Reactor On/Off Monitoring with a Prototype of Plastic Anti-neutrino Detector Array (PANDA)

Yasuhiro KurodaA, Yo KatoA, Nozomu TomitaA, Ryoko Nakata, Shugo Oguri, Chikara ItoB, Yoshizumi InoueC, Makoto MinowaA,D

Department of Physics, School of Science University of TokyoA
Japan Atomic Energy AgencyB
International Center of Elementary Particle Physics, University of TokyoC
RSCEU, University of TokyoD
Neutrino Reactor Monitoring

• IAEA reactor safeguard regime
 – IAEA recommends investigation of near-field antineutrino monitoring capabilities

• IAEA : Medium term goal
 – Above ground deployment
 – Provide fully independent measurements of fissile content, through the use of spectral information
 – Reduced detector footprint

• Our Efforts
 – Mobile above-ground detector
 – Segmented detector
PANDA

Plastic Anti-Neutrino Detector Array

- The proposed final detector consists of 10x10 modules
- The target mass: about 1 ton
- PANDA detector is designed to be loaded and operated on a van.
• 10cm × 10cm × 100cm plastic scintillator
 – Easy to transport
 – Non flammable
• Wrapped in gadolinium doped sheets (Gd:4.9mg/cm²)
 – Technique to create clear and colorless Gd doped plastic scintillator is less established
Detection Principle

- Inverse beta decay
 \[\bar{\nu}_e + p \rightarrow e^+ + n \]

- Prompt event
 - Energy deposit of \(e^+ \)
 - \(e^+ + e^- \rightarrow 2\gamma \)

- Delayed Event
 - An 8 MeV gamma-ray cascade following neutron capture on the gadolinium

- Delayed coincidence method
First Prototype: Lesser PANDA

2010 → 2011

- 16 modules (4x4)
- Background measurement at Hamaoka Nuclear Power Plant Unit3
Second Prototype: PANDA36

2011 → 2012

- 36 modules (6x6)
- Our first reactor on/off measurement by neutrino is done by PANDA36
Data Acquisition

- 72ch PMT charge data
- Event timing information (time stamp)
Remote Monitoring for unmanned operation

- Possible defects are checked through DoCoMo cellular phone network and the Internet

Nuclear Power Plant

- DAQ control Server
- Data storage (HDD)
- Web server
- Sending alert mails
- Network connection confirmation

- Simple DAQ control (for emergency)
- Network connection confirmation

- Digest
- Alert Mails

Univ. Tokyo Hongo Campus

Simplified spectrum

Temperature / humidity monitoring

Alert mails

- Thermo-hygrometer
 Connected to LAN
- Web Camera
- DAQ
- Monitoring Server
- Router
- DoCoMo terminal with Global IP

Possible defects are checked through DoCoMo cellular phone network and the Internet.
Typical cosmic muon event

Energy deposit

Position

Stage 6

Stage 5

Stage 4

Stage 3

Stage 2

Stage 1

October 4, 2012

AAP2012 - the University of Hawaii, Manoa Campus
Loading on a van

- PANDA36 was loaded on a 2-ton van
Ohi Power Station

- PANDA36 was moved to Ohi Power Station
Ohi Power Station : Unit2

<table>
<thead>
<tr>
<th></th>
<th>Start</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor on</td>
<td>Nov. 18, 2011</td>
<td>Dec. 16, 2011</td>
</tr>
</tbody>
</table>
Backgrounds

• Accidental Backgrounds
 – Natural radioactivity (gammas)
 – Thermal neutrons

• Correlated Backgrounds
 – Fast neutrons (proton recoil) ➔ extremely important
 – Double neutron capture
 – Long-lived cosmic-ray activation product

We tried to reject these backgrounds by event selections.
prompt event

$3\text{MeV} \leq E_{\text{total}} \leq 6\text{MeV}$

$E_{\text{2nd}} \leq 520\text{keV}$ (annihilation gamma)

E_{1st} module must be in inside 16 modules (fiducial cut)

Time window: 8-150μsec

delayed event

$3\text{MeV} \leq E_{\text{total}} \leq 8\text{MeV}$

$E_{\text{3rd}}/E_{\text{total}} \leq (E_{\text{1st}}/E_{\text{total}} - 0.5)/5$

Two or more modules in inside 16 modules deposite the energy of $\geq 150\text{keV}$ (software trigger)

There is no event with $E_{\text{total}} > 8\text{MeV}$ within 250μs before the delayed event (muon veto)
Event Selection - 1 (neutrino)

prompt event

3MeV ≤ E_{total} ≤ 6MeV

$E_{2\text{nd}}$ ≤ 520keV (annihilation gamma)

$E_{1\text{st}}$ module must be in inside 16 modules (fiducial cut)

Time window: 8-150μsec

delayed event

3MeV ≤ E_{total} ≤ 8MeV

$E_{3\text{rd}}/E_{\text{total}}$ ≤ ($E_{1\text{st}}/E_{\text{total}}$ - 0.5)/5

Two or more modules in inside 16 modules deposite the energy of ≥ 150keV (software trigger)

There is no event with E_{total} > 8MeV within 250μs before the delayed event (muon veto)
Event Selection - 1 (neutrino)

Prompt Event

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3 \text{ MeV} \leq E_{\text{total}} \leq 6 \text{ MeV}$</td>
<td></td>
</tr>
<tr>
<td>$E_{2nd} \leq 520 \text{ keV}$ (annihilation gamma)</td>
<td></td>
</tr>
<tr>
<td>E_{1st} module must be in inside 16 modules (fiducial cut)</td>
<td></td>
</tr>
</tbody>
</table>

Time window: 8-150μsec

Delayed Event

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3 \text{ MeV} \leq E_{\text{total}} \leq 8 \text{ MeV}$</td>
<td></td>
</tr>
<tr>
<td>$E_{3rd}/E_{\text{total}} \leq (E_{1st}/E_{\text{total}} - 0.5)/5$</td>
<td></td>
</tr>
</tbody>
</table>

Two or more modules in inside 16 modules deposite the energy of $\geq 150 \text{ keV}$ (software trigger)

There is no event with $E_{\text{total}} > 8 \text{ MeV}$ within 250μs before the delayed event (muon veto)
Event Selection - 1 (neutrino)

Prompt Event
- \(3\text{MeV} \leq E_{\text{total}} \leq 6\text{MeV}\)
- \(E_{2\text{nd}} \leq 520\text{keV} \) \(\text{(annihilation gamma)}\)
- \(E_{1\text{st}}\) module must be inside 16 modules \(\text{(fiducial cut)}\)
- Time window: \(8-150\mu\text{sec}\)

Delayed Event
- \(3\text{MeV} \leq E_{\text{total}} \leq 8\text{MeV}\)
- \(E_{3\text{rd}}/E_{\text{total}} \leq (E_{1\text{st}}/E_{\text{total}} - 0.5)/5\)

Two or more modules in inside 16 modules deposite the energy of \(\geq 150\text{keV} \) \(\text{(software trigger)}\)

There is no event with \(E_{\text{total}} > 8\text{MeV} \) within \(250\mu\text{sec}\) before the delayed event \(\text{(muon veto)}\)

Detection efficiency: \((3.15 \pm 0.93)\%\)

Predicted anti-neutrino rate:
- \(18.1 \pm 6.5\) events/day

Observed event rate difference:
- \(38.4 \pm 8.4\) events/day \(\text{(large?)}\)

Graph:
- *Preliminary*
Event Selection - 2 (neutron)

Prompt event

3MeV ≤ E_{total} ≤ 6MeV

E_{2nd} ≥ 700keV

E_{1st} module must be in inside 16 modules (fiducial cut)

Time window: 8-50μsec

Delayed event

3MeV ≤ E_{total} ≤ 8MeV

E_{2nd}/E_{total} ≤ (E_{1st}/E_{total} - 0.5)/5

Two or more modules in inside 16 modules deposite the energy of ≥ 150keV (software trigger)

There is no event with E_{total} > 8MeV within 250μs before the delayed event (muon veto)

- Selection intended to select fast neutron events
- E_{2nd} condition is changed to reject the anti-neutrino events
Event Selection - 2 (neutron)

prompt event

- $3 \text{MeV} \leq E_{\text{total}} \leq 6 \text{MeV}$
- $E_{2\text{nd}} \geq 700 \text{keV}$
- $E_{1\text{st}}$ module must be in inside 16 modules (fiducial cut)
- Time window: 8-50μsec

delayed event

- $3 \text{MeV} \leq E_{\text{total}} \leq 8 \text{MeV}$
- $E_{3\text{rd}}/E_{\text{total}} \leq (E_{1\text{st}}/E_{\text{total}}-0.5)/5$

Two or more modules in inside 16 modules deposite the energy of $\geq 150\text{keV}$ (software trigger)

There is no event with $E_{\text{total}} > 8 \text{MeV}$ within 250μs before the delayed event (muon veto)

Neutrino detection efficiency:

$(0.271 \pm 0.93)\% \sim 0\%$

Observed event rate change:

31.4 ± 8.5 events/day
Change of the fast neutron flux

• Why did the fast neutron flux change?
 – It’s not so clear...
 But we speculated that it could be explained by changes in environment.
 – Three water tanks (used for scheduled inspection of the reactor)
 – Water could shield the fast neutrons
Change of the neutrino flux

Simultaneous equation to evaluate the change of the neutrino event rate

\[
x + y = 38.7 \pm 8.4 \quad \text{(selection-1)}
\]

\[
\frac{\epsilon_{\nu,s2}}{\epsilon_{\nu,s1}} x + \frac{\epsilon_{n,s2}}{\epsilon_{n,s1}} y = 31.4 \pm 8.5 \quad \text{(selection-2)}
\]

\[x \approx 0\]

\[x: \text{the contribution of the neutrino rate by selection-1}\]

\[y: \text{the contribution of the fast-neutron rate difference by selection-1}\]

\[
\frac{\epsilon_{\nu,s2}}{\epsilon_{\nu,s1}}, \frac{\epsilon_{n,s2}}{\epsilon_{n,s1}} \quad \text{: the ratio of the neutrino and neutron detection efficiencies (0.086 \pm 0.026 and 1.86 \pm 0.68 respectively)}.
\]

\[x = 22.9 \pm 11.7 \quad \text{(expected: } 18.1 \pm 6.5 \text{ events/day)}\]
Next Step

• Unexpectedly large change in fast-neutron flux

• It could be subtracted using the second selection. But the subtraction increases the error.

 → Water Shielding? (at the expense of small size and light weight)

• 8x8=64 prototype
 – Designing new structure which includes shieldings
 – Estimating expected performance of next prototype
Summary

- 6x6 prototype of PANDA (PANDA36) was built
- It was loaded on a van and deployed above ground at Ohi Power Station Unit 2 (3.4GW_{th})
- Fully unmanned operation was demonstrated
- Detected neutrino event rate was 22.9±11.7 events/day (expected: 18.5±6.5 events/day)
- Next upgrade to 8x8 is on going. It may have neutron shielding
Backups
Gadolinium doped sheet

- Gd density: 4.9mg/cm²
- 60% of thermal neutrons are captured by one layer of the sheet (84% by two layers)
VME Modules

<table>
<thead>
<tr>
<th>Module</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discriminator</td>
<td>CAEN V895</td>
</tr>
<tr>
<td></td>
<td>16 Channel Leading Edge Discriminator</td>
</tr>
<tr>
<td>FPGA module</td>
<td>CAEN V1495</td>
</tr>
<tr>
<td></td>
<td>General Purpose VME Board</td>
</tr>
<tr>
<td></td>
<td>(It has user customizable FPGA Unit)</td>
</tr>
<tr>
<td>Multi-event charge ADC</td>
<td>CAEN V792</td>
</tr>
<tr>
<td></td>
<td>32 Channel Multi-event QDC</td>
</tr>
</tbody>
</table>
Cosmogenic Radioisotopes

- ^9Li, ^8He
 - Decay time constant:
 - ^9Li: 178 ms
 - ^8He: 119 ms

- β-decay isotopes with a delayed neutron emission from the β decayed daughter

- This background is negligible with a small detector. And it is strongly rejected by prompt event selection criteria $E_{2nd} \leq 520\text{keV}$ taking advantage of segmented design.
Double neutron capture

- Double neutron capture
 - It is strongly rejected by prompt event selection criteria
 \[E_{2\text{nd}} \leq 520\text{keV} \]
 - taking advantage of segmented design

Selection: prompt - E_{total}
Selection: prompt – fiducial cut

Position of E1st

simulation(prompt)

measurement(prompt)

row
column

-1 0 1 2 3 4 5 6

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Selection: delayed - E_{total}
Accidental Events

- Observed accidental background rates using other time windows
 - Selection-1: $8\mu s + 1\text{ms} \leq t \leq 150\mu s + 1\text{ms}$
 - Selection-2: $8\mu s + 1\text{ms} \leq t \leq 50\mu s + 1\text{ms}$

Preliminary