Automated Test for HVB Assemblies

Software: Bronson Edralin
Hardware: James Bynes
Mentor: Gerard Visser

Date: 12/02/14

Abstract: The following is the documentation for the automated test of the High
Voltage Board Assemblies, which will be part of the Belle Il Detector subsystem for
the KEK Particle Accelerator in Japan.

1 Introduction

The following is the documentation for the automated test of the High Voltage Board
Assemblies, which will be part of the Belle II Detector subsystem for the KEK
Particle Accelerator in Japan.

The first sections are about installation of packages, how to allow remote
connection to PostgreSQL database, Datetime, saving files onto remote server using
NFS mount and Software.

Everything should be installed on the RPi so please skip all the way to the
Software section to read the high level description of the software and then
read the Simple Instructions section.

2 Installation of packages

2.1 PostgreSQL
You will need to install PostgreSQL on the client and on the server in order for you
to use the Application Programming Interface (API) called Psycopg?2.

Download and install from this link:
e http://www.enterprisedb.com/products-services-training /pgdownload#osx

2.2 Psycopg2
Install from a package

* Linux
o sudo apt-get install python-psycopg2
* MacOSX

o fink install psycopg2-py27
o sudo port install py27-psycopg?2
* Microsoft Windows
o Jason Erickson maintains a packaged Windows port of Psycopg2 with
installation executable. Download. Double click and you're done.
o http://www.stickpeople.com/projects/python/win-psycopg/
Using a Python package manager
* pip install psycopg?2
If you get error due to Anaconda
* Try searching for the package with Binstar:
o C:\Anaconda>binstar search -t conda psycopg2
* May need to install Binstar command line client with
o conda install binstar
* Command line search doesn’t show “Platforms”, so you will likely want to use
web search:
o https://binstar.org/search?q=psycopg2

* Follow link for package name that matches your platform. Click on link and
next page will show the conda install command for that Binstar package. For
example:

o conda install -c https://conda.binstar.org/alefnula psycopg?2

3 PostgreSQL: Popular Command-Line Cmds

Note: < > means you have to insert something there. Do not include brackets < >.

On Unix Command-Line:
1. creatdb <database_name>
2. createuser -P -s —e <username>
a. This will create a superuser with the assigned username
b. Please see http://www.postgresql.org/docs/9.1/static/app-
createuser.html
3. dropuser <username>
a. This will remove an existing PostgreSQL user. Only superusers and
users with CREATEROLE privilege can remove PostgreSQL users.
4. psql <database_name>
a. You will enter into postgreSQL interactive terminal called psql for that
particular database called <database_name>.

On PSQL (PostgreSQL Interactive Terminal), do not forget semicolons:
1. \I
a. Lists all available databases, then exit. Similar to \list
2. \d
a. Lists all relational tables in database

b. irinsoneantobot ~ § psal bellerr
psql (9.1.13)
Type "help" for help.

bellelI=# \d
List of relations
Schema | Name | Type | Owner

public | hvb_rawtest | table | postgres
(1 row)

belleII=# \d hvb_rawtest
Table "public.hvb_rawtest"

Column | Type | Modifiers
datetime | timestamp without time zone | not null
serialnumber | character varying | not null
boardname | character varying | not null
channel | integer | not null
iseg_v | integer | not null
loadrelayl | integer | not null
loadrelay2 | integer | not null
k | integer | not null
mcpat | integer | not null
mcpab | integer | not null
mcpbt | integer | not null
mcpbb | integer | not null
result_v | double precision | not null

Indexes:

"hvb_rawtest_prim_key" PRIMARY KEY, btree (datetime, serialnumber, boardname, ch
annel, iseg_v, loadrelayl, loadrelay2, k, mcpat, mcpab, mcpbt, mcpbb, result_v)

3. ALTER USER <username> WITH PASSWORD ‘<pass>’;
a. Ex. ALTER USER joe WITH PASSWORD ‘pass’
4. DROP USER <username>;
a. Ex. DROP USER joe;
5. SELECT * FROM <table_name>
a. This will perform a search query on the table.
b. Ex. SELECT * FROM hvb_rawtest
C.

® 00 £ HuNtAh — bronson@autobot: ~ — ssh — 162x68
belleII=# SELECT * from hvb_rawtest;

datetime | serialnumber | boardname | channel iseg_v loadrelayl loadrelay2

2014-11-15 02:27:47
2014-11-15 02:27:48 12346642
2014-11-15 02:27:49 12346642

| 12346642
|
|
2014-11-15 02:27:49 | 12346642
|
|

HVB_Board_Assembly |
HVB_Board_Assembly |

HVB_Board_Assembly |

| |
| 1000 |
| 1000 |
| 1000 |
HVB_Board_Assembly | | |
HVB_Board_Assembly | | |
HVB_Board_Assembly | | |

1000
1000
1000

2014-11-15 02:27:50 12346642
2014-11-15 02:27:51 12346642

OrHreee® | X

|
|
|
|
|
|
|

e
oo e

Hoeo e e®

4 Allow Remote Connection to PostgreSQL Database

In order to get this working, you will have to create a ssh tunnel by using port
forwarding. You will also need to edit the postgress’s config files (postgresql.conf
and pg_hba.conf) to allow it to listen or allow you to connect to it remotely. The
following steps will teach you this!

4.1 Port Forwarding
A solid tutorial may be seen at:
* http://www.noah.org/wiki/SSH_tunnel
* https://chamibuddhika.wordpress.com/2012/03/21/ssh-tunnelling-
explained/

4.2 How to allow Remote Connection to PostgreSQL Database using psql
When you install PostgreSQL, by default connection to the database using TCP/IP is
not allowed.

When you try to connect from a client to a remote PostgreSQL database using psql
command, you might get “psql: could not connect to server: Connection refused”
error message.

In the following example, from a client machine, we are trying to connect to a
PostgreSQL database that is running on 192.168.102.1 server. As you see from the
output, it clearly says that the remote PostgreSQL database is not accepting
connection

psql -U postgres -h 192.168.102.1
psql: could not connect to server: Connection refused
Is the server running on host "192.168.102.1" and accepting
TCP/IP connections on port 54327

To enable TCP/IP connection for PostgreSQL database, you need to follow the two
steps mentioned below.

4.2.1 Modify pg_hba.conf to add Client Authentication Record
You can find the file by using:
* find / -type f -name "*.conf"

On my RPi it was found at /etc/postgresql/9.1/main/pg_hba.conf but it may be
found in /var/lib/pgsql/data/pg_hba.conf

On the PostgreSQL database server, by default, you'll notice the following records
towards the end of the /var/lib/pgsql/data/pg_hba.conf. As indicated below, it
accepts connections only from the localhost.

IPv4 local connections: host all all 127.0.0.1/32 trust

IPv6 local connections: host all all »1/128 ident

Add the following line to the pg_hba.conf server. This will allow connection from
“192.168.101.20" ip-address (This is the client in our example). If you want to allow
connection from multiple client machines on a specific network, specify the network
address here in the CIDR-address format.

#vi /var/lib/pgsql/data/pg_hba.conf
host all all 192.168.101.20/24 trust

The following are various client authentication record format supported in the

pg_hba.conf file. We are using the #2 format from this list.

* local database user authentication-method [authentication-option]

* host database user CIDR-address authentication-method [authentication-option]

* hostssl database user CIDR-address authentication-method [authentication-
option]

* hostnossl database user CIDR-address authentication-method [authentication-
option]

Instead of “CIDR-address” format, you can also specify the ip-address and the

network mask in separate fields using the following record format.

* host database user IP-address IP-mask authentication-method [authentication-
option]

* hostssl database user [P-address IP-mask authentication-method
[authentication-option]

* hostnossl database user IP-address IP-mask authentication-method
[authentication-option]

4.2.2 Change Listen Address in postgresql.conf
On the PostgreSQL database server, by default, the listen address will be localhost in
the postgresql.conf file as shown below.

grep listen /var/lib/pgsql/data/postgresql.conf

listen_addresses = 'localhost’

Modify this line and give *. If you have multiple interfaces on the server, you can also
specify a specific interface to be listened.

grep listen /var/lib/pgsql/data/postgresql.conf

listen_addresses = '*'

4.2.3 Test Remote Connection
Now, login to the client machine 192.168.101.20, and perform the psql remote
connection to the PostgreSQL database server (192.168.102.1) as shown below.
This time, it should work.
psql -U postgres -h 192.168.102.1
Welcome to psql 8.1.11 (server 8.4.18), the PostgreSQL interactive terminal.
postgres=#

Also, if you don’t want to specify the hostname in the command line parameter
every time, you can setup the remote PostgreSQL database ip-address in PGHOST
environment variable name as shown below.

export PGHOST=192.168.102.1

psql -U postgres

Welcome to psql 8.1.11 (server 8.4.18), the PostgreSQL interactive terminal.

postgres=#

5 Datetime

5.1 Keep Datetime Current

The Network Time Protocol (NTP) is a networking protocol for clock
synchronization between computer systems over packet-switched, variable-latency
data networks. NTP is intended to synchronize all participating computers to within
a few milliseconds of Coordinated Universal Time (UTC). You can view the settings
in the /etc/ntp.conf config file. As long as the Raspberry Pi has Internet access, the
Datetime should remain current.

In Indiana University’s network, the Raspberry Pi (RPi) did not have Internet access
so this became a problem for the timestamp. In efforts to keep the scripts scalable,
we did not want to do something funky for the timestamp within the script. Instead,
we will synchronize the RPi’s Datetime with Gerard’s server at
daqtestl.iucf.indiana.edu (Private IP: 192.168.1.2). On command line, it would be a
simple one-liner:

* sudo date --set="$(ssh username@hostIP date)”

* See SS for example:

© ® O O 4} HuNtAh — bronson@indiana: ~/python/code — ssh — 81x21 e
bronson@indiana ~/python/code $ date

Wed Nov 26 13:59:20 CST 2014

bronson@indiana ~/python/code $ sudo date --set="$(ssh bronson@192.168.1.2 date)"
bronson@192.168.1.2's password:

[sudo] password for bronson:

Tue Dec 2 13:35:05 CST 2014

bronson@indiana ~/python/code $ date

Tue Dec 2 13:35:25 CST 2014

bronson@indiana ~/python/code $ I:I

To make this automated, I wrote a script called sync_datetime.py, which you will see
in the Software section. It's a simple PYTHON script that will basically do what you
would do in command line.

5.2 Coordinated Universal Time (UTC)
Each result from the automated tests will be time stamped. For consistency reasons,
UTC will be used as the standard timestamp.

In order to change the localtime of the RPi to UTC time zone, you must do this in the
command line, which basically creates a softlink to the appropriate time zone:
* In-sf /usr/share/zoneinfo/UTC /etc/localtime

6 Saving Files onto Remote Server

6.1 Description

Network File System (NFS) is a distributed file system protocol originally developed
by Sun Microsystems in 1984, allowing a user on a client computer to access files
over a network much like local storage is accessed. NFS mounts work by sharing a
directory between several virtual servers. This has the advantage of saving disk
space, as the home directory is only kept on one virtual private server, and others
can connect to it over the network. When setting up mounts, NFS is most effective
for permanent fixtures that should always be successful. The Raspberry Pi (RPi) has
very little space so the need for NFS mount was clear.

6.2 Setup
An NFS mount is set up between at least two virtual servers. The machine hosting
the shared network is called the server while the ones connecting to it are called

clients. In our case, the server is daqtestl.iucf.indiana.edu and the client is the
Raspberry Pi that is on the same network.

SERVER: daqtestl.iucf.indiana.edu
* Private IP: 192.168.1.2
CLIENT: Indiana Raspberry Pi

* Private [P: 192.168.1.103

6.3 Setting it Up
You will need to have these settings to make NFS mount work
1. SSHinto RPi (192.168.1.103)
2. In RPi’'s command line type:

a. cat /etc/fstab newline > newfstab

b. sudo mv /home/pi/newfstab /etc/fstab

c. cat /etc/fstab

i - .

® O O /5 HuNtAh — bronson@indiana: ~ — ssh — 71x9 o
bronson@indiana ~ $ cat /etc/fstab

proc /proc proc defaults %] %]
/dev/mmcblk®p5 /boot vfat defaults 0 2
/dev/mmcb1lk@p6 / extd defaults,noatime @ 1

a swapfile is not a swap partition, so no using swapon|off from here
on, use dphys-swapfile swapl[on|off] for that

192.168.1.2: /home/gvisser/BellelI/hvbtest/export /home/pi/daqtestl nfs
rsize=8192,wsize=8192, timeo=14, intr

bronson@indiana ~ $

d. sudo mount /home/pi/daqtestl
i. (RESULT:
mount.nfs: rpc.statd is not running but is required for remote
locking
mount.nfs: Either use ‘-0 nolock’ to keep locks local, or start statd
mount.nfs: an incorrect mount option was specified
e. cd /home/pi/daqtestl
f. Is-altr

On /home/pi/daqtestl, the directory for is at gvisser@dagqtest1.iucf.indiana.edu
:/home/gvisser/Bellell/hvb/export and permissions are rwx for everyone. Export is
defined in /etc/exports as /home/gvisser/Bellell /hvbtest/export
192.168.1.103(rw,sync).

6.4 Set auto-Mount for NFS on Reboot

On this particular Raspberry Pi (RPi), the Operating System (0S) used is called
Raspbian. This flavor of linux is slightly different from what people are used to. In
order to have the RPi automatically perform the mount on boot, you must edit the
/etc/rclocal file and add this line to the end of the file:

* mount -o nolock /home/pi/daqtestl

7 Software

The following PYTHON scripts were written to automate the testing of the HVB
Assemblies: main.py, sync_datetime.py, hvb_assembly_autotest.py, hvb_gpio.py,
keithley_2010.py, iseg_ SHQ226L.py, link.py and hvb_db_utility.py.

main.py
sync_datetime.py hvb_assembly_test.py hvb_db_utility.py
hvb_gpio.py keithley_2010.py iseg_ SHQ226L.py
link.py link.py

7.1 main.py
This script is responsible for putting everything together. In this file you can edit
the important setting parameters for the automated test of the HVB Assemblies.

Default setting parameters include:

1) MULTIMETER_ADDR =*“192.168.1.102”
2) HV_SUPPLY_ADDR = “RS232”

3) ISEG_VOLTAGE =“1000"

4) ISEG_RAMP_SPEED = “10“

5) TIME_PERIOD = “2”
6) PURPOSE = “HVB_RawTest”
7) LOC_DIR_FOR_STORING_CSV = “/home/pi/daqtest1/”

If you want to start the automated test, you must type this in your command line:
* sudo python main.py

A command prompt will pop up with description of the test and setting parameters.
It will prompt you for three things:

1. “Is the current DateTime **DATETIME** correct? (yes/no): “

2. “Please enter serial number of board: ”

3. “Would you like to upload csv file **CSV_FILENAME** to database? (yes/no): “

7.2 sync_datetime.py

There is only one function we use in this script and it’s
update_datetime(USERNAME,HOST). This function is used to synchronize the time
on the RPi with another server’s time.

7.3 hvb_assembly_test.py
There is only one function we use in this script and it’s:
* hvb_assembly_test(multimeter_addr,hv_supply_addr,SERIAL_NUMBER,ISEG_
VOLTAGE,ISEG_RAMP_SPEED, TIME_PERIOD,PURPOSE,LOC)

This script will basically take 20 measurements per channel. These 20
measurements consist of all the combinations for 2 load relays (00, 01, 10, 11) for
each K, MCPAT, MCPAB, MCPBT, and MCPBB (00001, 00010, 00100, 01000, 10000).
There are a total of 8 channels, which will give you 160 measurements ((8 chan) *
(20 meas) = 160 meas).

7.4 hvb_db_utility.py
This script is written to handle the uploading of data onto a postgreSQL database. A
class is built inside this and it’s called DatabaseUtility. To create an object and use
this class, you must do:

* db = hvb_db_utility.DatabaseUtility(host,port,dbname,user,password)

Two functions in the DatabaseUrtility class are:
* create_table(tableName)
* insert_data_into_database(insertFilename, tableName)

One really good feature in this script is that it will create an error log file and I
named it HVB_ASSEMBLY_DB_log. This feature is really important because if an
error occurs, you can view this error and see exactly where the error occurred by
looking at the log file. Then you can debug and fix it.

10

7.5 hvb_gpio.py

This handles the General Purpose Input Output (GPIO) pins. We are using certain
pins as digital outputs to control the relays on the board. Pending on the outputs we
can select each channel of the hvb assembly by selecting each board of the hvb test
boards that were fabricated to test the hvb assemblies.

Six functions stand out in this script:
1. mux_relays(C, B, A)
a. This is used when we want to select K, MCPAT, MCPAB, MCPBT and
MCPBB (00001, 00010, 00100, 01000, 10000).
. board_select(C, B, A)
a. This is used when we want to select each channel of the hvb board
assembly.
3. load_relays(B,A)

a. This is used when we want to go through all the combinations of the

load relays (00, 01, 10, 11).
4. invert_binary(state)

a. This was needed for some of the GPIO pins, because we used an
inverted decoder.

5. change_states(channel_addr, load_state, mux_state)

a. This will ensure the right GPIO pins are turned on and off to control
the relays on the hvb test board. We used discontinuity tests to
double-check our work.

6. reset_all_gpio()
a. This will turn all GPIO pins low, which are the default values.

N

7.6 keithley_2010.py and iseg_SHQ226L.py

These are basically libraries that hold all the commands to control the instruments.
You can practically call these drivers for the instruments. The classes were built
with the intent to make it easier when you write the automation test script. These
libraries are highly scalable. Whenever you need to use one of these instruments,
you can use these built libraries, which use the object-oriented concept of Getters
and Setters.

Example of using it:

* from keithley_2010 import *
keith=Keithley_2010(“192.168.1.102",1234)
id=Kkeith.identification()
print id
keith.configure = “VOLTAGE”
keith.configure_voltage = “DC”
func,acdc = keith.configure_voltage

11

7.7 link.py

This script handles all the drivers for the RS232 to USB and Ethernet connection.
This script is highly scalable whenever you need to create a link so you can
communicate with instruments.

There are 3 classes used in this script:
1. Ethernet
a. This uses a software package that you have to install called vxi11. This
works really well for only certain instruments if it is supported from
what it seems.
2. Ethernet_Controller
a. This worked really well by using PYTHON'’s socket module. We had to
use a PROLOGIX GPIB-ETHERNET CONTROLLER so we could assign
an P to the Keithley2010 Multimeter and have it run on the network.
Then we can control the Keithley2010 Multimeter by using the
Ethernet_Controller class in the link.py script.
3. RS232
a. This will handle any RS232 to USB connection.

All classes have the same following functions:
1. cmd(cmd)
a. You use this function when you want to set something by giving the
instrument a command.
2. ask(cmd)
a. You use this function when you require some feedback. Example,
maybe you want to know what voltage is being read from the Keithley
2010 Multimeter.
3. ask_print(cmd)
a. This is similar to ask(cmd) but the result will be displayed on screen.
This may be good for debugging purposes.

8 Simple Instructions

On the Indiana University’s network, there is a server called daqtest1 with public IP
(daqgtestl.iucf.indiana.edu) and private IP (192.168.1.2). Underneath that server is
the Raspberry Pi (RPi) with no access to the Internet and its private IP is
192.168.1.103. In order to upload results from csv file to PostgreSQL database on
IDLab’s server with public IP (idlab.phys.hawaii.edu), you have to enable port
forwarding. IDLab’s server is based at University of Hawaii.

Do the following on command line before you run the main.py script. This basically
creates a pipe to upload to PostgreSQL database on port 5432:
* ssh-L 5432:localhost:5432 bronson@192.168.1.2
o You will need to type the password for the username
* ssh-L 5432:localhost:5432 postgres@idlab.phys.hawaii.edu

12

o You will need to type the password for the username

Now, all you have to do is type:
* sudo python main.py

It will prompt you with straightforward questions. Just follow along and the results
will be on their way!

13

