of	the	applications	that	decides	whether	to
buffer	its	output	based	on	whether	it	is	talking	to	a	terminal)	that	prints	a	message,	waits	for	a	line	of	input,	and	then	prints
again:

root@erlerobot:~#		python	-c	'print	"talk:";	s	=	raw_input();	print	"you	said",	s'

talk:

hi

you	said	hi

root@erlerobot:~#		python	-c	'print	"talk:";	s	=	raw_input();	print	"you	said",	s'	|	cat

hi

talk:

you	said	hi

You	can	see	that	in	the	first	instance,	when	Python	knew	its	output	was	a	terminal,	it	printed	talk:	immediately.	But	in	the
second	instance,	its	output	was	a	pipe	to	the	cat	command,	and	so	it	decided	that	it	could	save	up	the	results	of	that	first
print	statement	and	batch	them	together	with	the	rest	of	the	program's	output,	so	that	both	lines	of	output	appeared	only
once	you	had	provided	your	input	and	the	program	was	ending.

The	foregoing	problem	is	why	many	carefully	written	programs,	both	in	Python	and	in	other	languages,	frequently	call
	flush()		on	their	output	to	make	sure	that	anything	waiting	in	a	buffer	goes	ahead	and	gets	sent	out,	regardless	of	whether
the	output	looks	like	a	terminal.	So	those	are	the	basic	problems	with	terminals	and	buffering:	programs	change	their
behavior,	often	in	idiosyncratic	ways,	when	talking	to	a	terminal	(think	again	of	the	ls	example),	and	they	often	start	heavily



buffering	their	output	if	they	think	they	are	writing	to	a	file	or	pipe.



Beyond	the	program-specific	behaviors	just	described,	there	are	additional	problems	raised	by	terminals.

For	example,	what	happens	when	you	want	a	program	to	be	reading	your	input	one	character	at	a	time,	but	the	Unix
terminal	device	itself	is	buffering	your	keystrokes	to	deliver	them	as	a	whole	line?	This	common	problem	happens	because
the	Unix	terminal	defaults	to	“canonical”	input	processing,	where	it	lets	the	user	enter	a	whole	line,	and	even	edit	it	by
backspacing	and	re-typing,	before	finally	pressing	“Enter”	and	letting	the	program	see	what	he	or	she	has	typed.	If	you	want
to	turn	off	canonical	processing	so	that	a	program	can	see	every	individual	character	as	it	is	typed,	you	can	use	the	stty
“Set	TTY	settings”	command	to	disable	it:

root@erlerobot:~#		stty	-icanon

Another	problem	is	that	Unix	terminals	traditionally	supported	a	pair	of	keystrokes	for	pausing	the	output	stream	so	that	the
user	could	read	something	on	the	screen	before	it	scrolled	off	and	was	replaced	by	more	text.	Often	these	were	the
characters	Ctrl+S	for	“Stop”	and	Ctrl+Q	for	“Keep	going,”	and	it	was	a	source	of	great	annoyance	that	if	binary	data	worked
its	way	into	an	automated	Telnet	connection	that	the	first	Ctrl+S	that	happened	to	pass	across	the	channel	would	pause	the
terminal	and	probably	ruin	the	session.	Again,	this	setting	can	be	turned	off	with	stty:

root@erlerobot:~#		stty	-ixon	-ixoff

There	are	plenty	of	less	famous	settings	that	can	also	cause	you	grief.	Because	there	are	so	many—and	because	they	vary
between	Unix	implementations—the	stty	command	actually	supports	two	modes,	cooked	and	raw,	that	turn	dozens	of
settings	like	icanon	and	ixon	on	and	off	together:

root@erlerobot:~#		stty	raw

root@erlerobot:~#		stty	cooked

In	case	you	make	your	terminal	settings	a	hopeless	mess	after	some	experimentation,	most	Unix	systems	provide	a
command	for	resetting	the	terminal	back	to	reasonable,	sane	settings	(	you	might	need	to	hit	Ctrl+J	to	submit	the	reset
command,	since	your	Return	key,	whose	equivalent	is	Ctrl+M,	actually	only	functions	to	submit	commands	because	of	a
terminal	setting	called	icrnl):

root@erlerobot:~#	reset

If,	instead	of	trying	to	get	the	terminal	to	behave	across	a	Telnet	or	SSH	session,	you	happen	to	be	talking	to	a	terminal
from	Python,	check	out	the	termios	module	that	comes	with	the	Standard	Library.This	module	provides	an	interface	to	the
POSIX	calls	for	tty	I/O	control.	For	a	complete	description	of	these	calls,	see	the	POSIX	or	Unix	manual	pages.

Terminals	Do	Buffering

https://docs.python.org/2/library/termios.html?highlight=termios#termios


Telnet	is	a	network	protocol	used	on	the	Internet	or	local	area	networks	to	provide	a	bidirectional	interactive	text-oriented
communication	facility	using	a	virtual	terminal	connection.	User	data	is	interspersed	in-band	with	Telnet	control	information
in	an	8-bit	byte	oriented	data	connection	over	the	Transmission	Control	Protocol	(TCP).

Telnet	is	insecure:	anyone	watching	your	Telnet	packets	fly	by	will	see	your	username,	password,	and	everything	you	do	on
the	remote	system.	It	is	clunky.	And	it	has	been	completely	abandoned	for	most	systems	administration.

In	case	you	are	having	to	write	a	Python	program	that	has	to	speak	Telnet	to	one	of	these	devices,	here	are	a	few	pointers
on	using	the	Python	telnetlib.The	telnetlib	module	provides	a	Telnet	class	that	implements	the	Telnet	protocol.

First,	you	have	to	realize	that	all	Telnet	does	is	to	establish	a	channel	and	to	send	the	things	you	type,	and	receive	the
things	the	remote	system	says,	back	and	forth	across	that	channel.	This	means	that	Telnet	is	ignorant	of	all	sorts	of	things
of	which	you	might	expect	a	remote-shell	protocol	to	be	aware.

For	example,	it	is	conventional	that	when	you	Telnet	to	a	Unix	machine,	you	are	presented	with	aa	login:	prompt	at	which
you	type	your	username,	and	a	password:	prompt	where	you	enter	your	password.

The	fact	that	Telnet	is	ignorant	about	authentication	has	an	important	consequence:	you	cannot	type	anything	on	the
command	line	itself	to	get	yourself	pre-authenticated	to	the	remote	system,	nor	avoid	the	login	and	password	prompts	that
will	pop	up	when	you	first	connect!	If	you	are	going	to	use	plain	Telnet,	you	are	going	to	have	to	somehow	watch	the
incoming	text	for	those	two	prompts	(or	however	many	the	remote	system	supplies)	and	issue	the	correct	replies.

Obviously,	if	systems	vary	in	what	username	and	password	prompts	they	present,	then	you	can	hardly	expect
standardization	in	the	error	messages	or	responses	that	get	sent	back	when	your	password	fails.	That	is	why	Telnet	is	so
hard	to	script	and	program	from	a	language	like	Python	and	a	library	like		telnetlib	.

So	if	you	are	using	Telnet,	then	you	are	playing	a	text	game:	you	watch	for	text	to	arrive,	and	then	try	to	reply	with
something	intelligible	to	the	remote	system.	To	help	you	with	this,	the	Python		telnetlib		provides	not	only	basic	methods
for	sending	and	receiving	data,	but	also	a	few	routines	that	will	watch	and	wait	for	a	particular	string	to	arrive	from	the
remote	system.

	telnet_login.py	connects	to	localhost,	which	in	this	case	is	my	Ubuntu	laptop,	where	I	have	just	run	aptitude	install	telnetd
so	that	a	Telnet	daemon	is	now	listening	on	its	standard	port	23.

import	telnetlib

t	=	telnetlib.Telnet('localhost')

#	t.set_debuglevel(1)								#	uncomment	this	for	debugging	messages

t.read_until('login:')

t.write('brandon\n')

t.read_until('assword:')					#	let	"P"	be	capitalized	or	not

t.write('mypass\n')

n,	match,	previous_text	=	t.expect([r'Login	incorrect',	r'\$'],	10)

if	n	==	0:

				print	"Username	and	password	failed	-	giving	up"

else:

				t.write('exec	uptime\n')

				print	t.read_all()							#	keep	reading	until	the	connection	closes

If	the	script	is	successful,	it	shows	you	what	the	simple	uptime	command	prints	on	the	remote	system:

root@erlerobot:~/Python_files#	python	telnet_login.py

10:24:43	up	5	days,	12:13,	14	users,	load	average:	1.44,	0.91,	0.73

Telnet

https://docs.python.org/2/library/telnetlib.html?highlight=telnetlib#telnetlib


The	listing	shows	you	the	general	structure	of	a	session	powered	by		telnetlib	.	First,	a	connection	is	established,	which	is
represented	in	Python	by	an	instance	of	the	Telnet	object.	Here	only	the	hostname	is	specified,	though	you	can	also
provide	a	port	number	to	connect	to	some	other	service	port	than	standard	Telnet.	You	can	call		set_debuglevel(1)		if	you
want	your	Telnet	object	to	print	out	all	of	the	strings	that	it	sends	and	receives	during	the	session.	This	actually	turned	out	to
be	important	for	writing	even	the	very	simple	script	shown	in	the	listing,	because	in	two	different	cases	it	got	hung	up,	and	I
had	to	re-run	it	with	debugging	messages	turned	on	so	that	I	could	see	the	actual	output	and	fix	the	script.	I	generally	turn
off	debugging	only	once	a	program	is	working	perfectly,	and	turn	it	back	on	whenever	I	want	to	do	more	work	on	the	script.

Note	that	Telnet	does	not	disguise	the	fact	that	its	service	is	backed	by	a	TCP	socket,	and	will	pass	through	to	your
program	any		socket.error		and		socket.gaierror		exceptions	that	are	raised.	Once	the	Telnet	session	is	established,
interaction	generally	falls	into	a	receive-and-send	pattern,	where	you	wait	for	a	prompt	or	response	from	the	remote	end,
then	send	your	next	piece	of	information.	The	listing	illustrates	two	methods	of	waiting	for	text	to	arrive:

The	very	simple		read_until()		method	watches	for	a	literal	string	to	arrive,	then	returns	a	string	providing	all	of	the	text
that	it	received	from	the	moment	it	started	listing	until	the	moment	it	finally	saw	the	string	you	were	waiting	for.

The	more	powerful	and	sophisticated		expect()		method	takes	a	list	of	Python	regular	expressions.	Once	the	text
arriving	from	the	remote	end	finally	adds	up	to	something	that	matches	one	of	the	regular	expressions,	`expect()
returns	three	items:	the	index	in	your	list	of	the	pattern	that	matched,	the	regular	expression	SRE_Match	object	itself,
and	the	text	that	was	received	leading	up	to	the	matching	text.	For	more	information	on	what	you	can	do	with	a
SRE_Match,	including	finding	the	values	of	any	sub-expressions	in	your	pattern,	read	the	Standard	Library
documentation	for	the	re	module.

If	the	script	sees	an	error	message	because	of	an	incorrect	password—and	does	not	get	stuck	waiting	forever	for	a	login	or
password	prompt	that	never	arrives	or	that	looks	different	than	it	was	expecting—	then	it	exits:

root@erlerobot:~/Python_files#		python	telnet_login.py

Username	and	password	failed	-	giving	up

If	you	wind	up	writing	a	Python	script	that	has	to	use	Telnet,	it	will	simply	be	a	larger	or	more	complicated	version	of	the
same	simple	pattern	shown	here.	Both		read_until()		and		expect()		take	an	optional	second	argument	named	timeout	that
places	a	maximum	limit	on	how	long	the	call	will	watch	for	the	text	pattern	before	giving	up	and	returning	control	to	your
Python	script.	If	they	quit	and	give	up	because	of	the	timeout,	they	do	not	raise	an	error;	instead—awkwardly	enough—they
just	return	the	text	they	have	seen	so	far,	and	leave	it	to	you	to	figure	out	whether	that	text	contains	the	pattern.	There	are	a
few	odds	and	ends	in	the	Telnet	object	that	we	need	not	cover	here.	You	will	find	them	in	the	telnetlib	Standard	Library
documentation—including	an		interact()		method	that	lets	the	user	“talk”	directly	over	your	Telnet	connection	using	the
terminal!	This	kind	of	call	was	very	popular	back	in	the	old	days,	when	you	wanted	to	automate	login	but	then	take	control
and	issue	normal	commands	yourself.

Normally,	each	time	a	Telnet	server	sends	an	option	request,	telnetlib	flatly	refuses	to	send	or	receive	that	option.	But	you
can	provide	a	Telnet	object	with	your	own	callback	function	for	processing	options;	a	modest	example	is	shown	in
	telnet_codes.py	.	For	most	options,	it	simply	re-implements	the	default	telnetlib	behavior	and	refuses	to	handle	any	options
(and	always	remember	to	respond	to	each	option	one	way	or	another;	failing	to	do	so	will	often	hang	the	Telnet	session	as
the	server	waits	forever	for	your	reply).	But	if	the	server	expresses	interest	in	the	“terminal	type”	option,	then	this	client
sends	back	a	reply	of	“mypython,”	which	the	shell	command	it	runs	after	logging	in	then	sees	as	its	$TERM	environment
variable.

from	telnetlib	import	Telnet,	IAC,	DO,	DONT,	WILL,	WONT,	SB,	SE,	TTYPE

def	process_option(tsocket,	command,	option):

				if	command	==	DO	and	option	==	TTYPE:

								tsocket.sendall(IAC	+	WILL	+	TTYPE)

								print	'Sending	terminal	type	"mypython"'

								tsocket.sendall(IAC	+	SB	+	TTYPE	+	'\0'	+	'mypython'	+	IAC	+	SE)

				elif	command	in	(DO,	DONT):

								print	'Will	not',	ord(option)

								tsocket.sendall(IAC	+	WONT	+	option)

				elif	command	in	(WILL,	WONT):



								print	'Do	not',	ord(option)

								tsocket.sendall(IAC	+	DONT	+	option)

t	=	Telnet('localhost')

#	t.set_debuglevel(1)								#	uncomment	this	for	debugging	messages

t.set_option_negotiation_callback(process_option)

t.read_until('login:',	5)

t.write('brandon\n')

t.read_until('assword:',	5)		#	so	P	can	be	capitalized	or	not

t.write('mypass\n')

n,	match,	previous_text	=	t.expect([r'Login	incorrect',	r'\$'],	10)

if	n	==	0:

				print	"Username	and	password	failed	-	giving	up"

else:

				t.write('exec	echo	$TERM\n')

				print	t.read_all()



The	SSH	protocol	is	one	of	the	best-known	examples	of	a	secure,	encrypted	protocol	among	modern	system	administrators
(HTTPS	is	probably	the	very	best	known).

SSH	is	descended	from	an	earlier	protocol	that	supported	“remote	login,”	“remote	shell,”	and	“remote	file	copy”	commands
named	rlogin,	rsh,	and	rcp,	which	in	their	time	tended	to	become	much	more	popular	than	Telnet	at	sites	that	supported
them.	You	cannot	imagine	what	a	revelation	rcp	was	particular,	unless	you	have	spent	hours	trying	to	transfer	a	file
between	computers	armed	with	only	Telnet	and	a	script	that	tries	to	type	your	password	for	you,	only	to	discover	that	your
file	contains	a	byte	that	looks	like	a	control	character	to	Telnet	or	the	remote	terminal,	and	have	the	whole	thing	hang	until
you	add	a	layer	of	escaping	(or	figure	out	how	to	disable	both	the	Telnet	escape	key	and	all	interpretation	taking	place	on
the	remote	terminal).

But	the	best	feature	of	the	rlogin	family	was	that	they	did	not	just	echo	username	and	password	prompts	without	actually
knowing	the	meaning	of	what	was	going	on.	Instead,	they	stayed	involved	through	the	process	of	authentication,	and	you
could	even	create	a	file	in	your	home	directory	that	told	them	“when	someone	named	brandon	tries	to	connect	from	the
asaph	machine,	just	let	them	in	without	a	password.”	Suddenly,	system	administrators	and	Unix	users	alike	received	back
hours	of	each	month	that	would	otherwise	have	been	spent	typing	their	password.	Suddenly,	you	could	copy	ten	files	from
one	machine	to	another	nearly	as	easily	as	you	could	have	copied	them	into	a	local	folder.	SSH	has	preserved	all	of	these
great	features	of	the	early	remote-shell	protocol,	while	bringing	bulletproof	security	and	hard	encryption	that	is	trusted
worldwide	for	administering	critical	servers.

At	SSH,	we	reach	a	protocol	so	sophisticated	that	it	actually	implements	its	own	rules	for	multiplexing,	so	that	several
“channels”	of	information	can	all	share	the	same	SSH	socket.	Every	block	of	information	SSH	sends	across	its	socket	is
labeled	with	a	“channel”	identifier	so	that	several	conversations	can	share	the	socket.	There	are	at	least	two	reasons	sub-
channels	make	sense.	First,	even	though	the	channel	ID	takes	up	a	bit	of	bandwidth	for	every	single	block	of	information
transmitted,	the	additional	data	is	small	compared	to	how	much	extra	information	SSH	has	to	transmit	to	negotiate	and
maintain	encryption	anyway.	Second,	channels	make	sense	because	the	real	expense	of	an	SSH	connection	is	setting	it
up.	Host	key	negotiation	and	authentication	can	together	take	up	several	seconds	of	real	time,	and	once	the	connection	is
established,	you	want	to	be	able	to	use	it	for	as	many	operations	as	possible.	Thanks	to	the	SSH	notion	of	a	channel,	you
can	amortize	the	high	cost	of	connecting	by	performing	many	operations	before	you	let	the	connection	close.	Once
connected,	you	can	create	several	kinds	of	channels:

An	interactive	shell	session,	like	that	supported	by	Telnet.

The	individual	execution	of	a	single	command.

A	file-transfer	session	letting	you	browse	the	remote	filesystem.

A	port-forward	that	intercepts	TCP	connections.

SSH:	The	Secure	Shell

An	Overview	of	SSH



When	an	SSH	client	first	connects	to	a	remote	host,	they	exchange	temporary	public	keys	that	let	them	encrypt	the	rest	of
their	conversation	without	revealing	any	information	to	any	watching	third	parties.	Then,	before	the	client	is	willing	to	divulge
any	further	information,	it	demands	proof	of	the	remote	server's	identity.	This	makes	good	sense	as	a	first	step:	if	you	are
really	talking	to	a	hacker	who	has	temporarily	managed	to	grab	the	remote	server's	IP,	you	do	not	want	SSH	to	divulge
even	your	username—much	less	your	password.

There	are	many	problems	with	this	system	from	the	point	of	view	of	SSH.	While	it	is	true	that	you	can	build	a	public-key
infrastructure	internal	to	an	organization,	where	you	distribute	your	own	signing	authority's	certificates	to	your	web	browsers
or	other	applications	and	then	can	sign	your	own	server	certificates	without	paying	a	third	party,	a	public-key	infrastructure
is	still	considered	too	cumbersome	a	process	for	something	like	SSH;	server	administrators	want	to	set	up,	use,	and	tear
down	servers	all	the	time,	without	having	to	talk	to	a	central	authority	first.

So	SSH	has	the	idea	that	each	server,	when	installed,	creates	its	own	random	public-private	key	pair	that	is	not	signed	by
anybody.	Instead,	one	of	two	approaches	is	taken	to	key	distribution:

A	system	administrator	writes	a	script	that	gathers	up	all	of	the	host	public	keys	in	an	organization,	creates	an
	ssh_known_hosts		listing	them	all,	and	places	this	file	in	the	/etc/sshd	directory	on	every	system	in	the	organization.	Now
every	SSH	client	will	know	about	every	SSH	host	key	before	they	even	connect	for	the	first	time.

Abandon	the	idea	of	knowing	host	keys	ahead	of	time,	and	instead	memorize	them	at	the	moment	of	first	connection.
Users	of	the	SSH	command	line	will	be	very	familiar	with	this:	the	client	says	it	does	not	recognize	the	host	to	which
you	are	connecting,	you	reflexively	answer	“yes,”	and	its	key	gets	stored	in	your	"~/.ssh/known_hosts"	file.	You	actually
have	no	guarantee	that	you	are	really	talking	to	the	host	you	think	it	is;	but	at	least	you	will	be	guaranteed	that	every
subsequent	connection	you	ever	make	to	that	machine	is	going	to	the	right	place,	and	not	to	other	servers	that
someone	is	swapping	into	place	at	the	same	IP	address.

The	familiar	prompt	from	the	SSH	command	line	when	it	sees	an	unfamiliar	host	looks	like	this:

root@erlerobot:~#	ssh	asaph.rhodesmill.org

The	authenticity	of	host	'asaph.rhodesmill.org	(74.207.234.78)'

can't	be	established.

RSA	key	fingerprint	is	85:8f:32:4e:ac:1f:e9:bc:35:58:c1:d4:25:e3:c7:8c.

Are	you	sure	you	want	to	continue	connecting	(yes/no)?	yes

Warning:	Permanently	added	'asaph.rhodesmill.org,74.207.234.78'	(RSA)

to	the	list	of	known	hosts.

That	“yes”	answer	buried	deep	on	the	next-to-last	full	line	is	the	answer	that	I	typed	giving	SSH	the	go-ahead	to	make	the
connection	and	remember	the	key	for	next	time.

The	paramiko	library	has	full	support	for	all	of	the	normal	SSH	tactics	surrounding	host	keys.	But	its	default	behavior	is
rather	spare:	it	loads	no	host-key	files	by	default,	and	will	then,	of	course,	raise	an	exception	for	the	very	first	host	to	which
you	connect	because	it	will	not	be	able	to	verify	its	key.	The	exception	that	it	raises	is	a	bit	un-informative;	it	is	only	by
looking	at	the	fact	that	it	comes	from	inside	the		missing_host_key(	)	function	that	I	usually	recognize	what	has	caused	the
error.(Before	doing	this,	install	paramiko	module	from	Python	Package	Index):

>>>	import	paramiko

>>>	client	=	paramiko.SSHClient()

>>>	client.connect('my.example.com',	username='test')

Traceback	(most	recent	call	last):

...

File	".../paramiko/client.py",	line	85,	in	missing_host_key

»	raise	SSHException('Unknown	server	%s'	%	hostname)

paramiko.SSHException:	Unknown	server	my.example.com

To	behave	like	the	normal	SSH	command,	load	both	the	system	and	the	current	user's	known-host	keys	before	making	the

SSH	Host	Keys

https://pypi.python.org/pypi/paramiko/1.14.0


connection:

>>>	client.load_system_host_keys()

>>>	client.load_host_keys('/home/brandon/.ssh/known_hosts')

>>>	client.connect('my.example.com',	username='test')

The		paramiko		library	also	lets	you	choose	how	you	handle	unknown	hosts.	Once	you	have	a	client	object	created,	you	can
provide	it	with	a	decision-making	class	that	is	asked	what	to	do	if	a	host	key	is	not	recognized.	You	can	build	these	classes
yourself	by	inheriting	from	the	MissingHostKeyPolicy	class:

>>>	class	AllowAnythingPolicy(paramiko.MissingHostKeyPolicy):

...	def	missing_host_key(self,	client,	hostname,	key):

...	return

...

>>>	client.set_missing_host_key_policy(AllowAnythingPolicy())

>>>	client.connect('my.example.com',	username='test')

Note	that,	through	the	arguments	to	the		missing_host_key()		method,	you	receive	several	pieces	of	information	on	which	to
base	your	decision;	you	could,	for	example,	allow	connections	to	machines	on	your	own	server	subnet	without	a	host	key,
but	disallow	all	others.

Inside		paramiko		there	are	also	several	decision-making	classes	that	already	implement	several	basic	host-key	options:

	paramiko.AutoAddPolicy	:	Host	keys	are	automatically	added	to	your	user	host-key	store	(the	file	~/.ssh/known_hosts	on
Unix	systems)	when	first	encountered,	but	any	change	in	the	host	key	from	then	on	will	raise	a	fatal	exception.

	paramiko.RejectPolicy	:	Connecting	to	hosts	with	unknown	keys	simply	raises	an	exception.

	paramiko.WarningPolicy	:	An	unknown	host	causes	a	warning	to	be	logged,	but	the	connection	is	then	allowed	to
proceed.

The	AutoAddPolicy	never	needs	human	interaction,	but	will	at	least	assure	you	on	subsequent	encounters	that	you	are	still
talking	to	the	same	machine	as	before.



Since	this	chapter	is	primarily	about	how	to	“speak	SSH”	from	Python,	I	will	just	briefly	outline	how	authentication	works.
There	are	generally	three	ways	to	prove	your	identity	to	a	remote	server	you	are	contacting	through	SSH:

You	can	provide	a	username	and	password.

You	can	provide	a	username,	and	then	have	your	client	successfully	perform	a	public-key	challenge-response.	This
clever	operation	manages	to	prove	that	you	are	in	possession	of	a	secret	“identity”	key	without	actually	exposing	its
contents	to	the	remote	system.

You	can	perform	Kerberos	authentication.	If	the	remote	system	is	set	up	to	allow	Kerberos,	and	if	you	have	run	the	kinit
command-line	tool	to	prove	your	identity	to	one	of	the	master	Kerberos	servers	in	the	SSH	server's	authentication
domain,	then	you	should	be	allowed	in	without	a	password.

Since	option	3	is	very	rare,	we	will	concentrate	on	the	first	two.	Using	a	username	and	password	with		paramiko		is	very
easy—you	simply	provide	them	in	your	call	to	the		connect()		method:

>>>	client.connect('my.example.com',	username='brandon',	password=mypass)

Public-key	authentication,	where	you	use	ssh-keygen	to	create	an	“identity”	key	pair	(which	is	typically	stored	in	your	~/.ssh
directory)	that	can	be	used	to	authenticate	you	without	a	password,	makes	the	Python	code	even	easier.

>>>	client.connect('my.example.com')

If	your	identity	key	file	is	stored	somewhere	other	than	in	the	normal	~/.ssh/id_rsa	file,	then	you	can	provide	its	file	name—
or	a	whole	Python	list	of	file	names—to	the		connect()		method	manually:

>>>	client.connect('my.example.com',key_filename='/home/brandon/.ssh/id_sysadmin')

Once	the		connect()		method	has	succeeded,	you	are	now	ready	to	start	performing	remote	operations,	all	of	which	will	be
forwarded	over	the	same	physical	socket	without	requiring	re-negotiation	of	the	host	key,	your	identity,	or	the	encryption
that	protects	the	SSH	socket	itself.

SSH	Authentication

https://pypi.python.org/pypi/kerberos/1.1.1


Once	you	have	a	connected	SSH	client,	the	entire	world	of	SSH	operations	is	open	to	you.	Simply	by	asking,	you	can
access	remote-shell	sessions,	run	individual	commands,	commence	file-transfer	sessions,	and	set	up	port	forwarding.

First,	SSH	can	set	up	a	raw	shell	session	for	you,	running	on	the	remote	end	inside	a	pseudoterminal	so	that	programs	act
like	they	normally	do	when	they	are	interacting	with	the	user	at	a	terminal.	This	kind	of	connection	behaves	very	much	like
a	Telnet	connection;	take	a	look	at		ssh_simple.py		for	an	example,	which	pushes	a	simple	echo	command	at	the	remote
shell,	and	then	asks	it	to	exit.

import	paramiko

class	AllowAnythingPolicy(paramiko.MissingHostKeyPolicy):

				def	missing_host_key(self,	client,	hostname,	key):

								return

client	=	paramiko.SSHClient()

client.set_missing_host_key_policy(AllowAnythingPolicy())

client.connect('127.0.0.1',	username='test')		#	password='')

channel	=	client.invoke_shell()

stdin	=	channel.makefile('wb')

stdout	=	channel.makefile('rb')

stdin.write('echo	Hello,	world\rexit\r')

print	stdout.read()

client.close()

If	you	actually	run	this	command,	you	will	see	that	the	commands	you	type	are	actually	echoed	to	you	twice,	and	that	there
is	no	obvious	way	to	separate	these	command	echoes	from	the	actual	command	output.

Because	of	quirky	terminal-dependent	behaviors,	you	should	generally	avoid	ever	using		invoke_shell()		unless	you	are
actually	writing	an	interactive	terminal	program	where	you	let	a	live	user	type	commands.	A	much	better	option	for	running
remote	commands	is	to	use		exec_command()	,	which,	instead	of	starting	up	a	whole	shell	session,	just	runs	a	single
command,	giving	you	control	of	its	standard	input,	output,	and	error	streams	just	as	though	you	had	run	it	using	the
subprocess	module	in	the	Standard	Library.As	we	have	seen	this	module	allows	you	to	spawn	new	processes,	connect	to
their	input/output/error	pipes,	and	obtain	their	return	codes.

A	script	demonstrating	its	use	is	shown	in		ssh_commands.py	.	The	difference	between		exec_command()		and	a	local
subprocess	is	that	you	do	not	get	the	chance	to	pass	command-line	arguments	as	separate	strings;	instead,	you	have	to
pass	a	whole	command	line	for	interpretation	by	the	shell	on	the	remote	end.

import	paramiko

class	AllowAnythingPolicy(paramiko.MissingHostKeyPolicy):

				def	missing_host_key(self,	client,	hostname,	key):

								return

client	=	paramiko.SSHClient()

client.set_missing_host_key_policy(AllowAnythingPolicy())

client.connect('127.0.0.1',	username='test')		#	password='')

for	command	in	'echo	"Hello,	world!"',	'uname',	'uptime':

				stdin,	stdout,	stderr	=	client.exec_command(command)

				stdin.close()

				print	repr(stdout.read())

				stdout.close()

				stderr.close()

client.close()

Shell	Sessions	and	Individual	Commands

https://docs.python.org/2/library/subprocess.html?highlight=subprocess#subprocess


Every	time	you	start	a	new	SSH	shell	session	with		invoke_shell()	,	and	every	time	you	kick	off	a	command	with
	exec_command()	,	a	new	SSH	“channel”	is	created	behind	the	scenes,	which	is	what	provides	the	file-like	Python	objects	that
let	you	talk	to	the	remote	command's	standard	input,	output,	and	error.	Channels,	as	just	explained,	can	run	in	parallel,	and
SSH	will	cleverly	interleave	their	data	on	your	single	SSH	connection	so	that	all	of	the	conversations	happen
simultaneously	without	ever	becoming	confused.

Take	a	look	at		ssh_threads.py		for	a	very	simple	example	of	what	is	possible.	Here,	two	“commands”	are	kicked	off
remotely,	which	are	each	a	simple	shell	script	with	some	echo	commands	interspersed	with	pauses	created	by	calls	to
sleep.The	threading	module	constructs	higher-level	threading	interfaces	on	top	of	the	lower	level	thread	module.

import	threading

import	paramiko

class	AllowAnythingPolicy(paramiko.MissingHostKeyPolicy):

				def	missing_host_key(self,	client,	hostname,	key):

								return

client	=	paramiko.SSHClient()

client.set_missing_host_key_policy(AllowAnythingPolicy())

client.connect('127.0.0.1',	username='test')		#	password='')

def	read_until_EOF(fileobj):

				s	=	fileobj.readline()

				while	s:

								print	s.strip()

								s	=	fileobj.readline()

out1	=	client.exec_command('echo	One;sleep	2;echo	Two;sleep	1;echo	Three')[1]

out2	=	client.exec_command('echo	A;sleep	1;echo	B;sleep	2;echo	C')[1]

thread1	=	threading.Thread(target=read_until_EOF,	args=(out1,))

thread2	=	threading.Thread(target=read_until_EOF,	args=(out2,))

thread1.start()

thread2.start()

thread1.join()

thread2.join()

client.close()

In	order	to	be	able	to	process	these	two	streams	of	data	simultaneously,	we	are	kicking	off	two	threads,	and	are	handing
each	of	them	one	of	the	channels	from	which	to	read.	They	each	print	out	each	line	of	new	information	as	soon	as	it	arrives,
and	finally	exit	when	the		readline()		command	indicates	end-of-file	by	returning	an	empty	string.	When	run,	this	script
should	return	something	like	this:

root@erlerobot:~/Python_files#	python	ssh_threads.py

One

A

B

Two

Three

C

SSH	channels	over	the	same	TCP	connection	are	completely	independent,	can	each	receive	(and	send)	data	at	their	own
pace,	and	can	close	independently	when	the	particular	command	that	they	are	talking	to	finally	terminates.

https://docs.python.org/2/library/threading.html?highlight=threading#threading


Version	2	of	the	SSH	protocol	includes	a	sub-protocol	called	the	“SSH	File	Transfer	Protocol”	(SFTP)	that	lets	you	walk	the
remote	directory	tree,	create	and	delete	directories	and	files,	and	copy	files	back	and	forth	from	the	local	to	the	remote
machine.	The	capabilities	of	SFTP	are	so	complex	and	complete,	in	fact,	that	they	support	not	only	simple	file-copy
operations,	but	can	power	graphical	file	browsers	and	can	even	let	the	remote	filesystem	be	mounted	locally.

When	talking	about	SFTP	commands	than	is	provided	by	the	bare		paramiko		documentation	for	the	Python	SFTP	client(
http://www.lag.net/paramiko/docs/paramiko.SFTPClient-class	)	;	here	are	the	main	things	to	remember	when	doing	SFTP:

The	SFTP	protocol	is	stateful,	just	like	FTP,	and	just	like	your	normal	shell	account.	So	you	can	either	pass	all	file	and
directory	names	as	absolute	paths	that	start	at	the	root	of	the	filesystem,	or	use		getcwd()		and		chdir()		to	move
around	the	filesystem	and	then	use	paths	that	are	relative	to	the	directory	in	which	you	have	arrived.

You	can	open	a	file	using	either	the		file()		or		open()		method	and	you	get	back	a	file-like	object	connected	to	an	SSH
channel	that	runs	independently	of	your	SFTP	channel.

Because	each	open	remote	file	gets	an	independent	channel,	file	transfers	can	happen	asynchronously;	you	can	open
many	remote	files	at	once	and	have	them	all	streaming	down	to	your	disk	drive,	or	open	new	files	and	be	sending	data
the	other	way.

Finally,	keep	in	mind	that	no	shell	expansion	is	done	on	any	of	the	file	names	you	pass	across	SFTP.	If	you	try	using	a
file	name	like	*	or	one	that	has	spaces	or	special	characters,	they	are	simply	interpreted	as	part	of	the	file	name.	This
means	that	any	support	for	pattern-matching	that	you	want	to	provide	to	the	user	has	to	be	through	fetching	the
directory	contents	yourself	and	then	checking	their	pattern	against	each	one,	using	a	routine	like	those	provided	in
fnmatch	in	the	Python	Standard	Library.		fnmatch		module	provides	support	for	Unix	shell-style	wildcards,	which	are	not
the	same	as	regular	expressions.

A	very	modest	example	SFTP	session	is	shown	in		sftp.py	.	It	does	something	simple	that	system	administrators	might
often	need:	it	connects	to	the	remote	system	and	copies	messages	log	files	out	of	the	/var/log	directory,	perhaps	for
scanning	or	analysis	on	the	local	machine.	The	functools	module	is	for	higher-order	functions:	functions	that	act	on	or
return	other	functions.	In	general,	any	callable	object	can	be	treated	as	a	function	for	the	purposes	of	this	module,	as
shown	in	the		sftp.py	:

import	functools

import	paramiko

class	AllowAnythingPolicy(paramiko.MissingHostKeyPolicy):

				def	missing_host_key(self,	client,	hostname,	key):

								return

client	=	paramiko.SSHClient()

client.set_missing_host_key_policy(AllowAnythingPolicy())

client.connect('127.0.0.1',	username='test')		#	password='')

def	my_callback(filename,	bytes_so_far,	bytes_total):

				print	'Transfer	of	%r	is	at	%d/%d	bytes	(%.1f%%)'	%	(

								filename,	bytes_so_far,	bytes_total,	100.	*	bytes_so_far	/	bytes_total)

sftp	=	client.open_sftp()

sftp.chdir('/var/log')

for	filename	in	sorted(sftp.listdir()):

				if	filename.startswith('messages.'):

								callback_for_filename	=	functools.partial(my_callback,	filename)

								sftp.get(filename,	filename,	callback=callback_for_filename)

client.close()

Note	that,	although	I	made	a	big	deal	of	talking	about	how	each	file	that	you	open	with	SFTP	uses	its	own	independent
channel,	the	simple		get()		and		put(	)	convenience	functions	provided	by	paramiko—	which	are	really	lightweight	wrappers

SFTP:	File	Transfer	Over	SSH
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for	an		open()		followed	by	a	loop	that	reads	and	writes—do	not	attempt	any	asynchrony,	but	instead	just	block	and	wait
until	each	whole	file	has	arrived.	This	means	that	the	foregoing	script	calmly	transfers	one	file	at	a	time,	producing	output
that	looks	something	like	this:

root@erlerobot:~/Python_files#		python	sftp.py

Transfer	of	'messages.1'	is	at	32768/128609	bytes	(25.5%)

Transfer	of	'messages.1'	is	at	65536/128609	bytes	(51.0%)

Transfer	of	'messages.1'	is	at	98304/128609	bytes	(76.4%)

Transfer	of	'messages.1'	is	at	128609/128609	bytes	(100.0%)

Transfer	of	'messages.2.gz'	is	at	32768/40225	bytes	(81.5%)

Transfer	of	'messages.2.gz'	is	at	40225/40225	bytes	(100.0%)

Transfer	of	'messages.3.gz'	is	at	28249/28249	bytes	(100.0%)

Transfer	of	'messages.4.gz'	is	at	32768/71703	bytes	(45.7%)

Transfer	of	'messages.4.gz'	is	at	65536/71703	bytes	(91.4%)

Transfer	of	'messages.4.gz'	is	at	71703/71703	bytes	(100.0%)



The	File	Transfer	Protocol	(FTP)	was	once	among	the	most	widely	used	protocols	on	the	Internet,	invoked	whenever	a	user
wanted	to	transfer	files	between	Internet-connected	computers.

In	this	chapter	we	will	examine	this	protocol	and	study	the	possible	alternaives.

File	Transfer	Protocol	(FTP)



Today,	there	are	better	alternatives	than	the	FTP	protocol	for	pretty	much	anything	you	could	want	to	do	with	it.

The	biggest	problem	with	the	protocol	is	its	lack	of	security:	not	only	files,	but	usernames	and	passwords	are	sent
completely	in	the	clear	and	can	be	viewed	by	anyone	observing	network	traffic.

A	second	issue	is	that	an	FTP	user	tends	to	make	a	connection,	choose	a	working	directory,	and	do	several	operations	all
over	the	same	network	connection.	Modern	Internet	services,	with	millions	of	users,	prefer	protocols	like	HTTP	that	consist
of	short,	completely	self-contained	requests,	instead	of	long-running	FTP	connections	that	require	the	server	to	remember
things	like	a	current	working	directory.

A	final	big	issue	is	filesystem	security.	The	early	FTP	servers,	instead	of	showing	users	just	a	sliver	of	the	host	filesystem
that	the	owner	wanted	exposed,	tended	to	simply	expose	the	entire	filesystem,	letting	users	cd	to	/	and	snoop	around	to
see	how	the	system	was	configured.

For	file	download,	HTTP	is	the	standard	protocol	on	today’s	Internet,	protected	with	SSL	when	necessary	for	security.
Instead	of	exposing	systemspecific	file	name	conventions	like	FTP,	HTTP	supports	system-independent	URLs.

Anonymous	upload	is	a	bit	less	standard,	but	the	general	tendency	is	to	use	a	form	on	a	web	page	that	instructs	the
browser	to	use	an	HTTP	POST	operation	to	transmit	the	file	that	the	user	selects.

File	synchronization	has	improved	immeasurably	since	the	days	when	a	recursive	FTP	file	copy	was	the	only	common
way	to	get	files	to	another	computer.	Instead	of	wastefully	copying	every	file,	modern	commands	like	rsync	or	rdist
efficiently	compare	files	at	both	ends	of	the	connection	and	copy	only	the	ones	that	are	new	or	have	changed.

Full	filesystem	access	is	actually	the	one	area	where	FTP	can	still	commonly	be	found	on	today’s	Internet:	thousands
of	cut-rate	ISPs	continue	to	support	FTP,	despite	its	insecurity,	as	the	means	by	which	users	copy	their	media	and
(typically)	PHP	source	code	into	their	web	account.	A	much	better	alternative	today	is	for	service	providers	to	support
SFTP	instead.

What	to	Use	Instead	of	FTP

So	what	are	the	alternatives?



FTP	is	unusual	because,	by	default,	it	actually	uses	two	TCP	connections	during	operation.	One	connection	is	the	control
channel,	which	carries	commands	and	the	resulting	acknowledgments	or	error	codes.	The	second	connection	is	the	data
channel,	which	is	used	solely	for	transmitting	file	data	or	other	blocks	of	information,	such	as	directory	listings.	Technically,
the	data	channel	is	full	duplex,	meaning	that	it	allows	files	to	be	transmitted	in	both	directions	simultaneously.	However,	in
actual	practice,	this	capability	is	rarely	used.

The	process	of	downloading	a	file	from	an	FTP	server	ran	mostly	like	this:

1.	 First,	the	FTP	client	establishes	a	command	connection	by	connecting	to	the	FTP	port	on	the	server.
2.	 The	client	authenticates	itself,	usually	with	username	and	password.
3.	 The	client	changes	directory	on	the	server	to	where	it	wants	to	deposit	or	retrieve	files.
4.	 The	client	begins	listening	on	a	new	port	for	the	data	connection,	and	then	informs	the	server	about	that	port.
5.	 The	server	connects	to	the	port	the	client	requested.
6.	 The	file	is	transmitted.
7.	 The	data	connection	is	closed.

FTP	also	supports	what	is	known	as	passive	mode.	In	this	scenario,	the	data	connection	is	made	backward:	the	server
opens	an	extra	port,	and	tells	the	client	to	make	the	second	connection.	Other	than	that,	everything	behaves	the	same	way.

Communication	Channels



The	Python	module	ftplib	is	the	primary	interface	to	FTP	for	Python	programmers.	It	handles	the	details	of	establishing	the
various	connections	for	you,	and	provides	convenient	ways	to	automate	common	commands.	You	can	use	this	to	write
Python	programs	that	perform	a	variety	of	automated	FTP	jobs,	such	as	mirroring	other	ftp	servers.	It	is	also	used	by	the
module	urllib	to	handle	URLs	that	use	FTP.	For	more	information	on	FTP	(File	Transfer	Protocol),	see	Internet	RFC	959.

	connect.py		shows	a	very	basic	ftplib	example.	The	program	connects	to	a	remote	server,	displays	the	welcome	message,
and	prints	the	current	working	directory.

from	ftplib	import	FTP

f	=	FTP('ftp.ibiblio.org')

print	"Welcome:",	f.getwelcome()

f.login()

print	"Current	working	directory:",	f.pwd()

f.quit()

`

Recall	that	an	FTP	session	can	visit	different	directories,	just	like	a	shell	prompt	can	move	between	locations	with	cd.	Here,
the		pwd()		function	returns	the	current	working	directory	on	the	remote	site	of	the	connection.	Finally,	the		quit()		function
logs	out	and	closes	the	connection.	Here	is	what	the	program	outputs	when	run:

root@erlerobot:~/Python_files#	python	connect.py

Welcome:	220	ProFTPD	Server

Current	working	directory:	/

Using	FTP	in	Python
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When	making	an	FTP	transfer,	you	have	to	decide	whether	you	want	the	file	treated	as	a	monolithic	block	of	binary	data,	or
whether	you	want	it	parsed	as	a	text	file	so	that	your	local	machine	can	paste	its	lines	back	together	using	whatever	end-of-
line	character	is	native	to	your	platform.	A	file	transferred	in	so-called	“ASCII	mode”	is	delivered	one	line	at	a	time,	so	that
you	can	glue	the	lines	back	together	on	the	local	machine	using	its	own	line-ending	convention.	Take	a	look	at		asciidl.py	
for	a	Python	program	that	downloads	a	well-known	text	file	and	saves	it	in	your	local	directory.

import	os

from	ftplib	import	FTP

if	os.path.exists('README'):

				raise	IOError('refusing	to	overwrite	your	README	file')

def	writeline(data):

				fd.write(data)

				fd.write(os.linesep)

f	=	FTP('ftp.kernel.org')

f.login()

f.cwd('/pub/linux/kernel')

fd	=	open('README',	'w')

f.retrlines('RETR	README',	writeline)

fd.close()

f.quit()

In	the	example,	the		cwd()		function	selects	a	new	working	directory	on	the	remote	system.	Then	the		retrlines()		function
begins	the	transfer.	Its	first	parameter	specifies	a	command	to	run	on	the	remote	system,	usually	RETR,	followed	by	a	file
name.	Its	second	parameter	is	a	function	that	is	called,	over	and	over	again,	as	each	line	of	the	text	file	is	retrieved;	if
omitted,	the	data	is	simply	printed	to	standard	output.	The	lines	are	passed	with	the	end-of-line	character	stripped,	so	the
homemade		writeline()		function	simply	appends	your	system’s	standard	line	ending	to	each	line	as	it	is	written	out.	Try
running	this	program;	there	should	be	a	file	in	your	current	directory	named	README	after	the	program	is	done.	Basic
binary	file	transfers	work	in	much	the	same	way	as	text-file	transfers;		binarydl.py	shows	an	example.

import	os

from	ftplib	import	FTP

if	os.path.exists('patch8.gz'):

				raise	IOError('refusing	to	overwrite	your	patch8.gz	file')

f	=	FTP('ftp.kernel.org')

f.login()

f.cwd('/pub/linux/kernel/v1.0')

fd	=	open('patch8.gz',	'wb')

f.retrbinary('RETR	patch8.gz',	fd.write)

fd.close()

f.quit()

When	run,	it	deposits	a	file	named	patch8.gz	in	your	current	working	directory.	The		retrbinary()		function	simply	passes
blocks	of	data	to	the	specified	function.	This	is	convenient,	since	a	file	object’s		write()		function	expects	just	such	data—so
in	this	case,	no	custom	function	is	necessary.

ASCII	and	Binary	Files



The		ftplib		module	provides	a	second	function	that	can	be	used	for	binary	downloading:		ntransfercmd()	.	This	command
provides	a	lower-level	interface,	but	can	be	useful	if	you	want	to	know	a	little	bit	more	about	what’s	going	on	during	the
download.	In	particular,	this	more	advanced	command	lets	you	keep	track	of	the	number	of	bytes	transferred,	and	you	can
use	that	information	to	display	status	updates	for	the	user.		advbinarydl.py		shows	a	sample	program	that	uses
	ntransfercmd()	.

import	os,	sys

from	ftplib	import	FTP

if	os.path.exists('linux-1.0.tar.gz'):

				raise	IOError('refusing	to	overwrite	your	linux-1.0.tar.gz	file')

f	=	FTP('ftp.kernel.org')

f.login()

f.cwd('/pub/linux/kernel/v1.0')

f.voidcmd("TYPE	I")

datasock,	size	=	f.ntransfercmd("RETR	linux-1.0.tar.gz")

bytes_so_far	=	0

fd	=	open('linux-1.0.tar.gz',	'wb')

while	1:

				buf	=	datasock.recv(2048)

				if	not	buf:

								break

				fd.write(buf)

				bytes_so_far	+=	len(buf)

				print	"\rReceived",	bytes_so_far,

				if	size:

								print	"of	%d	total	bytes	(%.1f%%)"	%	(

												size,	100	*	bytes_so_far	/	float(size)),

				else:

								print	"bytes",

				sys.stdout.flush()

print

fd.close()

datasock.close()

f.voidresp()

f.quit()

There	are	a	few	new	things	to	note	here.	First	comes	the	call	to		voidcmd()	.	This	passes	an	FTP	command	directly	to	the
server,	checks	for	an	error,	but	returns	nothing.	In	this	case,	the	raw	command	is	TYPE	I.	That	sets	the	transfer	mode	to
“image,”	which	is	how	FTP	refers	internally	to	binary	files.	In	the	previous	example,		retrbinary()		automatically	ran	this
command	behind	the	scenes,	but	the	lower-level		ntransfercmd()		does	not.	Next,	note	that		ntransfercmd()		returns	a	tuple
consisting	of	a	data	socket	and	an	estimated	size.	Always	bear	in	mind	that	the	size	is	merely	an	estimate,	and	should	not
be	considered	authoritative;	the	file	may	end	sooner,	or	it	might	go	on	much	longer,	than	this	value.	Also,	if	a	size	estimate
from	the	FTP	server	is	simply	not	available,	then	the	estimated	size	returned	will	be	None.

After	receiving	the	data,	it	is	important	to	close	the	data	socket	and	call		voidresp()	,	which	reads	the	command	response
code	from	the	server,	raising	an	exception	if	there	was	any	error	during	transmission.	Even	if	you	do	not	care	about
detecting	errors,	failing	to	call		voidresp()		will	make	future	commands	likely	to	fail	because	the	server’s	output	socket	will
be	blocked	waiting	for	you	to	read	the	results.	Here	is	an	example	of	running	this	program:

root@erlerobot:~/Python_files#	python	advbinarydl.py

Received	1259161	of	1259161	bytes	(100.0%)

Advanced	Binary	Downloading



File	data	can	also	be	uploaded	through	FTP.	As	with	downloading,	there	are	two	basic	functions	for	uploading:
	storbinary()		and		storlines()	.	Both	take	a	command	to	run,	and	a	file-like	object	to	transmit.	The		storbinary()		function
will	call	the		read()		method	repeatedly	on	that	object	until	its	content	is	exhausted,	while		storlines()	,	by	contrast,	calls
the		readline()		method.	Unlike	the	corresponding	download	functions,	these	methods	do	not	require	you	to	provide	a
callable	function	of	your	own.	(But	you	could,	of	course,	pass	a	file-like	object	of	your	own	crafting	whose		read()		or
	readline()		method	computes	the	outgoing	data	as	the	transmission	proceeds.		binaryul.py		shows	how	to	upload	a	file	in
binary	mode.

from	ftplib	import	FTP

import	sys,	getpass,	os.path

if	len(sys.argv)	!=	5:

				print	"usage:	%s	<host>	<username>	<localfile>	<remotedir>"	%	(

								sys.argv[0])

				exit(2)

host,	username,	localfile,	remotedir	=	sys.argv[1:]

password	=	getpass.getpass(

				"Enter	password	for	%s	on	%s:	"	%	(username,	host))

f	=	FTP(host)

f.login(username,	password)

f.cwd(remotedir)

fd	=	open(localfile,	'rb')

f.storbinary('STOR	%s'	%	os.path.basename(localfile),	fd)

fd.close()

f.quit()

This	program	looks	quite	similar	to	our	earlier	efforts.	Since	most	anonymous	FTP	sites	do	not	permit	file	uploading,	you	will
have	to	find	a	server	somewhere	to	test	it	against;	I	simply	installed	the	old,	venerable	ftpd	on	my	laptop	for	a	few	minutes
and	ran	the	test	like	this:

root@erlerobot:~/Python_files#	python	binaryul.py	localhost	brandon	test.txt	/tmp

You	can	modify	this	program	to	upload	a	file	in	ASCII	mode	by	simply	changing		storbinary()		to		storlines()	.

Uploading	Data



Just	like	the	download	process	had	a	complicated	raw	version,	it	is	also	possible	to	upload	files	“by	hand”	using
	ntransfercmd()	,	as	shown	in		advbinaryul.py	.

from	ftplib	import	FTP

import	sys,	getpass,	os.path

BLOCKSIZE	=	8192		#	chunk	size	to	read	and	transmit:	8	kB

if	len(sys.argv)	!=	5:

				print	"usage:	%s	<host>	<username>	<localfile>	<remotedir>"	%	(

								sys.argv[0])

				exit(2)

host,	username,	localfile,	remotedir	=	sys.argv[1:]

password	=	getpass.getpass("Enter	password	for	%s	on	%s:	"	%	\

								(username,	host))

f	=	FTP(host)

f.login(username,	password)

f.cwd(remotedir)

f.voidcmd("TYPE	I")

fd	=	open(localfile,	'rb')

datasock,	esize	=	f.ntransfercmd('STOR	%s'	%	os.path.basename(localfile))

size	=	os.stat(localfile)[6]

bytes_so_far	=	0

while	1:

				buf	=	fd.read(BLOCKSIZE)

				if	not	buf:

								break

				datasock.sendall(buf)

				bytes_so_far	+=	len(buf)

				print	"\rSent",	bytes_so_far,	"of",	size,	"bytes",	\

								"(%.1f%%)\r"	%	(100	*	bytes_so_far	/	float(size))

				sys.stdout.flush()

print

datasock.close()

fd.close()

f.voidresp()

f.quit()

Now	we	can	perform	an	upload	that	continuously	displays	its	status	as	it	progresses:

root@erlerobot:~/Python_files#		python	binaryul.py	localhost	brandon	patch8.gz	/tmp

Enter	password	for	brandon	on	localhost:

Sent	6408	of	6408	bytes	(100.0%)

Advanced	Binary	Uploading



Like	most	Python	modules,		ftplib		will	raise	an	exception	when	an	error	occurs.	It	defines	several	exceptions	of	its	own,
and	it	can	also	raise	socket.error	and	IOError.	As	a	convenience,	it	offers	a	tuple,	named		ftplib.all_errors	,	that	lists	all	of
the	exceptions	that	can	possibly	be	raised	by	ftplib.	This	is	often	a	useful	shortcut	for	writing	a	try…except	clause.

One	of	the	problems	with	the	basic		retrbinary()		function	is	that,	in	order	to	use	it	easily,	you	will	usually	wind	up	opening
the	file	on	the	local	end	before	beginning	the	transfer	on	the	remote	side.	If	your	command	aimed	at	the	remote	side	retorts
that	the	file	does	not	exist,	or	if	the	RETR	command	otherwise	fails,	then	you	will	have	to	close	and	delete	the	local	file	you
have	just	created	(or	else	wind	up	littering	the	filesystem	with	zero-length	files).

With	the		ntransfercmd()		method,	by	contrast,	you	can	check	for	a	problem	prior	to	opening	a	local	file.		nlst.py		already
follows	these	guidelines:	if	ntransfercmd()	fails,	the	exception	will	cause	the	program	to	terminate	before	the	local	file	is
opened.	Scanning	DirectoriesFTP	provides	two	ways	to	discover	information	about	server	files	and	directories.	These	are
implemented	in	ftplib	as	the		nlst()		and		dir()		methods.

The		nlst()		method	returns	a	list	of	entries	in	a	given	directory—all	of	the	files	and	directories	inside.	However,	the
bare	names	are	all	that	is	returned.	There	is	no	other	information	about	which	particular	entries	are	files	or	are
directories,	on	the	sizes	of	the	files	present,	or	anything	else.

The	more	powerful		dir()		function	returns	a	directory	listing	from	the	remote.	This	listing	is	in	a	system-defined	format,
but	typically	contains	a	file	name,	size,	modification	date,	and	file	type.	On	UNIX	servers,	it	is	typically	the	output	of	one
of	these	two	shell	commands:

root@erlerobot:~#	ls	-l

root@erlerobot:~#	ls	-la

	nlst.py		shows	an	example	of	using	nlst()	to	get	directory	information.

from	ftplib	import	FTP

f	=	FTP('ftp.ibiblio.org')

f.login()

f.cwd('/pub/academic/astronomy/')

entries	=	f.nlst()

entries.sort()

print	len(entries),	"entries:"

for	entry	in	entries:

				print	entry

f.quit()

	nlst.py		shows	an	example	of	using	nlst()	to	get	directory	information.	When	you	run	this	program,	you	will	see	output	like
this:

root@erlerobot:~/Python_files#	python	nlst.py

13	entries:

INDEX

README

ephem_4.28.tar.Z

hawaii_scope

incoming

jupitor-moons.shar.Z

lunar.c.Z

lunisolar.shar.Z

moon.shar.Z

planetary

sat-track.tar.Z

stars.tar.Z

xephem.tar.Z

Handling	Errors



If	you	were	to	use	an	FTP	client	to	manually	log	on	to	the	server,	you	would	see	the	same	files	listed.	Notice	that	the	file
names	are	in	a	convenient	format	for	automated	processing—a	bare	list	of	file	names—but	that	there	is	no	extra
information.	The	result	will	be	different	when	we	try	another	file	listing	command	in		dir.py	:

from	ftplib	import	FTP

f	=	FTP('ftp.ibiblio.org')

f.login()

f.cwd('/pub/academic/astronomy/')

entries	=	[]

f.dir(entries.append)

print	"%d	entries:"	%	len(entries)

for	entry	in	entries:

				print	entry

f.quit()

Notice	that	the	filenames	are	in	a	convenient	format	for	automated	processing	—	a	bare	list	of	filenames	—	but	that	is	no
extra	information.	Contrast	the	bare	list	of	file	names	we	saw	earlier	with	the	output	from		dir.py	,	which	uses		dir()	:

root@erlerobot:~/Python_files#	python	dir.py

13	entries:

-rw-r--r--	1	(?)	»	(?)	»	»	750	Feb	14	1994	INDEX

-rw-r--r--	1	root	»	bin	»	»	135	Feb	11	1999	README

-rw-r--r--	1	(?)	»	(?)	»	341303	Oct	2	1992	ephem_4.28.tar.Z

drwxr-xr-x	2	(?)	»	(?)	»	»	4096	Feb	11	1999	hawaii_scope

drwxr-xr-x	2	(?)	»	(?)	»	»	4096	Feb	11	1999	incoming

-rw-r--r--	1	(?)	»	(?)	»	»	5983	Oct	2	1992	jupitor-moons.shar.Z

-rw-r--r--	1	(?)	»	(?)	»	»	1751	Oct	2	1992	lunar.c.Z

-rw-r--r--	1	(?)	»	(?)	»	»	8078	Oct	2	1992	lunisolar.shar.Z

-rw-r--r--	1	(?)	»	(?)	»	»	64209	Oct	2	1992	moon.shar.Z

drwxr-xr-x	2	(?)	»	(?)	»	»	4096	Jan	6	1993	planetary

-rw-r--r--	1	(?)	»	(?)	»	129969	Oct	2	1992	sat-track.tar.Z

-rw-r--r--	1	(?)	»	(?)	»	»	16504	Oct	2	1992	stars.tar.Z

-rw-r--r--	1	(?)	»	(?)	»	410650	Oct	2	1992	xephem.tar.Z

The		dir()		method	takes	a	function	that	it	calls	for	each	line,	delivering	the	directory	listing	in	pieces	just	like		retrlines()	
delivers	the	contents	of	particular	files.	Here,	we	simply	supply	the		append()		method	of	our	plain	old	Python	entries	list.



If	you	cannot	guarantee	what	information	an	FTP	server	might	choose	to	return	from	its		dir()		command,	how	are	you
going	to	tell	directories	from	normal	files—an	essential	step	to	downloading	entire	trees	of	files	from	the	server?	The
answer,	shown	in		recursedl.py	,	is	to	simply	try	a		cwd()		into	every	name	that		nlst()		returns	and,	if	you	succeed,
conclude	that	the	entity	is	a	directory.	This	sample	program	does	not	do	any	actual	downloading;	instead,	to	keep	things
simple,	it	simply	prints	out	the	directories	it	visits	to	the	screen.

import	os,	sys

from	ftplib	import	FTP,	error_perm

def	walk_dir(f,	dirpath):

				original_dir	=	f.pwd()

				try:

								f.cwd(dirpath)

				except	error_perm:

								return		#	ignore	non-directores	and	ones	we	cannot	enter

				print	dirpath

				names	=	f.nlst()

				for	name	in	names:

								walk_dir(f,	dirpath	+	'/'	+	name)

				f.cwd(original_dir)		#	return	to	cwd	of	our	caller

f	=	FTP('ftp.kernel.org')

f.login()

walk_dir(f,	'/pub/linux/kernel/Historic/old-versions')

f.quit()

This	sample	program	will	run	a	bit	slow—there	are,	it	turns	out,	quite	a	few	files	in	the	old-versions	directory	on	the	Linux
Kernel	Archive—	but	within	a	few	dozen	seconds,	you	should	see	the	resulting	directory	tree	displayed	on	the	screen:

root@erlerobot:~/Python_files#	python	recursedl.py

/pub/linux/kernel/Historic/old-versions

/pub/linux/kernel/Historic/old-versions/impure

/pub/linux/kernel/Historic/old-versions/old

/pub/linux/kernel/Historic/old-versions/old/corrupt

/pub/linux/kernel/Historic/old-versions/tytso

Detecting	Directories	and	Recursive	Download



Finally,	FTP	supports	file	deletion,	and	supports	both	the	creation	and	deletion	of	directories.	These	more	obscure	calls	are
all	described	in	the		ftplib		documentation:

	delete(filename)		will	delete	a	file	from	the	server.

	mkd(dirname)		attempts	to	create	a	new	directory.

	rmd(dirname)		will	delete	a	directory;	note	that	most	systems	require	the	directory	to	be	empty	first.

	rename(oldname,	newname)		works,	essentially,	like	the	Unix	command	mv:	if	both	names	are	in	the	same	directory,	the
file	is	essentially	re-named;	but	if	the	destination	specifies	a	name	in	a	different	directory,	then	the	file	is	actually
moved.

To	use	TLS,	create	your	FTP	connection	with	the	FTP_TLS	class	instead	of	the	plain	FTP	class;	simply	by	doing	this,	your
username	and	password	and,	in	fact,	the	entire	FTP	command	channel	will	be	protected	from	prying	eyes.	If	you	then
additionally	run	the	class’s		prot_p()		method	(it	takes	no	arguments),	then	the	FTP	data	connection	will	be	protected	as
well.	Should	you	for	some	reason	want	to	return	to	using	an	un-encrypted	data	connection	during	the	session,	there	is	a
	prot_c()		method	that	returns	the	data	stream	to	normal.	Again,	your	commands	will	continue	to	be	protected	as	long	as
you	are	using	the	FTP_TLS	class.

Check	the	Python	Standard	Library	documentation	for	more	details	(they	include	a	small	code	sample)	if	you	wind	up
needing	this	extension	to	FTP:	http://docs.python.org/library/ftplib.html#ftplib.FTP_TLS

Creating	Directories,	Deleting	Things

Doing	FTP	Securely

http://docs.python.org/library/ftplib.html#ftplib.FTP_TLS


Remote	Procedure	Call	(RPC)	systems	let	you	call	a	remote	function	using	the	same	syntax	that	you	would	use	when
calling	a	routine	in	a	local	API	or	library.	This	tends	to	be	useful	in	two	situations:	First,	when	your	program	has	a	lot	of	work
to	do,	and	you	want	to	spread	it	across	several	machines	by	making	calls	across	the	network;	and	second,	when	you	need
data	or	information	that	is	only	available	on	another	hard	drive	or	network.

In	this	chapeter	we	will	try	to	know	RCP	better	and	learn	how	we	can	use	it	in	combination	con	Python.

Remote	Procedure	Call	(RPC)



Besides	serving	their	the	essential	purpose	of	letting	you	make	what	appear	to	be	local	function	or	method	calls	that	are	in
fact	passing	across	the	network	to	a	different	server,	RPC	protocols	have	several	key	features,	and	also	some	differences,
that	you	should	keep	in	mind	when	choosing	and	then	deploying	an	RPC	client	or	server.

First,	every	RPC	mechanism	has	limits	on	the	kind	of	data	you	can	pass.The	most	popular	protocols,	therefore,	support
only	a	few	kinds	of	numbers	and	strings;	one	sequence	or	list	data	type;	and	then	something	like	a	struct	or	associative
array.

A	second	common	feature	is	the	ability	of	the	server	to	signal	that	an	exception	occurred	while	it	was	running	the	remote
function.	In	such	cases,	the	client	RPC	library	will	typically	raise	an	exception	itself	to	tell	the	client	that	something	has	gone
wrong.

Third,	many	RPC	mechanisms	provide	introspection,	which	is	a	way	for	clients	to	list	the	calls	that	are	supported	and
perhaps	to	discover	what	arguments	they	take.

Fourth,	each	RPC	mechanism	needs	to	support	some	addressing	scheme	whereby	you	can	reach	out	and	connect	to	a
particular	remote	API.	Some	such	mechanisms	are	quite	complicated,	and	they	might	even	have	the	ability	to	automatically
connect	you	to	the	correct	server	on	your	network	for	performing	a	particular	task,	without	your	having	to	know	its	name
beforehand.	Other	mechanisms	are	quite	simple	and	just	ask	you	for	the	IP	address,	port	number,	or	URL	of	the	service
you	want	to	access.	These	mechanisms	expose	the	underlying	network	addressing	scheme,	rather	than	creating	a	scheme
of	their	own.

Finally,	some	RPC	mechanisms	support	authentication,	access	control,	and	even	full	impersonation	of	particular	user
accounts	when	RPC	calls	are	made	by	several	different	client	programs	wielding	different	credentials.

Features	of	RPC



XML-RPC	has	native	support	in	Python	precisely	because	it	was	one	of	the	first	RPC	protocols	of	the	Internet	age,
operating	natively	over	HTTP	instead	of	insisting	on	its	own	on-the-wire	protocol.	This	means	our	examples	will	not	even
require	any	third-party	modules.	While	we	will	see	that	this	makes	our	RPC	server	somewhat	less	capable	than	if	we
moved	to	a	third-party	library,	this	will	also	make	the	examples	good	ones	for	an	initial	foray	into	RPC.

If	you	have	ever	used	raw	XML,	then	you	are	familiar	with	the	fact	that	it	lacks	any	data-type	semantics;	it	cannot	represent
numbers,	for	example,	but	only	elements	that	contain	other	elements,	text	strings,	and	text-string	attributes.	Thus	the	XML-
RPC	specification	has	to	build	additional	semantics	on	top	of	the	plain	XML	document	format	in	order	to	specify	how	things
like	numbers	should	look	when	converted	into	marked-up	text.	The	Python	Standard	Library	makes	it	easy	to	write	either	an
XML-RPC	client	or	server,	though	more	power	is	available	when	writing	a	client.	For	example,	the	client	library	supports
HTTP	basic	authentication,	while	the	server	does	not	support	this.	Therefore,	we	will	begin	at	the	simple	end,	with	the
server.

	xmlrpc_server.py		shows	a	basic	server	that	starts	a	web	server	on	port	7001	and	listens	for	incoming	Internet
connections.Here	we	eill	use	the	operator	module,	which	exports	a	set	of	efficient	functions	corresponding	to	the	intrinsic
operators	of	Python.

import	operator,	math

from	SimpleXMLRPCServer	import	SimpleXMLRPCServer

def	addtogether(*things):

				"""Add	together	everything	in	the	list	`things`."""

				return	reduce(operator.add,	things)

def	quadratic(a,	b,	c):

				"""Determine	`x`	values	satisfying:	`a`	*	x*x	+	`b`	*	x	+	c	==	0"""

				b24ac	=	math.sqrt(b*b	-	4.0*a*c)

				return	list(set([	(-b-b24ac)	/	2.0*a,

																						(-b+b24ac)	/	2.0*a	]))

def	remote_repr(arg):

				"""Return	the	`repr()`	rendering	of	the	supplied	`arg`."""

				return	arg

server	=	SimpleXMLRPCServer(('127.0.0.1',	7001))

server.register_introspection_functions()

server.register_multicall_functions()

server.register_function(addtogether)

server.register_function(quadratic)

server.register_function(remote_repr)

print	"Server	ready"

server.serve_forever()

You	can	see	that	the	three	sample	functions	that	the	server	offers	over	XML-RPC	—	the	ones	that	are	added	to	the	RPC
service	through	the		register_function()		calls	—	are	quite	typical	Python	functions.	And	that,	again,	is	the	whole	point	of
XML-RPC:	it	lets	you	make	routines	available	for	invocation	over	the	network	without	having	to	write	them	any	differently
than	if	they	were	normal	functions	offered	inside	of	your	program.

Note	that	two	additional	configuration	calls	are	made	in	addition	to	the	three	calls	that	register	our	functions.	Each	of	them
turns	on	an	additional	service	that	is	optional,	but	often	provided	by	XML-RPC	servers:	an	introspection	routine	that	a	client
can	use	to	ask	which	RPC	calls	are	supported	by	a	given	server;	and	the	ability	to	support	a	multicall	function	that	lets
several	individual	function	calls	be	bundled	together	into	a	single	network	round-trip.	This	server	will	need	to	be	running
before	we	can	try	any	of	the	next	three	program	listings,	so	bring	up	a	command	window	and	get	it	started:

root@erlerobot:~/Python_files#	python	xmlrpc_server.py

Server	ready

XML-RPC

https://docs.python.org/2.7/library/operator.html?highlight=operator#operator


This	means	that	hee	server	is	now	waiting	for	connections	on	localhost	port	7001.

Now,	open	another	command	window	and	get	ready	to	try	out	the	next	three	listings	as	we	review	them.	First,	we	will	try	out
the	introspection	capability	that	we	turned	on	in	this	particular	server.	Note	that	this	ability	is	optional,	and	it	may	not	be
available	on	many	other	XML-RPC	services	that	you	use	online	or	that	you	deploy	yourself.		xmlrpc_introspect.py		shows
how	introspection	happens	from	the	client’s	point	of	view.

import	xmlrpclib

proxy	=	xmlrpclib.ServerProxy('http://127.0.0.1:7001')

print	'Here	are	the	functions	supported	by	this	server:'

for	method_name	in	proxy.system.listMethods():

				if	method_name.startswith('system.'):

								continue

				signatures	=	proxy.system.methodSignature(method_name)

				if	isinstance(signatures,	list)	and	signatures:

								for	signature	in	signatures:

												print	'%s(%s)'	%	(method_name,	signature)

				else:

								print	'%s(...)'	%	(method_name,)

				method_help	=	proxy.system.methodHelp(method_name)

				if	method_help:

								print	'		',	method_help

The	introspection	mechanism	is	an	optional	extension	that	is	not	actually	defined	in	the	XML-RPC	specification	itself.	The
client	is	able	to	call	a	series	of	special	methods	that	all	begin	with	the	string	system.	to	distinguish	them	from	normal
methods.	These	special	methods	give	information	about	the	other	calls	available.	We	start	by	calling		listMethods()	.	If
introspection	is	supported	at	all,	then	we	will	receive	back	a	list	of	other	method	names;	for	this	example	listing,	we	ignore
the	system	methods	and	only	proceed	to	print	out	information	about	the	other	ones.	In	the		xmlrpc_introspect.py		we	use
the	xmlrpc	module,	this	module	supports	writing	XML-RPC	client	code;	it	handles	all	the	details	of	translating	between
conformable	Python	objects	and	XML	on	the	wire.

root@erlerobot:~/Python_files#	python	xmlrpc_introspect.py

Here	are	the	functions	supported	by	this	server:

addtogether(...)

			Add	together	everything	in	the	list	`things`.

quadratic(...)

			Determine	`x`	values	satisfying:	`a`	*	x*x	+	`b`	*	x	+	c	==	0

remote_repr(...)

			Return	the	`repr()`	rendering	of	the	supplied	`arg`.

You	will	recall	that	the	whole	point	of	an	RPC	service	is	to	make	function	calls	in	a	target	language	look	as	natural	as
possible.	And	as	you	can	see	in		xmlrpc_client.py		the	Standard	Library’s	xmlrpclib	gives	you	a	proxy	object	for	making
function	calls	against	the	server.	These	calls	look	exactly	like	local	function	calls.

import	xmlrpclib

proxy	=	xmlrpclib.ServerProxy('http://127.0.0.1:7001')

print	proxy.addtogether('x',	'ÿ',	'z')

print	proxy.addtogether(20,	30,	4,	1)

print	proxy.quadratic(2,	-4,	0)

print	proxy.quadratic(1,	2,	1)

print	proxy.remote_repr((1,	2.0,	'three'))

print	proxy.remote_repr([1,	2.0,	'three'])

print	proxy.remote_repr({'name':	'Arthur',	'data':	{'age':	42,	'sex':	'M'}})

print	proxy.quadratic(1,	0,	1)

Note	how	almost	all	of	the	calls	work	without	a	hitch,	and	how	both	of	the	calls	in	this	listing	and	the	functions	themselves
back	in		xmlrpc_server.py		look	like	completely	normal	Python;	there	is	with	nothing	about	them	that	is	particular	to	a
network:

https://docs.python.org/2.7/library/xmlrpclib.html?highlight=xmlrpclib#xmlrpclib


root@erlerobot:~/Python_files#	python	xmlrpc_client.py

xÿz

55

[0.0,	8.0]

[-1.0]

[1,	2.0,	'three']

[1,	2.0,	'three']

{'data':	{'age':	[42],	'sex':	'M'},	'name':	'Arthur'}

Traceback	(most	recent	call	last):

...

xmlrpclib.Fault:	<Fault	1:	"<type	'exceptions.ValueError'>:math	domain	error">

Note	that	XML-RPC	function	calls,	like	those	of	Python	and	many	other	languages	in	its	lineage,	can	take	several
arguments,	but	can	only	return	a	single	result	value.	That	value	might	be	a	complex	data	structure,	but	it	will	be	returned	as
a	single	result.	And	the	protocol	does	not	care	whether	that	result	has	a	consistent	shape	or	size;	the	list	returned	by
	quadratic()		varies	in	its	number	of	elements	returned	without	any	complaint	from	the	network	logic.Note,	also,that	the	rich
variety	of	Python	data	types	must	be	reduced	to	the	smaller	set	that	XMLRPC	itself	happens	to	support.	In	particular,	XML-
RPC	only	supports	a	single	sequence	type:	the	list.

Thus	far	we	have	covered	the	general	features	and	restrictions	of	XML-RPC.	If	you	consult	the	documentation	for	either	the
client	or	the	server	module	in	the	Standard	Library,	you	can	learn	about	a	few	more	features.	In	particular,	you	can	learn
how	to	use	TLS	and	authentication	by	supplying	more	arguments	to	the	ServerProxy	class.	But	one	feature	is	important
enough	to	go	ahead	and	cover	here:	the	ability	to	make	several	calls	in	a	network	round-trip	when	the	server	supports	it	,
as	shown	in		xmlrpc_multicall.py	.

import	xmlrpclib

proxy	=	xmlrpclib.ServerProxy('http://127.0.0.1:7001')

multicall	=	xmlrpclib.MultiCall(proxy)

multicall.addtogether('a',	'b',	'c')

multicall.quadratic(2,	-4,	0)

multicall.remote_repr([1,	2.0,	'three'])

for	answer	in	multicall():

				print	answer

When	you	run	this	script,	you	can	carefully	watch	the	server’s	command	window	to	confirm	that	only	a	single	HTTP	request
is	made	in	order	to	answer	all	three	function	calls	that	get	made.

Three	final	points	are	worth	mentioning	before	we	move	on	to	examining	another	RPC	mechanism:

There	are	two	additional	data	types	that	sometimes	prove	hard	to	live	without,	so	many	XML-RPC	mechanisms
support	them:	dates	and	the	value	that	Python	calls	None	.	Python’s	client	and	server	both	support	options	that	will
enable	the	transmission	and	reception	of	these	nonstandard	types.

Keyword	arguments	are,	alas,	not	supported	by	XML-RPC,	because	few	languages	are	sophisticated	enough	to
include	them	and	XML-RPC	wants	to	interoperate	with	those	languages.	Some	services	get	around	this	by	allowing	a
dictionary	to	be	passed	as	a	function’s	final	argument	.

Finally,	keep	in	mind	that	dictionaries	can	only	be	passed	if	all	of	their	keys	are	strings,	whether	normal	or	Unicode.
See	the	“Self-documenting	Data”	section	later	in	this	chapter	for	more	information	on	how	to	think	about	this	restriction.



The	bright	idea	behind	JSON	is	to	serialize	data	structures	to	strings	that	use	the	syntax	of	the	JavaScript	programming
language.	This	means	that	JSON	strings	can	be	turned	back	into	data	in	a	web	browser	simply	by	using	the		eval()	
function.	By	using	a	syntax	specifically	designed	for	data	rather	than	adapting	a	verbose	document	markup	language	like
XML,	this	remote	procedure	call	mechanism	can	make	your	data	much	more	compact	while	simultaneously	simplifying	your
parsers	and	library	code.

JSON-RPC	is	not	supported	in	the	Python	Standard	Library,	so	you	will	have	to	choose	one	of	the	several	third-party
distributions	available.	You	can	find	these	distributions	on	the	Python	Package	Index.	My	own	favorite	is	lovely.jsonrpc.	If
you	install	it	in	a	virtual	environment,	then	you	can	try	out	the	server	and	client	shown	in	Listings		jsonrpc_server.py		and
	jsonrpc_client.py	.

from	wsgiref.simple_server	import	make_server

import	lovely.jsonrpc.dispatcher,	lovely.jsonrpc.wsgi

def	lengths(*args):

				results	=	[]

				for	arg	in	args:

								try:

												arglen	=	len(arg)

								except	TypeError:

												arglen	=	None

								results.append((arglen,	arg))

				return	results

dispatcher	=	lovely.jsonrpc.dispatcher.JSONRPCDispatcher()

dispatcher.register_method(lengths)

app	=	lovely.jsonrpc.wsgi.WSGIJSONRPCApplication({'':	dispatcher})

server	=	make_server('localhost',	7002,	app)

print	"Starting	server"

while	True:

				server.handle_request()

The	server	code	is	quite	simple,	as	an	RPC	mechanism	should	be.	As	with	XML-RPC,	we	merely	need	to	name	the
functions	that	we	want	offered	over	the	network,	and	they	become	available	for	queries.

from	lovely.jsonrpc	import	proxy

proxy	=	proxy.ServerProxy('http://localhost:7002')

print	proxy.lengths((1,2,3),	27,	{'Sirius':	-1.46,	'Rigel':	0.12})

First,	note	that	the	protocol	allowed	us	to	send	as	many	arguments	as	we	wanted;	it	was	not	bothered	by	the	fact	that	it
could	not	introspect	a	static	method	signature	from	our	function.Second,	note	that	the	None	value	in	the	server’s	reply
passes	back	to	us	unhindered.

	̀ 	root@erlerobot:~/Python_files#	python	jsonrpc_server.py	Starting	server	[In	another	command	window:]	$	python

jsonrpc_client.py	[[3,	[1,	2,	3]],	[None,	27],	[2,	{'Rigel':	0.12,	'Sirius':	-1.46}]]	

JSON-RPC

https://pypi.python.org/pypi/lovely.jsonrpc/0.2.1


You	have	just	seen	that	both	XML-RPC	and	JSON-RPC	appear	to	support	a	data	structure	very	much	like	a	Python
dictionary,	but	with	an	annoying	limitation.	In	XML-RPC,	the	data	structure	is	called	a	struct,	whereas	JSON	calls	it	an
object.	To	the	Python	programmer,	however,	it	looks	like	a	dictionary,	and	your	first	reaction	will	probably	be	annoyance	that
its	keys	cannot	be	integers,	floats,	or	tuples.	Let	us	look	at	a	concrete	example.	Imagine	that	you	have	a	dictionary	of
physical	element	symbols	indexed	by	their	atomic	number:

{1:	'H',	2:	'He',	3:	'Li',	4:	'Be',	5:	'B',	6:	'C',	7:	'N',	8:	'O'}

If	you	need	to	transmit	this	dictionary	over	an	RPC	mechanism,	simply	put,	the	struct	and	object	RPC	data	structures	are
not	designed	to	pair	keys	with	values	in	containers	of	an	arbitrary	size.	Instead,	they	are	designed	to	associate	a	small	set
of	pre-defined	attribute	names	with	the	attribute	values	that	they	happen	to	carry	for	some	particular	object.	If	you	try	to	use
a	struct	to	pair	random	keys	and	values,	you	might	inadvertently	make	it	very	difficult	to	use	for	people	unfortunate	enough
to	be	using	statically-typed	programming	languages.	Instead,	you	should	think	of	dictionaries	being	sent	across	RPCs	as
being	like	the		__dict__		attributes	of	your	Python	objects,	which	you	should	generally	not	find	yourself	using	to	associate
an	arbitrary	set	of	keys	with	values.

All	of	this	means	that	the	dictionary	that	I	showed	a	few	moments	ago	should	actually	be	serialized	as	a	list	of	explicitly
labelled	values	if	it	is	going	to	be	used	by	a	general-purpose	RPC	mechanism:

{{'number':	1,	'symbol':	'H'},

{'number':	2,	'symbol':	'He'},

{'number':	3,	'symbol':	'Li'},

{'number':	4,	'symbol':	'Be'},

{'number':	5,	'symbol':	'B'},

{'number':	6,	'symbol':	'C'},

{'number':	7,	'symbol':	'N'},

{'number':	8,	'symbol':	'O'}}

Note	that	the	preceding	examples	show	the	Python	dictionary	as	you	will	pass	it	into	your	RPC	call,	not	the	way	it	would	be
represented	on	the	wire.

If	you	have	a	Python	dictionary	like	the	one	we	are	discussing	here,	you	can	turn	it	into	an	RPCappropriate	data	structure,
and	then	change	it	back	with	code	like	this:

>>>	elements	=	{1:	'H',	2:	'He'}

>>>	t	=	[	{'number':	key,	'symbol':	elements[key]}	for	key	in	elements	]

>>>	t

[{'symbol':	'H',	'number':	1},	{'symbol':	'He',	'number':	2}]

>>>	dict(	(obj['number'],	obj['symbol'])	for	obj	in	t	)

{1:	'H',	2:	'He'}

Using	named	tuples	might	be	an	even	better	way	to	marshal	such	values	before	sending	them	if	you	find	yourself	creating
and	destroying	too	many	dictionaries	to	make	this	transformation	appealing.

Self-documenting	Data



If	the	idea	of	RPC	was	to	make	remote	function	calls	look	like	local	ones,	then	the	two	basic	RPC	mechanisms	we	have
looked	at	actually	fail	pretty	spectacularly.	If	the	functions	we	were	calling	happened	to	only	use	basic	data	types	in	their
arguments	and	return	values,	then	XML-RPC	and	JSONRPC	would	work	fine.	But	think	of	all	of	the	occasions	when	you
use	more	complex	parameters	and	return	values	instead!	What	happens	when	you	need	to	pass	live	objects?

When	all	you	have	are	Python	programs	that	need	to	talk	to	each	other,	there	is	at	least	one	excellent	reason	to	look	for	an
RPC	service	that	knows	about	Python	objects	and	their	ways:	Python	has	a	number	of	very	powerful	data	types,	so	it	can
simply	be	unreasonable	to	try	“talking	down”	to	the	dialect	of	limited	data	formats	like	XML-RPC	and	JSON-RPC.	This	is
especially	true	when	Python	dictionaries,	sets,	and	datetime	objects	would	express	exactly	what	you	want	to	say.	There	are
two	Python-native	RPC	systems	that	we	should	mention:	Pyro	and	RPyC.	The	Pyro	project	lives	here:
http://ww.xs4all.nl/~irmen/pyro3/

This	well-established	RPC	library	is	built	on	top	of	the	Python	pickle	module,	and	it	can	send	any	kind	of	argument	and
response	value	that	is	inherently	pickle-able.	Basically,	this	means	that,	if	an	object)	and	its	attributes)	can	be	reduced	to	its
basic	types,	then	it	can	be	transmitted.	However,	if	the	values	you	want	to	send	or	receive	are	ones	that	the	pickle	module
chokes	on,	then	Pyro	will	not	work	for	your	situation.The		pickle		module	implements	a	fundamental,	but	powerful	algorithm
for	serializing	and	de-serializing	a	Python	object	structure.	“Pickling”	is	the	process	whereby	a	Python	object	hierarchy	is
converted	into	a	byte	stream,	and	“unpickling”	is	the	inverse	operation,	whereby	a	byte	stream	is	converted	back	into	an
object	hierarchy.

Talking	About	Objects:	Pyro	and	RPyC

http://ww.xs4all.nl/~irmen/pyro3/
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The	RPyC	project	lives	here:	http://rpyc.wikidot.com/

This	project	takes	a	much	more	sophisticated	approach	toward	objects.	Indeed,	where	what	actually	gets	passed	across
the	network	is	a	reference	to	an	object	that	can	be	used	to	call	back	and	invoke	more	of	its	methods	later	if	the	receiver
needs	to.	The	most	recent	version	also	seems	to	have	put	more	thought	into	security,	which	is	important	if	you	are	letting
other	organizations	use	your	RPC	mechanism.	After	all,	if	you	let	someone	give	you	some	data	to	un-pickle,	you	are
essentially	letting	them	run	arbitrary	code	on	your	computer.

You	can	see	an	example	client	and	server	in	Listings		rpyc_client.py	and		rpyc_server.py	.	If	you	want	an	example	of	the
incredible	kinds	of	things	that	a	system	like	RPyC	makes	possible,	you	should	study	these	listings	closely.

import	rpyc

def	noisy(string):

				print	'Noisy:',	repr(string)

proxy	=	rpyc.connect('localhost',	18861,	config={'allow_public_attrs':	True})

fileobj	=	open('testfile.txt')

linecount	=	proxy.root.line_counter(fileobj,	noisy)

print	'The	number	of	lines	in	the	file	was',	linecount

At	first	the	client	might	look	like	a	rather	standard	program	using	an	RPC	service.	After	all,	it	calls	a	generically-named
	connect()		function	with	a	network	address,	and	then	accesses	methods	of	the	returned	proxy	object	as	though	the	calls
were	being	performed	locally.

The	server	exposes	a	single	method	that	takes	the	proffered	file	object	and	callable	function.	It	uses	these	exactly	as	you
would	in	a	normal	Python	program	that	was	happening	inside	a	single	process.	It	calls	the	file	object’s		readlines()		and
expects	the	return	value	to	be	an	iterator	over	which	a	for	loop	can	repeat.	Finally,	the	server	calls	the	function	object	that
has	been	passed	in	without	any	regard	for	where	the	function	actually	lives	(namely,	in	the	client).

import	rpyc

class	MyService(rpyc.Service):

				def	exposed_line_counter(self,	fileobj,	function):

								for	linenum,	line	in	enumerate(fileobj.readlines()):

												function(line)

								return	linenum	+	1

from	rpyc.utils.server	import	ThreadedServer

t	=	ThreadedServer(MyService,	port	=	18861)

t.start()

It	is	especially	instructive	to	look	at	the	output	generated	by	running	the	client,	assuming	that	a	small	testfile.txt	indeed
exists	in	the	current	directory	and	that	it	has	a	few	words	of	wisdom	inside:

root@erlerobot:~/Python_files#	python	rpyc_client.py

Noisy:	'Simple\n'

Noisy:	'is\n'

Noisy:	'better\n'

Noisy:	'than\n'

Noisy:	'complex.\n'

The	number	of	lines	in	the	file	was	5

Equally	startling	here	are	two	facts.	First,	the	server	was	able	to	iterate	over	multiple	results	from		readlines()	,	even
though	this	required	the	repeated	invocation	of	file-object	logic	that	lived	on	the	client.	Second,	the	server	didn’t	somehow

An	RPyC	Example

http://rpyc.wikidot.com/


copy	the		noisy()		function’s	code	object	so	it	could	run	the	function	directly;	instead,	it	repeatedly	invoked	the	function,	with
the	correct	argument	each	time,	on	the	client	side	of	the	connection.

RPyC	takes	exactly	the	opposite	approach	from	the	other	RPC	mechanisms	we	have	looked	at.	Whereas	all	of	the	other
techniques	try	to	serialize	and	send	as	much	information	across	the	network	as	possible,	and	then	leave	the	remote	code
to	either	succeed	or	fail	with	no	further	information	from	the	client,	the	RPyC	scheme	only	serializes	completely	immutable
items	such	as	Python	integers,	floats,	strings,	and	tuples.	For	everything	else,	it	passes	across	an	object	name	that	lets	the
remote	side	reach	back	into	the	client	to	access	attributes	and	invoke	methods	on	those	live	objects.



Be	willing	to	explore	alternative	transmission	mechanisms	for	your	work	with	RPC	services.	The	classes	provided	in	the
Python	Standard	Library	for	XML-RPC,	for	example,	are	not	even	used	by	many	Python	programmers	who	need	to	speak
that	protocol.

There	are	three	useful	ways	that	you	can	look	into	moving	beyond	overly	simple	example	code	that	makes	it	look	as	though
you	have	to	bring	up	a	new	web	server	for	every	RPC	service	you	want	to	make	available	from	a	particular	site.

First,	look	into	whether	you	can	use	the	pluggability	of	WSGI	to	let	you	install	an	RPC	service	that	you	have	incorporated
into	a	larger	web	project	that	you	are	deploying.	Implementing	both	your	normal	web	application	and	your	RPC	service	as
WSGI	servers	beneath	a	filter	that	checks	the	incoming	URL	enables	you	to	allow	both	services	to	live	at	the	same
hostname	and	port	number.

Second,	instead	of	using	a	dedicated	RPC	library,	you	may	find	that	your	web	framework	of	choice	already	knows	how	to
host	an	XML-RPC,	JSON-RPC,	or	some	other	flavor	of	RPC	call.

Third,	you	might	want	to	try	sending	RPC	messages	over	an	alternate	transport	that	does	a	better	job	than	the	protocol’s
native	transport	of	routing	the	calls	to	servers	that	are	ready	to	handle	them.	Message	queues	are	often	an	excellent
vehicle	for	RPC	calls	when	you	want	a	whole	rack	of	servers	to	stay	busy	sharing	the	load	of	incoming	requests.

Of	course,	there	is	one	reality	of	life	on	the	network	that	RPC	services	cannot	easily	hide:	the	network	can	be	down	or	even
go	down	in	the	middle	of	a	particular	RPC	call.	You	will	find	that	most	RPC	mechanisms	simply	raise	an	exception	if	a	call	is
interrupted	and	does	not	complete.	Note	that	an	error,	unfortunately,	is	no	guarantee	that	the	remote	end	did	not	process
the	request	—	maybe	it	actually	did	finish	processing	it,	but	then	the	network	went	down	right	as	the	last	packet	of	the	reply
was	being	sent.	In	this	case,	your	call	would	have	technically	happened	and	the	data	would	have	been	successfully	added
to	the	database	or	written	to	a	file	or	whatever	the	RPC	call	does.	However,	you	will	think	the	call	failed	and	want	to	try	it
again	—	possibly	storing	the	same	data	twice.

It	is	possible	you	will	want	both	features:	a	compact	and	efficient	binary	format	and	support	across	several	different
languages.	Here	are	a	few	options:

Some	JSON-RPC	libraries	support	the	BSON	protocol,	which	provides	a	tight	binary	transport	format	and	also	an
expanded	range	of	data	types	beyond	those	supported	by	JSON.

The	Apache	Foundation	is	now	incubating	Thrift,	an	RPC	system	developed	several	years	ago	at	Facebook	and
released	as	open	source.

Google	Protocol	Buffers	are	popular	with	many	programmers,	but	strictly	speaking	they	are	not	a	full	RPC	system;
instead,	they	are	a	binary	data	serialization	protocol.

RPC,	Web	Frameworks,	Message	Queues

Recovering	From	Network	Errors

Binary	Options:	Thrift	and	Protocol	Buffers
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