The shape of EOM-pulse-height distributions

Christoph Ley and Christopher H. Wiebusch

January 27, 1994

Dumand Internal Report

DIR 4-94

Contents
1 Introduction

2 The amplitude function
21 Thelinear region . . . . . . . . . . . . . 0 e e
2.2 The logarithmic regio

=

.............................

3 Fit to the distributions
4 Conclusions

References

14

14



1 INTRODUCTION y)

Abstract

The Amplitude-function was designed as an easy function to describe the com-
plex shape of pulse-width distribution as they are produced by EOM’s for DU-
MAND Il . This function is introduced and fits to calibration data sets are shown.
The results of the EOM-calibrations are given. This parameterisation is not as
good as a simple “straight—forward” parameterisation for only Mean and RMS, but
provides details of the complex shape. This parameterisation may prove useful
especially for simulation purposes.

1 Introduction

The European Optical Module (EOM [1}) is based on the large area phototube Philips
XP2600 [2]. This so called ,Smart PMT* provides an excellent pulse-height resolution.
Thus the read—out electronic was designed based on this characteristics. It is a charge
integrating circuit producing a single ECL-pulse. It's leading edge is strongly correlated
the start of the PMT-pulse and its width gives the integrated charge.

In the following pulse-height will be used for the number of photo—electrons (PE-space).
This is not understood as with the actual pulse-amplitude (measured in Volt) of the PMT-
signals. The word pulse—energy will be used in the following synonym with pulse-height.
The integrated charge of a PMT—pulse, as it is measured by the read-out electronics
(DMQT) is closely related to the pulse-height. For the EOM the measured chare is
equivalent to the actual pulse-widths of the signals transmitted to the String Controller.
Therefore the unit ns is appropriate for both, pulse—charge and pulse-width. In the low-
PE-region the pulse—charge is also equivalent to the pulse-energy, but not for higher
PE.

Figure 1 shows pulse-width distributions for EOM #26. For each distribution the PMT
was illuminated with a fast green LED set to constant intensity. From the top-left (A)
to the bottom-right (H) the intensity of the LED rises. The data was taken during
calibrations at Kiel in July 1993.

At low light intensities, one can easily distinguish the peaks of 1PE, 2PE and more PE
signals in the total distribution (e.g.fig 1-C). These peaks are linearly spaced.

For higher intensities ((E) — (H)), the energy scale changes from linear to logarithmic!.
The contributions for each PE do overlap and produce a single peak, that does not linearly
move right at higher light intensities.

2 The amplitude function

The function, introduced in the following, is based on simple physical and electronic
assumptions. The intrinsic parameters of this function have to be constant at different

YThis effect is produced by the read—out electronic. The input amplifier has a limited range for the
pulse-amplitude of the PMT-signal, and cuts out amplitudes above this range.
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light intensities.

2.1 The linear region
The following items are assumption that lead to the amplitude function for the linear

region (eq.10).

e The production probability P, of n photoelectrons at the photocathode due to the
incoming light is given by a Poisson statistic?

_ Nmte™ N : Normalisation )

Fn n! : /M : mean number of PE

This probability is normalised to the total number of events in a histogram {N) or
N =1, in case of a probability density.
e The position z, of the n-th PE-peak scales linear
T, =c+n-c. (2)

co is a pedestrial, ¢; the time to integrate each PE charge.
Thus the position of the 1-PE-peak z; is

T =co+c (3)
and the distance between two peaks
ri—z;=({—j)a (4)

The values of the parameters ¢; and ¢, depend on the actual gain and settings of
the PMT and electronics.

o The pulse-height distribution for 1-PE and thus the distribution of charge, G1(z),
is Gaussian®. The width is given by the parameter oy
(x —z;)*

G1($) = \/2-_?1.;.0-1 . e— 20% . (5)

o, is given by the energy-resolution of the PMT. The energy resolution (FWHM)
may be calculated via

AE
W _ 5.2 2 22,355 2L (6)
E €1 “

2This is only a rough approximation.
3Due to the high gain in the first stage of the PMT this is a good assumption.
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¢ The distribution for n-PE signals is also Gaussian. [ts width oy, is
Tp = \/ﬁ ay . (7)

Thus the absolute width for n PE scales with ~ v/n and the relative width ~ 1//n.
The distribution G,{z) becomes

3 (r — z,)°
Gol(z) = 7_;7 e 202 (8)
Everything put together: -
Glz) = ?;1 P, - Gu(z) (9)
gives )
O PRY
G(z) = ng N mnle . \/%_;_Jl . exp (J‘T ;;% c2) ) . (10)

The Amplitude—function derivates maybe usefull for fitting purposes.

_ (z —ney — 00)2
3G (x) _ i Nmte™ (z—nci —cp) ~ Ino?
de, = ol V2rno}
(x —ner — co)
— Q). X" )
DR
n _(37 — ne1 — &)
IG(x) _ i Nm'e™™ (z —ne - Co) Ino?
dcy e nl V2rndo?

T —ne — G

o ~= nl
n
- (39
@ (2
o ) _(z=na - )
AG(x) _ ZN’m € _((-'5_?101—00) o1 )_e 2no?
day e nl V2rndof V2rno?

- ). ((x—ncla— ) i)
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(x — ney — ¢p)*

3G(z) _ imn SRR T =
aN el ! V2mnom
1
Glz)

2.2 The logarithmic region

With the following assumption the description may be extended into the logarithmic
region: If the amplitude of a PMT-pulse is higher than a certain threshold (~ 2V'), the
pulse is cut off above this threshold by the electronic. Thus only a part of the pulse charge

is integrated.
This introduces a new constant 7n,,, which is the number of PE, when pulse-amplitudes

of the PMT begin to reach this thresh value.
This PE-threshold constant rny,, corresponds to a threshold constant ;. for the pulse

width (integrated charge) given by
Ziog = Co + ftog " €1 - (11)

The result of the loss of charge during the integration is a logarithmic charge integration
of the n-th PE-peak. A first approximation* of z,, is:

T = Tiog (1 +1n ) . (12)
Nog
The inverse equation
() = Nyog - EXP ( c_ 1) (13)
Liog

may be interpreted as a PE number (in the PE-space) corresponding to a specific pulse-
width z. The derivate 4 .

—i(x) = -i(x) (14)

¢
dz ( Tiog

will be used later. )
The intrinsic probability function G(z) for the PE-distribution of the PMT is not affected

by the cut-off in the integration electronics.
(i—n)’

_ T2s2
; "G =Y Py msn Sn (15)

i

4Assuming an infinite rise-time, the integrated charge @ is the integral of an exponential decaying
function. For amplitudes (I) higher than the threshold amplitude (I;) @ consists out of the integral below
this thresh. Thus @ =% -7+ L -7-1n %, with the decay time 7. Itis: oy =7 -Lrand I ~n
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The intrinsic energy resolution s, is given by the relative width of the 1PE- peak (see
eq.6)

sn =i 2 (16)
€
For the charge distribution G{z) is
G(x)dz = G(i(z)) dzd(j) dz = G()di . (17)
Therefore
6) = ¥ P 2ile) - Gulile)
\/ﬁ Sy, "dz
x
e
- e N PR B G
n n 2?1' G'n ZLlog Tiog 203;
(18)

Note that eq.(18) has only one additional constant compared to eq.(10). Its characteristic
width constant o; is the same as in the linear region.

3 Fit to the distributions

The following table lists the parameters® which are calibrated in the following.
After this is done, the shape of pulse-height distributions depend only on the external
light intensity (or 7 respectively).

Symbol | Meaning typical value (with DMQT)
€1 distance between two PE-peaks 120 ns
Co pedestrial of the pulse-widths-scale 40 ns

o1 standard deviation of the 1-PE-peak 35 ns
Tueg | bin of logarithmic scaling (in PE-space) | 3 PE

Figure 2 shows a fit of simple gaussian to those distributions of figure 1 which show a
clear 1IPE-Peak. Fitted parameters are the position of 1PE-peak z; (P1) and its width
o1 {P2). The third constant is a normalisation factor (P3).

The results for these fits are averaged and the values for z; and ¢; remain fixed for all
later fits.

Figure 3 shows fits of the amplitude function to those distributions of figure 1 which show
a clear low PE-peaks (linear region). The fitted parameters are the mean number of PE,

5The other parameters 1 and zio, are calculated via eq.(3) and (11).
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m (P1), the distance between two PE-peaks® ¢; (P3), and again a normalisation factor
(P2).

The results for these fits are again averaged. Via eq.(3) ¢ is being calculated and the
values for ¢; and ¢y are fixed to their mean for all later fits. Eq.(6) gives the energy
resolution 42 (FWHM).

Finally figure 4 shows fits of the amplitude function to those distributions of figure 1
which show a clear high PE-peak (logarithmic region). The fitted parameters are the
beginning of the logarithmic threshhold n; (P1), the mean number of PE m (P3) and a
normalisation factor (P2).

The averaged ny,, is used to calculate xy,, (eq.(11).

EOM No: I 25} 1 Co Miog Tiog %E“
# jos] | [ns] | [ns] | ns] | [PEI| [ns] | %
11 1516 [ 20.4| 69 |[826( 2.0 | 2205 | 70
12 165.0 | 28.3 1 120.2 | 479 | 4.7 | 610.2 | 55
16 135.6 | 24.1 | 78.1 | 57.5| 5.2 | 462.1 | 73
19 223.2 | 46.8 { 189.6 | 33.6 | 2.8 | 566.4 | 88
22 173.8 | 44.2 1 156.2 | 17.7 | 2.8 | 452.7 | 66
26 178.7 | 40.6 | 145.0 { 33.7 | 2.4 | 380.2 { 66
33 171.8 | 34.0 { 133.9 { 37.9 | 4.6 | 650.0 | 60
44 134.7 | 2451 975 | 37.2| 48 | 501.3 | 59
46 177.5 | 33.1 | 136.2 | 41.3 | 8.6 | 1219.5 | 57
53 186.3 | 36.3 | 149.6 | 36.7 | 2.6 | 463.0 | 57

Table 1; Calibration results
Table 1 shows the calibration results for all EOM’s.

Figure 5 shows the pulse-height distributions of EOM #26 (figure 1). Superimposed is
the calibrated amplitude function. The parameters are set to the average values. The
mean number of PE m is set to the fitted value.

Figure 6 shows the amplitude function with calibrated parameters for EOM #26. The
mean number of PE 7 scales from 0.5 (top left) to 12 (bottom right).

bsee eq.(4)
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Figure 1: Pulse height distributions for EOM # 26 . (The intensity of the illumination

increases from A — H)
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Figure 4: Fit to the logarithmic region
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Figure 5: Amplitude function superimposed on the pulse-height distributions
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Figure 6: Calibrated amplitude function for different mean PE
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4 Conclusions

The fits in the previous section show, that the emplitude function, which is based only on
analytical assumption fulfills the following:

¢ This function is a good approximation of the, especially in the low PE-region, shape
of pulse height distribution. The possible physical interpretation for each parameter
proves, that the response function of the EOM to external light is well understood.

e The fitted calibration constants remain invariant under scaling of the light intensity.
This means, that it is possible to have a complete description of the EOM, depending
on intrinsic constants.

¢ This approximation is not perfect. Especially for actual data reconstruction in DU-
MAND II it may prove more reasonable to do a simple numerical parametrisation of
the mean and RMS of the pulse-height versus PE. For other purposes like triggering
3, 4] the knowledge of this function in the low-PE region provides new opportu-
nities. Also for the simulation of the detector the simulation of the actual shape
instead of a simple mean-RMS simulation may be of interest.

A further improvement may be achived, if a more accurate description of the actul PMT-
pulseshape is used in the integration, that leads to eq.(12) (e.g.[4]-equation (4.5)).

Acknowledgement

We would like to thank P.C.Bosetti and A.Kaser for their contributions to the amplitude
function. We also thank all other contributors to the EOM-project ([1}).

We are indebted to the Claussen Stiftung im Stiftungsverband fir die Deutsche Wis-
senschaft for giving a research grant to C.Wiebusch.

References

[1] U.Berson and C.Wiebusch The European Optical Module — A Technical Description
Dumand Internal Report 5-33, September 1993. .

(2] van Aller et al. A ”smart” 35cm Diameter Photomultiplier. Helvetia Physica Acta,
59:1119 ff., 1986.

[3] Christoph Ley. Berechnungen iiber den Nachweis hochenergetischer Neutrinos mit
dem DUMAND Detektor. Diploma thesis, RWTH Aachen, May 1990.

[4] Christopher Wiebusch. Zum Nachweis schwacher Lichtquellen im Ozean mit Hilfe
eines neuartigen groBflichigen Photomultipliers. PITHA 91/20 Diploma thesis,
RWTH Aachen, October 1991.




