
NEUTRINO PHYSICS - THE LINK BETWEEN

THE MICROCOSMOS AND THE MACROCOSMOS,

A STUDY IN TWO PARTS:

(1) THEORETICAL - A LOOK AT THE TAU NEUTRINO

MASS AND OTHER QUANTUM

ELECTRODYNAMICAL EFFECTS IN THIRD

FAMILY LEPTON INTERACTIONS AND

(2) EXPERIMENTAL - UNDERWATER ASTRONOMY

IN HAWAI'I, THE SHORT PROTOTYPE STRING OF

THE DEEP UNDERWATER MUON AND NEUTRINO

DETECTOR PROJECT

A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF
THE UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSPHY

IN PHYSICS

DECEMBER 1989

By

John Freeman Babson

Dissertation Committee:

John G. Learned, Chairman
Charles Hayes

Michael D. Jones
Sandip Pakvasa

Lawrence J. Wallen

© Copyright by John Freeman Babson

All Rights Reserved

~. --~ -- --------------

iii

IV

ACKNOWLEDGEMENTS

Starting out initially as a graduate student in the Institute for Astronomy,
and from that experience learning lessons by no means limited to
astronomy, then moving on to the High Energy Physics program, working

first in the theoretical domain of electro-weak physics, and finally being
intimately involved in the Short Prototype String experiment of the
DUMAND project has been a long journey. Now that it is almost over,
looking back at it, I can honestly say that any exercise as extensive as this is
not done in a vacuum. Over the years there have been many who have
contributed both directly and indirectly, materially and immaterially, to my
efforts in graduate school. Time and room do not permit me here to
adequately acknowledge each individual in terms of their contributions.
Instead, for the most part, I shall endeavor to list them by name and
approximate affiliation, knowing that deep inside of each individual is that
part of them which they have contributed to this effort that I shall always
appreciate. I know that I am the person I am today in part because I have
learned something from each one of these individuals.

Institute for Astronomy, University of Hawai'i at Manoa:

Dana Backman, Erik C'the Infrared") Becklin, Charley Beerman,
Jeff F. Bell, ("Raggedy") Ann Boesgaard, Bob Brown, Tim Brown, H.
Melvin Dyke, Mike Gaffy, John C. Good, John Hamilton, Charles Heasley,
("Maximum") John T. Jefferies, Jeff Morgan, Norman G. Purves, Robert
Routsalainen, Brent Tully, and Gareth Wynn-Williams

Diamond Sangha, Koko An Zendo:

Anne Aitken, Robert Aitken Roshi, Linda Brown, Duke Choy, Mary
Choy, Christopher Fang, P. Nelson Foster, Francis Haar, Michelle Hill,
Deborah Hopkinson, Patrick Jijaku, Michael Kieran, Karen Loftstrum,

v

Marion Morgan, Loren Rivers, Clifton W. Royston, Greg Shepard, George
Steele, Don Stoddard, Vicky Stoddard, Bobby Swartz, John Tarrant, Andrew
Thomas, Teresa Vast, and the late Yamada Koun Roshi

Physics Department, University of Hawai'i at Manoa:

Kaladi S. Babu, Ralph Becker-Szendy, Douglas Brandt, Sitaram
Byahut, Caroline Chong, Peter Crooker, Steve Dye, John Henry Flack,
Calvin Fujitani, Chris Fujiyoshi, Jim Gaines, George Gerhab, Peter
Wellington Gorham, Jeremy W. Gorman Jr., Ward Hayward, Burton
Henke, Donald Hoffman, the late Jeff Hoover, Jacob Hudson, Diane
Ibaraki, Vivek Jain, Cheryl Kamiyama, Kathleen Kaya, In-Sook Lee, Grace
Lim, Sheila Mae Lopes, Jack MacMillan, Melvin Matsunaga, Teri Mimori,
Wesley Mizuno, Paul Montecastle, Jon P. Okada, Devi D. Paudyal, Rupert
C. Perera, Kandatege ("Primo") Premaratne, Antonio Querubin, the late
John Jun Sakurai, Mark Schindler, Walter Simmons, Walter Steiger,
Glenna Sumiye, Robert Svoboda, Hirotaka Sugiwara, Tina ("Tigger")
Tanaka, Xeres Tata, Roy Tom, San-Fu Tuan, and David Yount

Friends:

Nancy Aleck, Olga Alexandrov, Oi-Man Chan, Man-Tin (Clement,
Tim) Cheung, Yick-Wa (Grace, Ewa) Cheung, Hiromi Otsuka Chiba, Peter
and Kae Hyung Chin, Dick Flagg, Alberta Freidus, Danielle Irene (Chin)
So-mai Ho, Marian Ho, Fran Johnson, the late Trudy Kim, Wayne
Kamimoto, Peter Kwong, Bonnie Lau, Herbert (Kwan) Lee, Yon-Un Lee,

Ruey-Fen Lin, Paul J. Mareno, Guy and Denise Mazzanti, Don Micheal,
Marcia Nelson, Edith Ngai, Francis Duk-Wing Pang, Richard Rose, and
Karen Taira

Landlords and housemates:

Nancy R. Clark, Sue Congdon, Chuck Mueller, Mora O'Connor,
Florence Tyau, and Bernard T.S. ("Tough Shit") Wong

.._---- .__.-------------

VI

DUMAND:

Grant Blackington, Hugh Brandner, Cpt. Clary and the crew of the
SSP Kaimalino, John Clem, Ray Cote, Tom Daniels (Hawaii Natural
Energy Laboratory), Jim Elliot, Gary and Sonya Friedhoffer (Camp
Timberline), Jim Gaidos, Peter Grieder, Dave Harris, Matti Jaworski,
Shigenobu Matsuno, Bob Mitiguy, Yoshiko Miyakoshi, Dan O'Connor, Y.
Ohashi, A. Okada, Vincent Z. Peterson, Fred Reines, Arthur Roberts,
Charley Roos, Mark Rosen, Hank Sobel, Victor Stenger, Med Webster,
George Wilkens, and Chuck Wilson as well as the Kaena Point USAF
Communications Facility and the Hawaiian Telephone Company

Family:

Tom Freeman Babson, June I. R. Babson, the late Norman I.
Freeman, Dorothy B. Freeman, Sara J. Freeman, Charles D. Freeman,
Marge S. Freeman, David H. Freeman, Jean Freeman, Jim Freeman,
Judy Freeman, Beth I. Freeman

Inspirational folks:

Mitsui Aoki, Herbert B. Falkenstein, John M. Koller, William S.
Merlin, and Gary Snyder

Dissertation Committee:

Charles Hayes, Micheal D. Jones, Sandip Pakvasa, and Lawence J.
Wallen

Graduate Advisors:

Special mention must be made of my graduate advisors, for during
this long siege I have been blessed with three. I started with Carl Pilcher in
astronomy. As a fellow chemist, he was very supportive of me in the world

vii

of astronomy and for that I am greatly appreciative. Both of us have come a
long ways since then and I suspect that life has taught us a lot. I know that
we share the understanding that in this threatened world of ours there is
much more to it than just pure science research. The need for human
beings to make true contact with one another is imperative. Ernest Ma was
my advisor in theoretical high energy physics and a true mentor. From
him I learned not to be afraid or embarrassed of my intuition but rather to
give it free reign in probing the unknown. He taught me to look beyond a
mere formalism and instead to focus on the heart of a problem, often by
looking at it perhaps sideways rather than straight on. He is a saint for he
supported me through the twin traumas of Yick-Wa's breast cancer and

my Mother's stroke and for this I shall never be able to find words of
appreciation deep enough. Lastly, there is John Gregory Learned, who has
been my advisor for the last six years while I have labored on the Short
Prototype String of the DUMAND project. The lessons I have learned from
him are perhaps some of the most profound of my life. It is through him
that I can honestly say that I have finally been able to find the means by
which to articulate much of my life's earlier experiences and as such have
been able to come to a deeper and more fundamental experience of them.
Thank-you John.

Micheal Jones read each and every page of the manuscript and made
many excellent and detailed comments which I found extremely helpful. I
am convinced that as a result of his effort the clarity of presentation of this
dissertation was greatly improved. He certainly deserves the best spelling
award from among the members of my committee. Sandip Pakvasa also
made many suggestions to the theoretical portions of this dissertation

which resulted in much improvement. My sincere thanks to both of these
gentlemen.

There is a final acknowledgement that must be made. I begin with
thanking the trees for having given their all. Much paper has been

consumed in the process. I hope my use can be justified in the spirit of man
playing the role of being one way for nature to come to know itself. Also,

viii

there is a mountain named Mauna Kea (Hawaiian for "white mountain")
which makes up half of the island of Hawai'i. I realize that I am one of the
very few human beings privileged to have done research at the very top of it
(at an altitude of 14,000 feet with the University of Hawai'i 88" optical /
infrared telescope observing faint dwarf galaxies) and the very bottom of it
(at a depth of three miles with the Short Prototype String seeking cosmic ray
muons and neutrinos). I feel a particular sense of intimacy with Mauna
Kea that is very hard to describe in words and simply wish to acknowledge
its existence and to thank Pele for allowing me to play there. In the long
run, the only true teacher is Nature and it seems to be that the peculiar
problem of our age is how often we neglect this fact.

Finally, in terms of shear inspiration (the "breathing in", life itself),
I must acknowledge and thank Fung-Chu (Candy) Ho. In the most
profound sense she takes me beyond my meager self and opens my eyes to
the larger evolving world. Whether she understands this or not, outside of
my parents and my childhood, she has taught me more about the world
than anyone else. It is through her that I have been able to look back at
things and finally come to understand much that I have experienced and
yet never properly digested. She forces me to be honest. She shows me that

balance in life is both possible and essential. To say that she is me and that
I am her is an understatement. Her good counsel is always welcome. I love
you Fung-Chu! Thank-you!!

ix

I hereby dedicate this work to the liyin~ memories of my Father,

John Capron Babson (1902- 1971)

who as a human becoming and engineer's engineer taught me the
importance and delight at knowing the physical world, before I even
learned to talk, and of my Mother,

Leona Freeman Babson (1906 - 1989)

who as a human becoming and teacher's teacher taught me the
importance of the human element right up to the moment of her recent
death. To paraphrase Sir Issac Newton, standing upon the shoulder's of
such giants I can not but help see beyond them. May the rest of my life,
which I hereby dedicate, be worthy of the legacy of my many teachers.

x

ABSTRACT

Until recently, the subject of the very largest dimensions in the Universe,
namely Cosmology, and the subject of the very smallest dimensions in the
Universe, namely Particle Physics, were considered to have very little to do
with one another. In terms of observation, the former was the province of
the extragalactic Astronomer and the latter the province of the particle
Physicist. The decade of the 1980's has forever changed that. Such a
separation is now known to be an artificial construct at best. An example is
the verification with SN1987a that supernovas are powered by a blast of
neutrinos! The possibility of dark matter pervading the whole Universe may
ultimately result in a mass count that could close the Universe. The lowly
neutrinos, should they indeed have some mass, are potentially so plentiful
that they may do it alone. Fundamental questions are being answered in
Cosmology by way of Particle Physics and in Particle Physics by way of
Cosmology.

In a small way, this dissertation reflects this softening of the
boundaries. It does so in two ways. First, there is a theoretical investigation
into some aspects of generational universality. The consequences of a third
lepton, namely the tauon, and an associated tau neutrino, are explored in
terms of phenomenology that may shed insight into questions of neutrino
mass and increased symmetry at higher energies. Second, there is an
experimental investigation in the form of constructing and operating the
first stage of the DUMAND (Deep Underwater Muon and Neutrino
Detection) project which was a ship suspended muon and neutrino
telescope called the SPS (Short Prototype String). This detector is of the
water Cherenkov type and is the first time such an instrument has been
successfully built and tested for use in the ocean.

It is very likely that such detectors will be the common place future of
the experimental high energy physics community since accelerators would
have to approach in size"the diameter of the Earth in order to move just a

Xl

few orders of magnitude higher in energy. Like the first cyclotron, as in any
such first time exploration, much in the way of new technological
integration was necessary and my contributions to this end are documented
here.

Chapter 1 begins the first of two parts to this dissertation and is a
brief introduction to the Microcosmos and some of the outstanding
problems in the exploration of the realm of the very small. The theoretical
approach taken to look into third generation phenomenology was to
consider the tauon, generated in an electron-positron colliding beam, as it
decayed into an observable meson and a tau neutrino. Chapter 2 reviews the
state of the art in terms of what was measured at the time of this
investigation. Chapter 3 describes the calculations I carried out on the
decay-product correlation of t+t- into observable mesons. The correlation

angle is then associated with such phenomena as the mass of the tau
neutrino and the possibility of a higher energy interaction including some
V+A mixed in with the V-A.

Chapter 4 begins the second part of this dissertation and is a brief
introduction to the Macrocosmos and some of the outstanding problems in

the exploration of the realm of the very big. Chapter 5 reviews the state of
the art in terms of experimental approaches taken up to the development of
the SPS. Chapter 6 is the first of five chapters devoted to the detailed
documentation of parts of the SPS and its technology integration that I
designed, prototyped, and debugged. This chapter describes the command
and control communications system used to control the various modules
(instruments) found on the string. Chapter 7 describes the design of the
microcontroller circuits used in the optical and calibration modules.
Chapter 8 describes the design of the microcontroller circuit used in the
control of power distribution throughout the SPS. The microcontroller used
in the above had a lot of problems associated with it, the most outstanding
being its very crude instruction set. Chapter 9 details the UHPS
(Underwater Hawai'i Programming System) language which was
developed to overcome this limitation. Chapter 10 details the design, both

xii

hardware and software, used to control the SBC (String Bottom Controller)
of the SPS. Software details in terms of program listings make up several of
the appendices. Finally, Chapter 11 is an analysis of SPS data in terms of
ascertaining a purely statistically based downward traveling muon rate at

a depth of 4.0 Km. It is found to be (2.06 ± 0.68) x 10-2 Hz. Assuming a

muon flux of 7 x 10-5 m-2 sol sri (at 4.0 Km, following Kobayakawa) this

corresponds to an effective area of Aeff =3 ± 1 x 102m2• Additionally, a

determination of the power index (n) of the cosine of the zenith angle of the
downward traveling muons has been made and found to be n =5.3 which is
consistent with previously reported results from deep mine experiments.

xiii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... IV

ABSTRACT .•. ...•..•..........•.. IX

LIST OF TABLES xxi

LIST OF FIGURES

LIST OF SYMBOLS

...

...

xxiv

xxxii

PREFACE ... xl

PART I -- THEORETICAL CONSIDERATIONS

CHAPTER 1 -- INTRODUCTION TO THE MICROCOSMOS 1

1.1 Quantum Electrodynamics 1

l.la Early Quantum Electrodynamics ala Dirac 2
l.lb Later Day Q.E.D. ala Feynman 4

1.2 The Particle Zoo 6

1.2a Quan.tum Numbers 6
1.2b Four Forces of Nature (At "Low" Energy) 10

xiv

1.3 The Quest of Unification -- Towards a Standard Model... 13

1.3a The Fundamental Particle Model (Leptons,
Neutrinos, and Quarks) 13

1.3b Electro-Weak Unification 16
1.3c Grand Unified Theories (GUTS) and Proton

Decay 17

CHAPrER 2 -- THE STATE OF THE ART -- A REVIEW OF PREVIOUS
THEORETICAL INVESTIGATIONS 19

2.1 Introduction of a Third Family of Leptons (Quarks)
into the Standard Model .. 19

2.2 Nature of the t-Vt-W coupling 21

2.3 Measurement of the t Lifetime 28

2.4 A Study of the Decay r --> 7rVt 30

CHAPTER 3 - DECAY-PRODUCTCORRELATIOPN OF t+ t-

PRODUCTION FROM e+ e- ANNIHILATION 32

3.1 Introduction 32

3.2 The Problem -- Setting up the Kinematics and
Geometry 37

3.3 Calculation of the Cross Section e+ e- --> t+ t- 39

xv

3.4 Calculation of the Lifetimes t- --> Vt 1t"" and
t+ --> ~~ x+ 45

3.5 Combination and Integration 52

3.6 Single Integral Approximation . 55

3.7 Closed Form Solution 62

3.8 Conclusions on Observable Phenomenology (Especially
with Respect to Generation Universality) 62

PART II -- EXPERIMENTAL CONSIDERATIONS 64

CHAPTER 4 --INTRODUCTION TO THE MACROCOSMOS

4.1 The Big -- Cosmology 64

4.2 Cosmic-rays 68

4.2.a History and Importance 68
4.2.b Secondary Components 70

4.3 Cherenkov Radiation 72

4.4 DUMJ1..ND and the SPS 74

xvi

CHAPTER 5 - THE STATE OF THE ART --A REVIEW OF PREVIOUS
EXPERIMENTAL INVESTIGATIONS 80

5.1 Description of the Underground Scintillator
Experiments .. 82

5.1a Kolar-Gold Field 83
5.1b Case-Witwatersrand-Irvine 92
5.1c Baksan Telescope 101

5.2 Description of the Underground Water Cerenkov
Detector Experiments 104

5.2a Irvine-Michigan-Brookhaven [Hawaii] 105
5.2b Kamiokande 107

CHAPTER 6 - INSTRUMENT BUILDING PART I - THE STRING
COMMUNICATIONS SYSTEM 110

6.1 Introduction 110

6.2 Design Considerations 110

6.3 Some Early Ideas 113

6.4 Problems Identified 118

6.5 The Modem and the Data Access Arrangement 121

xvii

6.6 The Screamer Killer Circuit 126

6.7 Protocol..... 129

6.3 Summary 131

CHAPTER 7 -- INSTRUMENT BUILDING PART II -- DESIGN OF
MICROCONTROLLER CrnCUITS FOR THE OPTICAL
(CALmRATION) MODULES 132

7.1 Introduction 132

7.2 Optical Module Circuit Description 137

7.3 Diagramming the Flow of a Computer Program 157

7.4 The Microcontroller Development System (MDS) 159

7.5 Optical Module Program Description 164

CHAPTER 8 -- INSTRUMENT BUILDING PART III - DESIGN OF THE
MICROCONTROLLER CmCUIT FOR THE SBC POWER
DISTRmUTION SYSTEM 180

8.1 Introduction .

8 2 P D· 4- ib ti .,.,. it D . ti. ower is"n u" on ",lrCUl escnp on ..

8.3 Power Distribution Program Description ..

180

181

194

xviii

CHAPTER 9 -- INSTRUMENT BUILDING PART IV -- UNDERWATER
HAWAII PROGRAMMING SYSTEM, A STRUCTURED
MICROCONTROLLER PROGRAMMING LANGUAGE 202

9.1 Introduction 202

9.2 Overview of Computer Architecture and the Von
Neumann Model...... 204

9.3 The ABX Model 206

9.4 The Index Register and the Stack 217

9.4a The Index Register and Different Methods of
Memory Access 217

9.4b The Stack' 219

9.5 The Architecture of the 8051 Microcontroller Family... 222

9.6 Analysis of the 8051 Instruction Set 229

9.7 A Look at the Conventions of the MCS-51 Cross.
Assembler 237

9.8 The Concept of a Macro Assembler and a Summary
of the MC8-51 Macro Facility MPL .. 243

9.9 Filling out the 8051 Instruction Set -- The Origins of
UHPS -- the Runtime Macros (RUNMAC.INC) 245

9.10 The Conventions of UHPS 249

----------- -

xix

9.11 The Concept of Structured programming 255

9.11a History 255
9.11b Structures 258

9.12 Implimenting Program Control Structures in UHPS -- the
Logic Control Structure Macros (LCSTRC.INC) 263

9.13 "External" Memory Macros in UHPS 266

9.14 The (Library) Primatives of OOPS 271

9.15 The Subroutines of UHPS 277

CHAPrER 10 -- INSTRUMENT BUILDING PART V -- DESIGN OF THE
SBC CENTRAL CONTROLLER SYSTEM 280

10.1 Introduction 280

10.2 The SBC Microprocessor System Overview.................. 281

10.3 The Hitachi HD64180 Microcomputer . 285

10.3a The Processing Function Blocks 288
10.3b The Integrated I/O Functional Blocks 290

lOA SB180 Single Board Computer Description 292

10.5 Description of the SBC String Modem Card 298

10.6 Description of the SBC Controlling Latch 303

xx

10.7 Description of the Analog Card (Serial I/O and
Sensors) 309

10.8 Description of the Hardware Changes in the SB180
Computer used in the SBC ,. 319

10.9 Description of the SBC Controlling Program
MERLIN 321

10.10 The SB180 Development System 321

10.11 Software Objectives 333

10.12 MERLIN.. 336

CHAPTER 11 - ANALYSIS OF THE SHORT PROTOTYPE STRING
DATA 375

11.1 A Purely Statistical Procedure for the Determination
of the Cosmic Ray Muon Background Rate 375

11.2 The Results of the Analysis 397

11.3 The Determination of Power Law for the Cosine of the
Zenith Angle 404

xxi

APPENDICES

Appendix A -- Decay-product Correlation of't+ r Production

from e+ e- Annihilation

Phys Rev D, 26, 9, 2497-2498

Appendix B -- Angular Correlations and the Tau-Neutrino
Mass

z. Phys. C, 20, 5-7

409

415

Appendix C -- The Feynman Rules for Q.E.D...................... 425

Appendix D -- Source Code Listing of the Executive Program
for Controlling the String Optical and
Calibration Modules (SOM) 435

Appendix E -- Source Code Listing of the Executive Program
for Controlling the Power Module (PWR)......... 515

Appendix F -- Source Code Listing of the Underwater
Hawai'i Programming System (UHPS) 552

Appendix G -- Source Code Listing of the Executive Program
for Controlling the String Bottom Controller
(MERJ.,IN)... 619

REFERENCES•... 710

LISr OF TABLES

Tables

xxii

Page

1.1

1.2
1.3
1.4

The four forces of Nature .
The elementary particles by class .
The exchange bosons by interactions .
The fundamental fermions by family (flavor) .

10
12

14
15

2.1 The three lepton-quark families .
2.2 Results of the fits to the electron momentum

spectrum .

3.1 Masses of the Leptons .

5.1

6.1

7.1

7.2

7.3

7.4

8.1

9.1
9.2
9.3

Summary of events in the Kolar-Gold Field
experiment .

Bell 103 (300 baud) standard frequencies ..

Hardware feature comparison of available
microcontrollers .
Analog sensor channel assignments in the

optical modules .
Assignment of the chip enable lines in the
optical module ~ .
Summary of SOM Routines .

Summary of PWR Routines .

Nomenclature for the ABX model .
The operands of the ABX model .
The Special Functions Registers .

00

116

135

138

143
165

192

2)9

212

225

=

9.4

9.5

9.6

9.7

9.8

9.9

9.10

9.11

9.12

9.13

9.14

10.1

10.2

10.3

lOA

10.5

10.6

10.7

10.8

10.9

10.10

10.11

10.12

Comparison of the operands in the 8051

family to the ABX model .
The six logical comparison primitives .
The six complementary calling macros for the
comparison primitives .
The external data MOV macros ..
The XGTY extended macros .
Minimal extension macros for handling
external memory data ..
The libraries (of primatives) in UHPS ..
The serial communications library
primatives .
The software timer library primatives .
The external data handling library
primatives .
The intinsic subroutines of UHPS ..

The boot ROM monitor commands .
Summary of the decoded addresses on the SBC
latch control card .
UART status lines .
Control strobes for the analog board .
Serial mode control in the UART .
The J6 expansion line definitions ..
Conditional tests for. flow control .
SBC control computer ports ..
C compiler headings .
The global data structures ..
Summary of MERLIN Routines .
Call tree for program MERLIN ..

xxiii

247
2m

268

2m
272

273
274

275

278

295

3ffl

311

312

313

32>

325

333

:m
339
341
344

=;

11.1

11.2

11.3

11.4

D.1
E.1

F.1
G.1

The individual average photomultiplier tube
rates at different depths. Note that only six tubes
were operating at a depth of 3.0 Km and that the
only depth in which the rate sum did not saturate
the instrument was at 4.0 Km .
The X2 per degree of freedom of the linear fits

of the predicted rates vs. actual rates as a
function of depth .
The SPS files that are free of contamination
from calibration module pulses .
Comparison of Fitted and Statistical Rates .

Listing Order of SOM Routines .
Listing Order of PWR Routines ..
Listing Order of OOPS Routines .
Listing Order of MERLIN Routines .

xxiv

378

435
515

552
619

xxv

LIST OF ILLUSTRATIONS

Figures Page

1.1 Schematic representation of the interaction
between two electron current loops mediated
by a photon 14

2.1 The decay of the tauon into and an electron

and two neutrinos 21
2.2 Uncorrected (r(z) = 0) electron momentum.

spectrum in 't rest frame for several values of p Z3

2.3 The electron momentum spectrum. with

z = Ee!Eemax in the range 3.57 GeV S Ecm S 7.4 GeV
excluding the resonance at '1''' (3770). The solid and

dashed lines are, respectively, V-A and V+A fits
with zero v't mass 25

2.4 The average EefEbeam for several ranges of

center-of-mass energy (indicated by the horizontal
error bars). The energy dependences of the predictions

of the V-A and V+A hypotheses (indicated respectively,
by the solid and dashed lines) result from experimental
cuts and measurement errors .. a>

2.5 Upper limit (95% confidence level) on the mass of the
V't as a function of the mass of the 't •••••.•••••••.•• .•.••• 31

3.1 The vertex centered frame of reference that is used in
the calculation of the cross section .

3.2 The Feynman diagrams that contribute to the cross
section of the interaction e+e-~ t+ 'c... .. 40

3.3 The Feynman diagram which represents the decay

't-~ V-r 7r.. ... ••••.•• .•• •.••••..••• ••••• .•• •••••••••.•.•. ••. •••• .•. •.• 45

3.4 The angular momentum axial vectors that are
representative of the decay products . 47

3.5

3.6

3.7

3.8

4.1

4.2

4.3

5.1

5.2

5.3

5.4

,.. ,..
0.0

5.6
5.7

Plot showing the variation in cross section with the
cosine of the corrolation angle .
Plot which displays a constant contour of
11 =(B I A)2 VB. E•••

This plot shows the cosine of the correlation angle
of the observable pions vs. the differential cross
section of the interaction with respect to different
values of 13••••.•••••••••••....••..••.........••••••............•••..
This plot shows the cosine of the correlation angle
of the observable pions vs. the differential cross
section of the interaction with respect to different
values of (B I A)2 . .••.•... •.... •.. .. •. . . •.. ••.•.

The history of the Universe according to standard
cosmology and the standard model for fundamental
particle physics .
Cross-sectional diagram of an optical module found
in the SPS. . .
Diagram of the ship suspended Short Prototype
String experiment .

Geometrical arrangement of the first stage design
(Kolar-Gold Field telescopes 1 and 2) .
Geometrical arrangement of the first stage design

(Kolar-Gold Field telescopes 3, 4, and 5) .
Geometrical arrangement of-the third stage design
(Kolar-Gold Field spectrographs 1 and 2) .
Final arrangement of the instruments in the
Neutrino Experiment at the Kolar-Gold Field .
Projection of the detected neutrino events in the
Kolar-Gold Field experiment back onto the
Celestial Sphere .
Cross section of CWI stage I array .
Perspective sketch of the CWI stage I array .

xxvi

fJl

61

m

75

71

84

86

88

89

91
ro
94

5.8

5.9
5.10

5.11

5.12
5.13

5.14

5.15

6.1
6.2
6.3

7.1
7.2
7.3

7.4

7.5
7.6
7.7
7.8
7.9
7.10

The response function of a detector element in the
stage I array of theCWI experiment .
The geometrical layout of the CWI stage II array..
Details of the nth scintillator bay and the (3n -l)st
flash-tube module in the stage II array .
Diagram showing approximate location of the
scintillation telescope in its relationship to the
mountain above it and to a nearby solar neutrino
detector .
Cross-sectional drawing of the Baksan telescope...
The "standard" scintillation detector of the Baksan

telescope .
Cross section diagram of the 1MB water
Cherenkov detector .
Cross-section diagram of the Kamioka mine

experiment .

"Nulled" or two wire based DAA circuit .

Three wire based DAA circuit .
The microcontroller independent screamer killer
circuit. Note the use of three asynchronous timers
to detect and squelch off transmission .

The Intel 8751 based microcontroller circuit .
The optical module identification system .
The optical module external memory circuit .

Optical module A to D and communications timing
chain .
The (D to A) control interfaces .
The (A to D) sensor interfaces .
The calibration module interface ..
The three basic flow chart symbols .
MDS development cycle .
String Optical Module main program .

xxvii

101

102

103

106

108

123

125

128

140
144
146

148
150

153
155
158
161
168

7.11

7.12

7.13
7.14
7.15

7.16
7.17

8.1

8.2
8.3

8.4
8.5

8.6

8.7
8.8
8.9

8.10

9.1
9.2

9.3
9.4

9.5

9.6
9.7
9.8

Common microcontroller initialization routine.....
Flowchart of the digital to analog device
driver DTOA .
Optical module command line .
Command line synchronization routine SYNCH .
The main command line parsing routine

CMDPOLL .
The main ANALOG table handler ANAPOL .
The command executive CMDSERV .

The power module INTEL 8751 based
microcontroller circuit .
The power module external memory circuit .
Serial communications is the power module .
Power module A to D circuit .
The 504 KHz square wave clock ADCLK for

the A to D converter .
Power module latch control interface .
Power Module main program .
Optical module command line .
The main command line parsing routine

CMDPOLL .
The command executive CMDSERV .

The Registers of the ABX Programming ModeL...

The single bit control line definitions ofport 3 of

the 8051 Microcontroller .

The comparison primitive XGTY .

The MXGTY calling macro .
An example header file named EXAMPL.P51
in UHPS .
The three fundamental logic control structures .
The three auxilary logic control structures .
The decision structure in UHPS .

xxviii

170

171
172
173

174
177
178

182
185
187

189

191
193

197

198

199

201

222

246

248

251
200

261

265

9.9
9.10
9.11

9.12

9.13

10.1

10.2

10.3
10.4

10.5
10.6
10.7
10.8
10.9
10.10

10.11

10.12
10.13
10.14

10.15

10.16

10.17

10.18
10.19

The TMOV macro definition .
The EXGTK macro definition .
The programming model for the serial
communications primatives .
The programming model for the software timer
primatives .
The programming model for the table handling

primatives .

The interface specification for the central control
computer in the SPS .
Block diagram of the Hitachi HD64180 .
Block diagram of the SB180 computer .
The SBC string modem with three wire based

DAA interface .
The SBC controlling latch interface .
The auxiliary (power module) serial port interface
The A to D analog sensor interface .

The layers of the Z-System .
The main routine of MERLIN .

The main level routine inpoll .

The main level routine cmdpoll .
The main level routine cmdserv .
The command level routine readad .

The YO level routine outport .

The error level routine cmderr .
The communications level routine upecho .

The conversion level routine ascbin .

The initialization level routine init .
The device driver routine incab .

xxix

2S1
268

274

275

276

284

2KI

293

300

304:

310

316
327

348

350

353

300

364

366

368

3m
370
371
373

xxx

11.1 The flow chart for the program RATECMP which
returns to a file the individual optical module
event rates as well as the measured aggregate
5-fold or greater event rate................................. 379

11.2 A symbolic representation of the plots (two
histograms and one scatter plot) used in finding
the cosmic ray muon rate. The predicted aggregate
rate r is the predicted aggregate probability P
within the coincidence window t 382

11.3 The flow chart for the program RATEHST which
reads a data file of individual optical module event
rates and then computes the expected aggregate
5-fold or greater coincidence random event rate r
and compares it to the measured aggregate 5-fold
or greater event rate R to extract the true cosmic
ray muon background rate................................ 384

11.4 The symbolic plot of the reciprocal function of the
time vs. rate of a single photomultiplier tube at a
fixed gain and threshold exposed to a time
averaged constant light source..... ~

11.5 The (integration) time vs. predicted rates
histograms computed for the four depths,
namely at 2.5 Km, 3.0 Km, 3.5 Km, and 4.0 KIn
respectively.. 389

11.6 The events vs, predicted rates histograms
computed for the four depths namely 2.5 Km,
3.0 Km, 3.5 Km, and 4.0 KIn respectively............. 392

11.7 The real rates vs. predicted rates plots computed
for the four depths of 2.5 Km, 3.0 Km, 3.5 Km,
and 4.0 Km respectively..................................... 395

11.8

11.9

11.10

11.11

11.12

11.13

11.14

The distribution of Cosmic Ray rates at a depth of
4.0 Km plotted as a variation in the cut made in
the predicted rate. Note the optimum cut (0.03 Hz)
is taken at the point just before the error bars
generated by the plot fitting program start to
become unreasonable .
The (integration) time vs. predicted rate histogram
computed for 4.0 Km with an upper cut of 0.03 Hz
in the predicted rate .
The hits (events) vs. predicted rate histogram
computed for 4.0 Km with an upper cut of 0.03 Hz
in the predicted rate .
The real rate vs. predicted rate histogram
computed for 4.0 Km with an upper cut of 0.03 Hz
in the predicted rate .
The variation of exponent n with depth after the
world compilation of Crookes, J.N. and Rastin,
B.C. Note that the DUMAND data point of

n = 5.3 ± 0.1, which is also plotted here, is consistent
with the world experience and greatly reduces the
error at 4.0 Km depth. The equation is a best fit
exponential , .
The variation of the power exponent n of the cosine
of the zenith angle at a depth of4.0 Km, found by
comparing in a maximum likelihood procedure
causually fitted "fake" Monte Carlo generated
events with "real" events, results in a steep

minimum located at n = 5.3 ± 0.1. The curve is a
simple interpolation, the error in the y-axis simply

reflects a 1% uncertainty .
Flow chart outlining the procedure used in
determining the power index n of the coss e
distribution at a depth of 4 Km : .

xxxi

400

401

402

405

4fJl

408

C.l A typical Q.E.D. diagram with the extemallines
shown and labeled .

xxxii

Acronym

ABX
ADC
ADe
ADCLK
AGC
ALE
ALU
AtoD
ASCI
ASCII
BIOS
CC
CERN

Cn
CMOS
COMP-IN
CP/M
CPU
CSIO
CWI
DAA
DAC
DACPWR

DAEn
DATAST

DCD
DDT

xxxiii

LIST OF ABBREVIATIONS AND SYMBOLS

ACRONYMS

Definition

computer register set model (named after its registers)
Analog to Digital Converter
Analog to Digital Control (multi-channel)
A to D CLocK
Automatic Gain Control
Address Latch Enable
Arithmetic Logic Unit
Analog to Digital
asynchronous serial communications interface
American Standard Code for Information Interchange
Basic I/O System
Condition Codes
Center European Radiation Nuclear (French acroynm
so in English the word order makes sense in reverse)
capacitor n
complimentary metal oxide silicon logic
COMParison INput
Control Program I Microcomputers
central processor unit
clocked serial I/O port
Case-Witwatersrand-Irvine (experimental collaboration)
Data Access Arrangement
Digital to Analog converter
DAC PoWeR
DigtaI to Analog Enable line n
DATA STrobe
data carrier detect
Dynamic Debugging Tool

DMAC
dork

DREAD
DtoA
DUMAND

EA
ECL
EN
EOC
EXP SEL

FORTRAN
FM
FSK

GIM

GUTS
HEPG
ICE
1MB

INTn
I/O
10EN
KEK

KGF
LAN
LATn
LASTAT
MASTST
MCLK
MERLIN

xxxiv

direct memory access controller
the phallic shaped extension of the calibration modules
used to convey the generated light pulses to a scintillator
ball out of the axis of the string ofoptical modules in the
BPS
data read
Digital to Analog
Deep Underwater Muon and Neutrino Detection
External Address
Emitter Coupled Logic
ENable input
end of conversion
EXPansion SELect
FORmula TRANslation (name of computer language)
frequency modulation
frequency shift keying
the GIM mechanism named for S. Glashow, J.
Iliopoulos, and L. Maiani
Grand Unified Theories
High Energy Physics Group
in-circuit emulater
Irvine-Michigan-Brookhaven (experimental

collaboration)
INTerrupt line n
Input / Output
I/O Enable
The Japanese national accelerator center
Kolar-Gold Field (experimental collaboration)
local area network
LATch enable n
latch status
MASTer reSeT
Modem CLocK
SBC control program

MIDS
MDS
MMU
MPL
MUX-OUT

OE
o.s.t.
IBM
PC
PDK
PIlI

PMT
PRT

PSEN
PWR
QCD
Q.E.D.

RAM
RATECMP

RATEHST

RATFOR

lID.
REFn
ROM
ROMAD
Rn

RXD
SLAC

xxxv

Module IDentification System
Microcontroller Development System
memory management unit
Macro Programming Language
MUltipleXer OUTput
Output Enable
one sided triggering
International Business Machines
Program Counter
Proton Decay experiment (another term for the 1MB)
Programming Language one (name of computer
language)

photomultiplier
programmable reload timer

Program Sense ENable
PoWeR module control program

quantum chromodynamics
quantum electrodynamics

Random Access Memory
RATE CoMPare - program for unpacking and reading

the raw scalar data from the SPS data files

RATE HiSTogram - program for calculating the

expected random 5-fold or greater aggregate coincidence

rate r and compares it to the actual5-fold or greater
aggregate coincidence.rate R
RATionalized FORtran (name of computer language)

ReaD control

REFerence of voltage n
Read Only Memory

ROM ADdress
resistor n
Receive (digital) Data (as opposed to analog)

Stanford Linear Accelerator Center

SLRNK+
SBC
SOM
SP
SPS
SU(5)

TOS
TPA
ZCPR3
ZRDOS
TIL
X
XBUS
TXD
TXD
UART

UHPS
UV
V-A

V+A
VH

:wE
WWV

XTALn
Yn
ZCPR3
ZRDOS

XXXVI

SuperLinker Plus
String Bottom Controller
String Optical Module program
Stack Pointer

Short Prototype String of the DUMAND Project
Special Unitary symmetry of order 5
top of stack
Transient Program. Area
Zilog CP/M Replacement number 3
Zilog Replacement Disk Operation System
transistor-transistor logic
indeX register
external buss
transmitter data line
Transmit (digital) Data (as opposed to analog)
Universal Asynchronous (serial data) Transmiter /
Receiver

Underwater Hawai'i Programming System
ultraviolet

vector minus pseudovector or "left" handed interactions
vector plus pseudovector or "right" handed interactions
Voltage High (logic sense reference signal)
WRite control

call sign for universal time clock run by the U.S.
National Bureau of Standards
crysTAL line n
crystal n

Zilog CP/M Replacement number 3
Zilog Replacement Disk Operation System

Symbol

A

B
c
C

dG(Ocorr) / dQ.

d G(SI. S2) / d n
drl/dot.

dr2/d02

E
E
Ecm
gw = l'4xCtw
H
h
H(ptr)

h(s)
I
I z

/0

/0

JI'P

L

I.e

xxxvii

SYMBOLS

Definition

isotropic part
anisotropic part

the absolute speed of light in a vacuum
the charmed quark, analogous to the up quark

overall correlation angle dependent cross section

the spin dependent differential cross section

the spin dependent t decay distributions

the energy operator
energy of e+(e-) beam
center of mass (momentum) energy

= the "weak coupling constant"
number of hits (events)
the quantum Planck constant = h/2x

the classical hamiltonian
numbers of "hits" (events)
isospin vector .

the total projection of a system of interacting particles
the vertical intensity at a zenith angle 0

the vertical intensity at the zenith
the double named charmonium particle

angular momentum

intrinsic angular momentum (spin) of electron

mass of the proton = 0.9383 GeV/c2

mass of the neutron = 0.9396 GeV/c2

mass of the tauon = 1.784 GeV/c2

mass of the pion = 0.140 GeV/c2

mass of the tauon neutrino

n

(~)

n(v1:>

p

p

p

Pn

Ptm)

r

r

r

R
r(z)

t

u

V

W+,W·

z

xxxviii

the power law exponent for the variation of the power of
the cosine of the zenith angle of penitrating cosmic ray
muons with respect the depth of measurement in the
Earth

count (or weight) of the number of identical terms

pm qn -m making up the aggregate probability of an m

fold occurrence among n things
number density of the tau neutrino in the Universe

(critical) energy density to close the Universe

individual probability
the momentum operator
linear momentum
the momentum of the composite pion
aggregate probability for m things each with a common
finite of occurrence tried n times
radius
associated random rate within the coincidence window
time
predicted aggregate rate [Hz]
real aggregate rate [Hz]
radiative correction term
integration time [seconds]
the up quark
the speed of a particle
the charged massive gauge bosons of electroweak
unification
electron energy relative to the maximum possible
value ofEe / Eemax

the neutral massive gauge boson of electroweak
unification

a and J3
<Xe

J3
e

Ei
£(00)

'11

e

P
1:
1:(to)

'¥(r.t)

xxxix

constants such that <Xi2 = 1. J32 = 1 (i =1. 2. 3)
the fine structure constant
velocity of1:+(1:-)

measure of the degree of pureness of V-A (pure V-A

Ie = 0])

statistical error
the dielectric constant of a material medium frequency CJ)

measure of anisotropy to isotropy =(8 I A)2 (note that for
'11 =0. mv= 0)

production angle

the Cabbibo angle
characteristic angle of emission of Cherenkov light

correlation angle
Michel parameter
coincidence window time
lifetime of the tauon

the wave function

xl

PREFACE

The work contained in this dissertation, both theoretical and experimental,
has been supported by and is an extension of the work done by the High
Energy Physics Group (HEPG) of the Department of Physics and
Astronomy of the University of Hawai'i at Manoa in Honolulu Hawai'i. For
the most part, this has been funded through the ongoing contract that
HEPG has with the United States Department of Energy. As noted in the
acknowledgements section, many people, particularly those associated with
HEPG have contributed towards the general advancement of knowledge
that this dissertation represents. However, in the long run, this
dissertation is a summary of the work that I did and as such the author is
responsible for any shortcomings in the material contained herein.

The main text of this dissertation was set in New Century

Sehoolbook-.

1 as popularized in the Dick and Jane primer series

1

PART I - THEORETICAL CONSIDERATIONS

CHAPTER 1 - Introduction to the Microcosmos

This study is in two parts and is a reflection of the state of the art of high
energy physics in the 1980's in that it is in this decade that the study of both
the very small, in the form of elementary particle physics, and the very big,
in the form of ultrarelativistic cosmic rays and their impact on cosmology,
can be truly said to have come together. The first part deals with so~e

aspects of theoretical electro-weak physics that I worked on in the early part
of the decade. The second part reports the experimental work that I did in
support of the Short Prototype String of the DUMAND (Deep Underwater
Muon and Neutrino Detection) project. To start with the first part, a brief
review of the history of electro-weak physics is in order.

1.1 Quantum Electrodynamics

By 1928, not very long after Schrodinger and Heisenberg came up with their
different yet valid quantum. mechanical formalisms in 1925, it was realized
that for real problems dealing with the wave functions of atoms and nuclei
that a relativistic form of quantum mechanics was needed. This need was

fulfilled by P. A. M. Dirac.

2

l.la Early Quantum Electrodynamics ala Dirac

One of the great triumphs of twentieth century physics has been to take the
new theories of special relativity and quantum mechanics and in
combining them be able to derive from deeper principles Maxwell's theory
of electromagnetism. This theory is the first of the quantum field theories to
explain one of the fundamental interactions (forces) of Nature. Thanks to
the humor of R. P. Feynman it is known as Q.E.D. (quantum
electrodynamics). The naive approach to combining quantum mechanics
with special relativity would be to start with the Schrodinger equation

E \}J = H (p,r) \}J (1.1)

where E is the energy operator, H(p,r) is the classical hamiltonian and p is
the momentum operator. The function \}J(r,t) is the wave function for the

particle whose probability density of finding the particle at point r at time t
is [\}J(r,t)2]. One tries to go about this by substituting the relativistic

hamiltonian

(1.2)

This fails because E and p do not occur in the equation in a similar manner
and thus the equation is not relativistically invariant. Another attempt is

the Klein-Gordon equation

(l.3)

which fails because (j> can not be a wave function (the equation is second

order and so future values of ~ can not be determined without also its

derivative with respect to time) and its density is not positive definite.

Dirac's equation

E \}J = [~mc2 + e-p c] \}J •p='¥'¥ (1Aa)

3

has a positive definite probability density p with a and ~ being constants
such that

Oj2 =1 and ~ = 1 (i =1.2.3) (lAb)

and all of the other combinations are zero. This equation results in four
eigenstates with two positive energy states with opposing spins and two
negative energy states with opposing spins. The negative energy states are
identified with the "anti-particle" of the positive energy state particle.
Taking the arguments further, it turns out that there is a limited set of
possible interactions (solutions to the Dirac equation) for the wavefunctions
'P of the form:

lJI'(x') op 'P'(x') (1.5)

where op stands for a relativistically invariant operator. These are the
scalar. the vector. the antisymmetric tensor. the pseudovector, and the
pseudoscalar solutions. In combination, these are referred to as the V - A
(vector minus pseudovector or "left" handed) and the V + A ("right"
handed) interactions.

--------------_.__._- ~--- -----_._----- --

4

1.lb Later Day Q.E.D. ala Feynman

Dirac's description, while it took the quantum theory of electrodynamics a
long ways, was not completely satisfying. Strictly applying it, one would
have an infinity of higher order terms based on the self interaction of the
electromagnetic field. Thus, ':;he theory accurately predicted many things
such as the existence of anti-particles or the magnetic moment of the
electron, but it did not result in real interaction solutions. By the late
1940's, R. P. Feynman and others found a way around this difficulty. They
showed that because the parameter coupling of the field to matter is small
compared to unity (actually the fine structure constant of 11137), then small
perturbations rapidly close the series. Thus, the infinity of higher order
terms do not contribute anything. In fact, Feynman became famous for his
introduction of a simple diagrammatic technique which allows one to
visualize the contributions due to increasingly more complicated
interactions without having to get immediately lost in a sea of mathematics
where one could easily overlook a term that should be included for series
out to any given order n.

Such theories are said to be locally gauge invariant. What this
means is that the symmetry in the theory is such that the theory is

invariant with respect to local phase rotations of the wavefunction. These
are proportional to the electric charge of the associated particle if and only if

the field has precisely the properties of the electromagnetic field of
Maxwell. The choice of phase is conventional and not physical and thus
independent of an arbitrary gauge of measurement.

An aspect that ought to be mentioned in passing, is that the photon,
which is the propagator in QRD theory, is massless. This means that QED
is a quantum field theory whose propagator has an infinite range. This
sort of thinking was what H. Yukawa had in mind when in 1935 he
predicted that some kind of heavy mediating particle, the meson, was
needed to mediate the (strong) nuclear force between nucleons inside an

- --_.-'-- -------------

5

atomic nucleus since the range of this new force was known
experimentally to be confined to the dimensions of the nucleus. In other
words, in some sense, the range of a propagator is inversely proportional to
its mass. Additionally, a theory in which the propagator is massless has a
symmetry which is not broken. Finally, it should be pointed out that the
gauge principle is a very deep principle, in contrast to a lot of ad-hoc things
floating around in the world of quantum field theory, and as such takes on
great importance in trying to develop theories for other interactions.

6

1.2 The Particle ''Zoo''

The term "elementary" when applied to particle physics must be applied
with a healthy sense of skepticism. In the recent past, the known
elementary particles would have been the molecules and later the atoms
which make up the periodic table of the elements. More recently, the term
could be applied to the nuclei of the atoms and even later to the nucleons
(and mesons) that make up the nucleus. Today, the current picture is that
even these elementary particles are made up of even more fundamental
particles (quarks). A second point that is worth mentioning, before
embarking on our adventure through the elementary particle zoo, for at
times it is an important guide along the journey, is that there is a sort of
meta-axiom which says that whatever is not explicitly forbidden must
happen.

l.2a Quantum numbers

Elementary particles are completely (uniquely) described by the totality of
their internal quantum numbers. Internal means that the quantum
numbers refer to the particle itself in contrast to the classical notions of
energy, momentum, and angular momentum which deal with the
"external" context of space and time within which the particles may find
themselves. Two concepts, namely mass and charge, are carried over from
classical physics while the rest are purely quantum mechanical
developments. What follows is a brief review of these internal quantum
numbers.

Spin - spin is the "intrinsic angular momentum" of a particle. It is
needed so that the total angular momentum in a particle interaction is
conserved. It was first introduced with respect to the electron and found to
have a value of

7

(1.6a)

where the subscripts all refer to the electron (e) with angular momentum
(L), radius (r), and linear momentum (p). Since the electron is a point-like
particle with no radius, the usual interpretation of L e as the angular
momentum. in configuration space makes no sense. Thus, the spin acts like
or with the usual configuration space angular momentum. to retain total
angular momentum conservation but it is internal or intrinsic to the
particle. Spin takes on values that are either half-integer (fermions like the
electron) or integer (bosons) multiples of (h =hl21t). These values are viewed

to be the projections of a spin vector which rotates about a fixed origin. The
number of possible spin states for a given spin L is given by

number of states =2L + 1. (1.6b)

Spin exhibits the kinds of properties that one typically associates with
quantum. numbers, namely that they are intrinsic to the particle itself and
that they take on discrete rather than continuous values. In this sense, the
electric charge, a well known quantity from classical physics is also a
quantum number.

Isospin - Heisenberg in 1932 made the observation that the proton and

the neutron both have essentially the same mass (mp = 938.3 MeV and mn =
939.6 MeV). Thus, he speculated, that the two particles could be viewed in
some sense as really being the same particle in two different states. The
truly important observed difference being their electric charges (ep = e and
en = 0). The latter observation that the n-n, p-p, and especially n-p strong
interactions are all of the same strength bare out this hypothesis. Basically,
the assignment of isospin values, analogous to spin values, allows one to
group together particles of almost identical masses but of different charges
as different states of the same particle (singlets, doublets, triplets, etc.),
What is conserved in strong interactions is the absolute value of the (self
consistently assigned) isospin vector I and the total projection Iz of a system
of interacting particles.

8

The isospin of a particle is completely "internal" in its action in the
sense that it does not couple with anything other than the isospin of another
particle. The abstract space in which this happens is termed the isospin
space. This initial usefulness of isospin was as a quantum number
conserved in strong interactions which summarized the spectrum of
strongly interacting particles, known to have real radii (i.e, not to be point
like), hinted at these particles as being composed of something more
fundamental.

Strangeness - in the early 1950's certain interactions that were not
otherwise forbidden were never detected. In particular, the K-meson and
the A-meson were never observed independently but the interaction

(1.7)

was. Thus, following the meta-axiom of what is not explicitly forbidden
must be allowed, Gell-Mann and Nishijima (1952) proposed the adaptation
of yet another quantum number, called strangeness, which in order to be
conserved in interactions would exclude some otherwise possible
interactions. Self consistent assignments were indeed found to be possible
which thus were able to "explain away" this "strange" behavior on the part
some elementary particles.

Color - as a quantity, the electric charge has two roles to play. One
role is that of a quantum number where it takes on only discrete values
(whether the charge quantum is considered to be either ep or epl3 does not
matter). The other role is that it characterizes the electromagnetic
interaction thus determining (Xe (the fine structure constant). This is what

makes the electric charge different from mass for there is no "mass
quantum". It is natural enough to hypothesize by analogy with the
electromagnetic interaction, that a quantum number the "strong charge"
might exist. However, the strong interaction is over very short distances,
within the confines of a nucleon, and so for it not to manifest itself beyond

9

the immediate confines of a nucleon, the "strong charges" of the quarks
making up a nucleon must mutually cancel so that the net "strong charge"
of the nucleon is zero. This is the property of "complementarity". Charge
invariance (namely the claim that replacement of an electron with charge
-e by its anti-particle with charge +e) rules out the possibility that the
"strong charge" could have the values +1, -1, and 0 (for replacement of a
charged particle by a neutral one is not charge invariant).

Color is the quantum number of "strong charge". It is given the
property a-priori that combinations that make up real composite particles
are color neutral. Thus, bare color is never observed in the way that the
electric charge of the electron can be measured to be ep • For baryons
(nucleon like matter made up of three quarks), color exhibits
complementarity in that the different quarks must all have different colors
(red, green, and blue) which in combination cancel any net color. For
hadrons (mesons made up of a quark-anti-quark pair), (color) charge
invariance cancels any net color charge. In this picture, the particles that
mediate between quarks, called gluons, possess color and transfer it thus
changing the color (but not the kind) of a quark. This is different from the
picture of the neutral photon that mediates electromagnetic interactions.
This difference reflects itself in the dynamical equations of the two fields. In
quantum electrodynamics, the equations are typically linear whereas those
in quantum chromodynamics typically are not. This non-linearity is
probably from where quark confinement manifests itself.

10

l.2b Four Forces ofNature (At"Low"Energy)

Currently, there are four unambiguous forces in Nature (at least in this
relatively low energy region of the present epoch of the Universe).

Table 1.1

The four forces of Nature

Interaction Coupling constant

Analytic Numerical
Interaction
radius (em)

Gravity

Weak
Electro
Strong

Gm2/hc

gf1ll2c1h3

e2/hc

a/[ln (m1mp)]

m»mp

0.6 x 10-38

1(}5

1/137

-1

infinite
10-17

infinite
10-13

We have seen the importance of the quantum numbers in that they are used

to uniquely classify the elementary particles. The spin s is particularly

important in that all particles fall into either of one of two spin categories.
Particles with half-integer spin (112, 3/, 5/2) are called fermions and they
obey the Pauli exclusion principal which says that no two fermions may
occupy the same state. It is precisely this kind of limitation which gives rise
to atomic structure. For example, the first period of the periodic system of

the elements consists of two elements, H and He. Here the principal

quantum number is one and only two possible spin alignments are possible

giving rise to the two elements of the period. In successive periods, one

generalizes this. Atomic orbits are governed by their angular momentum
quantum number L. The electrons in a given orbital or shell (which defines
a new period of the elements) all occupy different states with the same

11

orbital energy. This energy degeneracy comes about because of the spin
orbital coupling (s and l) can have more than one combination of states
with the same energy. In general, the total number of degenerate states
allowed for a given orbital defined by the orbital angular momentum
quantum number l is given by:

l =0, 1, 2, 3, 4, 5,...

s, p, d, f, g, h,...

2 (2l + 1) = 2, 6, 10, 14, 18, 22,.... (1.8)

:.

Thus, in the second period, with the orbital angular momentum quantum
number being two, there are eight different possible states and thus eight
different elements.

This points out the principle characteristic of the fermions, that they
constitute the basis of matter. It is the Pauli exclusion principle which
prevents the atomic electrons from collapsing to the energetically favorable
ground state.

In contrast, particles with whole integer spin (0, 1, 2, ...), called

bosons, have no exclusion rule as do the fermions. In principle, one could
continue to pack as many as one might choose into a single state. The most
elemental bosons are propagators (mediators) of the different forces (fields).

Particles are also classified by their interactions. Strong interacting
particles are called hadrons (Greek for "heavy"). These particles were
originally distinguished by mass from the lighter particles called leptons

(Greek for "light"). Today, such distinctions in terms of relative mass of the
particle are no longer meaningful because there are cases such as the 't"

lepton which has a mass (m, = 1.784 GeV/c2) or about 1.8 times the mass of

the proton (mp = 0.938 GeV/c2). The modern distinction between hadrons
and leptons is whether or not they participate in strong interactions.

12

Leptons are those fermions which do not participate in strong interactions
and hadrons (both fermions and bosons) do. Hadrons are further
subdivided into baryons (fermions with half-integer spin), the lightest of
which is the proton, and mesons (bosons with integer spin), the lightest of
which is the x-meson (mn= 0.140 GeV/c2).

A table summarizing the elementary particles and the exchange
bosons is given below (where S = strong, E = electromagnetic, W = weak, G =
gravitational, and n = integer):

Table 1.2

The elementary particles by class

Particle class Spin Types of interactions Mass
dependence

Fermions n/2 independent independent

Bosons n S,E, W, and G independent

Leptons n/2 E, W, and G independent

Mesons n S, E, W, and G independent

Baryons n/2 S,E, W,andG m>mp

13

1.3 The Quest ofUnification • Towards a Standard Model

By the 1970's, a Q.E.D. like theory for the weak nuclear force had been
developed. The principle difference being massive gauge bosons (now the
W+,W· and the ZO) were needed to mediate the short range interaction. The
experimental evidence for "partons" existed and Gell-Mann's quark
hypothesis was gaining acceptance. Because of the gross similar features of
the two separate theories for the electromagnetic and weak forces, a way to
a partial unified field theory was now open.

l.3a The Fundamental Particle Model (Leptons, Neutrinos, and
Quarks)

The emphasis on the word "particle" is a bit misleading. The wave-particle
duality of quantum mechanics gives us another picture besides just the
idea that a piece of something collides with another piece of something in
an interaction. The field description of interacting waves is just as correct.
Theoretical descriptions of particle interaction are based upon "current
theories". In these theories, one has two basic kinds of wave-particles
involved. The first are the fundamental interacting fermions, point-like
particles which are the ultimate (at least as of today in our understanding)
constituents of matter. The second are the exchange bosons (also known as
the field mediators or propagators) which exchange in an interaction both
the external values of energy-momentum and mass and the internal
quantum numbers of spin, Isospin, charge, and color.

These theories are called current theories because the first one to be
developed, quantum electrodynamics (QED) was a quantum mechanical
redescription of Maxwell's electromagnetic theory. Classically, one might
view any electromagnetic interaction as consisting of two antennas, a
transmitting one and a receiving one, both of which form current loops of

14

electrons. Radio waves (photons) exchange the energy from the
transmitting antenna to the receiving antenna.

"transmitter" "receiver"

Figure 1.1 Schematic representation of the interaction between two
electron current loops mediated by a photon.

Table 1.3

The exchange bosons by interactions

Interaction Boson Mass Spin Charge Isospin Color

Gravity Graviton 0 2 0 0 No

Weak W+,W- 00 1 +1, -1 1 No

zO 00 1 0 1 No

Electromag Photon 0 1 0 0 No

Strong Gluon 0 1 0 0 Yes

15

Table 1.4

The fundamental fermions by family (flavor)

Electric Flavor Mass
charge (GeV/c2)

Flavor Mass
(GeV/c2)

Flavor Mass
(GeV/c2)

o
1

2/3

-1/3

leptons (l) spin =1/2

Ve < 2 X 10-8

e 5.1 x 10-4

quarks (q) spin =1/2

u 4 X 10-3

d 7 x 10-3

Vu < 2.5 X 10-4

J.1 0.106

c 1.5

s 0.15

V't < 3.5 X 10-2

't 1.784

t >41
b 4.7

----------- ---------------------------

16

l.3b Electro-Weak Unification

Weinberg and Salam proposed an electro-weak unification model that
introduced a triplet of intermediate bosons (the W+,W- and WO) and a singlet
(the BO)with the neutral bosons mixing so as to form the actually observable
bosons:

'Y = cos e BO - sin e Wo

zO = sin e BO + cos e WO

where e is the "Weinberg" angle now known to be given by

sin 2 9 =0.23 ±0.02

and 'Y is the familiar photon.

(1.9)

(l.10)

At the time, only the first three (flavors, species) of quarks were
known, namely the lower massed u, d, and s quarks. One of the problems to

unification was the after the discovery of the weak neutral current (making
at least part of the weak interaction like the electromagnetic interaction in
that charge is not carried by the propagator), only examples in which the
strangeness was conserved could be found experimentally. This dilemma
was solved by S. Glashow, J. Iliopoulos, and L. Maiani in what is now
called the GIM mechanism (after their initials). They proposed the
existence of a fourth quark (the c quark, analogous to the u quark), called
charm. It was to have a mass close enough to the s quark that the
strangeness-changing neutral currents would be exactly canceled out by
the charm-changing neutral currents. In 1974, charmonium was
discovered in the form of the double named J/'¥ particle.

17

1.3c Grand Unified Theories (GUTS) and ProtonDecay

Many problems remain with the electro-weak unification. First, it does not
at all include anything about the strong force (let alone gravity). Second, it
requires two unrelated coupling constants. Third, while it presents nicely
families (originally two, now three) of quarks, leptons, and neutrinos, it
does not really say anything about how these family members are related
(most particularly where their masses come from, i.e. we still do not know
why m, has the mass that it does). Finally, all interactions observed so far
are of the left-handed or V - A type while the Dirac algebra in no way
excludes a-priori interactions of the right-handed or V + A type. Still, it is a
premise of the Standard Model that such interactions will be of the more
complicated left-handed variety (a combination!) for this fits the data as a
sort of maximally parity violating interaction. Further, it is essential that
this be put to the test in the third family. The general observation is that as
one goes higher in energy things should become more symmetric (early
phases in the Universe require less symmetry breaking). Yet, for reasons
not understood, nature seems to have taken the path at the threshold of
electro-weak interactions to choose this particular broken symmetry. Why

this should be the case a-priori is still a question. Similarly, along with the
observation that the strong force coupling constant should weaken at
higher energies while the two electro-weak coupling constants should

strengthen, make up motivation for the Grand Unified Theory that hopes to
unify the electro-weak and strong interactions.

The major prediction of these theories is that protons decay
(diamonds are not forever). An upper bound on the decay rate of protons is
easily established when one notes that there are something on the order of
1029 protons in the human body. From this one can deduce that the lifetime
of a proton must be at least 1015 years because if it were any shorter, the
resultant ionizing radiation (from 1014 protons per year) would kill us and

life would not be possible.

18

Typically, the calculated values are in the range of a lifetime from
1029 years to 1033 years. One seeks this experimentally by observing over a
multiyear period a collection of protons (very pure water) on the order of 1032

in number. To date, no protons have yet been observed to spontaneously
decay with the IMB experiment reporting out a upper bound of about 4 x1032

years.

19

CH.APrER2 -The State ofthe Art - a Review ofPrevious
Theoretical Investigations

2.1 Introduction ofa Third Family ofLeptons (Quarks) into the
Standard Model

At the time of this investigation (l981-1983), with the addition of a third
family of leptons and quarks, two questions posed themselves which it was
felt could be looked into. The first question concerns itself with universality.
Generally speaking, if the idea of higher and higher symmetry appearing
in higher energy regimes is correct, then there may be a chance to
demonstrate in the third family some greater symmetry than is found in
the two lower energy families. A good candidate for this is the
experimentally noted reference for electro-weak interactions to be V-A in
character rather than say V+A. There is no reason a-priori for this to be the
case. Simply, all of the experimental data within the first two families
shows only indications of V-A interactions. It is obviously asymmetrical.
The second question is one of neutrino masses. It is well known that as one
goes up in energy which is to say moves through the families that the
associated leptons and quarks (at least in the sense of their identical quark
anti-quark pair mesons) increase in mass. Thus, one might call it a
theoretical prejudice, it seems reasonable to assume that this pattern
replicates itself in the neutrinos. This is all summarized below in Table 2.1:

Table 2.1 The three lepton-quark families

LEPTON
GENERATIONS

QUARK
GENERATIONS (~) (~) (~)

In order to obtain a more detailed understanding of the situation at
the time of this investigation. several papers will be reviewed here.

21

2.2 The Nature ofthe 't-v-r-WCoupling

Bacino, et. al.! explore three characteristics of the 't-Vr,-W coupling. First,

they look at the space-time structure of the coupling. Second, they consider
the mass of the V't in terms of its upper limit. Finally, they give an estimate

on the lower limit of the coupling strength.

The basic idea is that they consider the decay shown in Figure 2.1:

e Ve

V
I

W I
I

A
't V't

(2.1)

Figure 2.1 The decay of the tauon into and an electron and two

neutrinos

For the analysis, a pure V-A coupling was assumed for the e-Ve

vertex. Then, the e momentum spectrum was used to explore the V,A
phenomenology, and hence the structure, of the 't- v't vertex.

1 W. Bacino, et al., Phys. Lett. 42. 749 (1979)

A convenient characterization of the coupling is given by the Michel
formula:

N(z)dz'" z2[1 - z +(4z -3) +r(z)] d(z)

where

(2.2)

z = electron energy relative to the maximum possible
value of Ee I Eemax

p =Michel parameter (which characterizes the coupling)

V-A --> P =0.75
V+A --> P = 0.0

which are the only values allowed for a Vt mass of zero

and pure V or pure A --> P = 0.375

r(z) = radiative correction term which "softens" the
uncorrected spectrum (different for pure V-A and
pure V+A)

This is all summarized in Figure 2.2 below:

p=0.75(V-A)
-0-0- p =0.375 (V, A)

0.20 - - - p=O.O(V1'A)

0.15

dN
dz

0.10

0.05

-
/ "/ ,...0

/ .
, 0/

I /
I •

I .I
.II
I °

/ I
°

'/
I °

1/
~o

"\ °,'.
\ \
\
\
\
\
\
\
\

0.2 0.4 0.6 0.8

z =Ee/E~oK

Figure 2.2 Uncorrected (r(z) =0) electron momentum spectrum in t

rest frame for several values of p

The experimental arrangement used to conduct this investigation
was the DELCO detector at SPEAR. The center-of-mass energy range was

3.57 GeV < Ecm < 7.4 GeV. (2.3)

24

A number of factors were taken into account in the analysis. First, the
electron track was determined from the outer wire spark and the
momentum range (below the beam energy and above 0.3 GeV/c to avoid
uncertainies in Cherenkov counter detection efficiency). Second was the
momentum criterion. Third, account was made for the charmed
background ('II" (3770». Elastic scattering of the e+e- events was used to

obtain a handle on the measurement and the Coulomb scattering errors.
Finally, agreement was made between the Monte Carlo modeling and the
experiment.

594 events of the type

(2.4)

where X is not e+ or e- were found and cuts applied to them. Numerically,
the results are expressed in Table 2.2

Table 2.2

Results of the fits to the electron momentum spectrum

Hypothesis

V-A
V+A

Free fit

p

0.75
0.0

0.72± 0.10

15.9
53.7

15.8

No. of degrees

of freedom

17
17

16

where the error expressed is purely statistical. Combining their estimate of

the systematic errors, their final reported value is a p of 0.72 ± 0.15 which is

in very good agreement with the V-A hypothesis and nothing else.

25

Another comparison of the V-A and V+A hypotheses is given in
Figure 2.3:

OIF0.80.60.40.2

I
I
I
I

0L-....1.---l._...1..----'-_..L.---J-----JL....-....A...---'---"

o

20

-V-A
--- V+A

60

en
I-
Z 40w
>w

/, max
Z =Eel E.e

Figure 2.3 The electron momentum spectrum with z =Ee / Eemax in

the range 3.57 GeV s E cm s 7.4 GeV excluding the resonance at 'fi"

(3770). The solid and dashed lines are, respectively, V-A and V+A fits
with zero v't mass.

It is possible to make an alternative presentation of the data. This is shown
in Figure 2.4.

OAO .--~--:--r----~---,..----,

--- --- -- --- --- ---
-V-A
--- V+A

I I I I T
4 5 6 7

Ec.m• (GeV)

o I'--_...L...-__--'-__---Ll-_

10.35 r~::~=-==~=::-=r=---==d
~ 0.30
'"w

v 0.25

Figure 2.4 The average Ee / Ebeam for several ranges of center-of

mass energy (indicated by the horizontal error bars). The energy
dependences of the predictions of the V-A and V+A hypotheses
(indicated respectively, by the solid and dashed lines) result from
experimental cuts and measurement errors.

- ------- ----

In conclusion, the authors note that the electron momentum
spectrum is in good agreement with the V-A hypothesis where

p=0.75

P = 0.72 ± 0.15

theoretical

experimental's,

(2.5a)

(2.5b)

If one assumes a p = 0.75, i.e, a pure V-A interaction, then the measured X2

variations of p give an upper limit for the v't massf of

m(v't) s 250 GeV (2.6)

with a 95% confidence level. Additionally, they obtained an upper limit on
the 't lifetime of

't('to) < 2.3 x 10-12 sec (2.7)

again at a 95% confidence level. This implies that the square of the coupling
constant at the 't-vrW vertex is at least 12% (at the 95% confidence level) of
the full weak strength'[(from an assumed 't('to) - 2.7 x 10-13 sec.),

2 The currently accepted limit on this is p =0.73±0.07. See the particle data book.
3 The currently accepted limit on this is m(Vt) < 35 MeV. See the particle data book.
4 The currently accepted limit on this is t{to) < (3.04 ± 0.09) x 10-13 sec consistent with 100%
full weak strength. See the particle data book.

2.3 Measurement ofthe 't Lifetime

Feldman et a15 report a measurement of the t lifetime. This investigation

was carried out with the Mark II detector at the e+e- storage ring PEP at
SLAC. There, pair production by way of the interaction

(2.8)

produced t pairs. Four potential sources of backgound events were
identified. These were beam-gas interactions; two photon t pair production,

hadron production,

e+e- --> hadrons;

and radiative Bhabha scattering,

(2.9)

(2.10)

(2.11)

where the photon conversion either was internal or occurred in the 0.09
radiation length of the material between the center of the luminous region
and the main drift chamber. A series of cuts were made reducing the data
set down to 284 events with 306 three-prong t decays. Additional cuts were

made to reduce the chance that any of the events were scattered or
mismeasured resulting in a final sample of 126 three-prong t decays.

Finally, for the remaining data set, the flight distance was calculated
between the center of the luminous region and the decay vertex.

5 G.J. Feldman, et al., Phys. Rev. Lett. 48,66 (1982)

Making known corrections and combining the systematic and
statistical errors in quadrature they report a 't lifetime of

't't =(4.6 ± 1.9) x 10-13 sec (2.12)

Finally, they point out that assuming that the 't couples with the weak
current just as strongly as the Jl then its lifetime should be given by

't't =(mlJ."m't)5'tJlBe =(2.8 ± 0.2) x 10-13 sec (2.13)

where Be is the branching fraction for 't -> e v v (namely 0.176 ± 0.016).
Thus, at one standard deviation the 't coupling compared to the weak
charged current is 0.66 to 1.02 times the value expected from 't-Jl

universality.

2.4A Study ofthe Decay -c- ••>1n''t

Blocker et al.6 investigated the decay t- --> 7t-Vt determining the branching

ratio B(~ --> 7t-Vt)IB(t'-> e-VeVt). They then fitted the p energy spectrum
whose end point is determined by the 7t, t, and Vt masses. From this they
determined an upper limit on the Vt mass.

The experimental arrangement that they used was the Mark II
detector at the e+e- storage ring SPEAR at SLAC running with a center-of

mass energy range of 3.52 ~ Ecm s 6.7 GeV. The result that they pullout of

their data is that experimentally

(2.14)

which compares favorably with the theoretical value of 0.58. They note that
if t- --> 7t-Vt proceeds via the standard weak axial vector current then this
ratio is fixed by known parameters. This is the first time a "correct"
measurement was made.

Finally, using only data from the largest block of fixed energy
running (5.2 GeV) to minimize systematic variations in efficiencies and
background subtraction for data from different center-of-mass energies the
7t energy spectrum was fitted giving

m(Vt) s 250 MeV (2.15)

which is the same upper limit reported before by Bacino et all Figure 2.8
reflects this:

6 C. A Blocker, et at, Phys. Lett. l09B, 119 (1982)

31

1.901.70 1.75 1.80 1.85

MT (GeWe2)

I-

:E 0.2
J

a::
w 0.1
a..
a..
::>;:,. 0 L-__"'-_----l__---'-__--'- ____

:2 1.65

~0.4r----,...---,----r----r----,

~
Q.I

~ 0.3

Figure 2.5 Upper limit (95% confidence level) on the mass of the Vt as

a function of the mass of the 'to

.._- -----------------

32

CHA.PrER 3 - Decay-productCorrelation of-r+-r
Production from e+e- Annihilation

3.1 Introduction

The basic idea of this investigation is that an e+ e- beam sitting on a center
of-mass energy of 3.57 GeV (double the 't mass I) produces a 't+ 't- pair
product. In turn, the r's decay into products, some of which are observable.

In particular, should the products include mesons which are anti-particles
of one another then the distribution of momentum and energy is identical
in both decays. Such occurrences, although somewhat rare, nevertheless
happen in predictable branching ratios. One then carefully measures the
correlation angle between the observable mesons. The intention of this
calculation is to relate variations in the correlation angle from an exact
back to back relationship to phenomena associated with the possibility of a V't

mass or higher symmetry in the higher energy coupling of the third
generation of leptons.

There are two reasons for carrying out this series of calculations
with the 't and its associated V't. First, experimentallys, at the time of this
calculation (1982), the upper bound on the V't mass was found to be

mv-c < 250 :MeV

One can argue for a non-zero V't mass which may be easier to find than

other neutrino masses in the sense that it may be heavier. One such
arguement notes that as one goes from the first generation of the e to the
second generation with the J.1 to the third generation with the 1, the masses

of the leptons increase. While not as directly linked to the neutrinos as are

1 Particle data book

2 C.A Blocker, et. al. 1979

33

the leptons, nevertheless this same pattern reflects itself in the quarks of
the different generations. Now, unlike the photon, there is no strong
principle such as the gauge principle to insist upon neutrinos having
exactly zero mass. It follows then that most likely neutrinos have a mass
but, at least in the case of the v, and vJ1 where extensive searching has been

underway, this mass is quite small. One should note though the masses of
the leptons as shown below in Table 3.1:

Table 3.1

Masses of the Leptons

Generation

1
2

3

Thus, one has ratios of the sort

Lepton

e

J.1
t

Mass (MeV)

0.511
105.66

1784.2

m(J.1)/m(e) = 206.77 and m(t)/m(e) = 3491.6 (3.1)

so that if one were to assume that similar scaling ratios exist for the
neutrinos'', then if the mass of the v, is as low as 0.1 eV, this would mean

that

m(vJ1) = (0.1 eV) x 206.77 = 20.7 eVe

3 an admittedly theoretical prejudice ifyou like

(3.2a)

34

and

m(v,;) =(0.1 eV) x 3491.6 =349 eV (3.2b)

The cosmological consequences of all of this are that should the V't exist in

any quantity in the Universe there may be enough mass to close the
Universe.

In the early Universe, neutrinos decouple from the expanding big
bang before photons because their cross sections of interaction are so much
smaller than that of the photons. Assuming only three species of neutrinos,
this leads to a background flux that is

3 (neutrino species) x 2 (distinct particle / antiparticle)
x 1 (spin orientations) x 7/8 (fermion statistics) = 21/4

that of the 2.7 OK background photon number density of approximately 5.5 x
102 cm-3• Thus, it is estimated that the total Universe background number
density of neutrinos is on the order of 2.9 x 103 cm-3• Equipartition leads to
1/3 of all neutrinos (assuming that there are only three lepton generations
to deal with) being v't's. Assuming that the most significant contribution to
the total neutrino mass was due to the v-'s, then one would have an

approximate number density4 of

n (v,;) = (21/4) x (5.5 x 102 cm-3) x (1/3)

=9.6 x 102 cm-3 (3.3)

Compare this value with the (critical) energy density n c to close the

Universe

4 S. Weinberg, 1972

35

= 1.1 x 10-29(Ho)2gl em3 (1)
75 Ian I sec I Mpc 1.78 X 10-33 g leV

=6.2 X 103 eV1cm3 for an Ho =75 km I sec I Mpc

so that the critical density is met with a minimum V't mass alone of

6 2 X 103 eV em-3
my~(min) = (11c) = . =6.5 eV «349 eV

n V't 9.6 x 102 cm-3

(3.4)

(3.5)

It follows that if this string of assumptions has any validity, namely the
linear mass scaling of the neutrino masses following the lepton masses,
that the me, is small, and that a significant percentage of all neutrinos are
v't's, then there is motivation for this calculation.

A second motivation comes from seeking a more sensitive test of the
V-A structure of the third generation charged current which is the
"signature" of charged weak interactions.

Previous work5 finds a Michel parameter of

p = 0.72 ± 0.15

compared with the theoretical value of p = 0.75 for pure V-A. Thus, this

experiment confirms the V-A structure to within 0.15/0.75 =20% of the
pure case. Now, the weak interaction is characterized by the (fundamental
leptonic) vertex factor

-i gW~(1 _V')
2fI' ,

5 W. Bacino, et. a!. 1978

(3.6)

where the 2's are purely conventional and gw = V4xtlw is the "weak coupling

constant". The remaining factor rf(l - f) is important to be understood. If it

were just yIl alone one would have a purely vector coupling like QED or

QeD. Alternatively, the factor rtf alone would represent a purely axial

vector coupling. Combined, they form a theory that must violate the
conservation of parity. In fact, with the vector (V) and axial vector (A) parts
having equal weight, this "V-A" theory is a sort of maximum violation of
parity. It is an experimental fact that only the combination V-A seems to fit
the data for the first and second generations.f In other words, a

combination such as rf(l +f) is not allowed by the data yet there is no

fundamental principle in Physics to exclude this. This is in agreement with
the "Standard Model" and its view of the charged current interactions of
leptons.

6 see Chapter 2

3.2 The Problem - Settingup the Kinematics and Geometry

The simplest r decay7,a to consider is the one which results in the 1t meson

which is a pseudo-scalar meson.

The branching ratio for such events is on the order of 10%9 and thus the
occurrence of a t+ t- pair decaying into their respective neutrinos and an
observable x+ 1t- pair is 10% of 10% which is 1% of all such t+ t- events.
Experimentally one measures the angular correlation of the 1t+ 1t- pair.

The calculation depends upon a number of factors that are calculated
independently and then later combined. First, one calculates the spin

dependent differential cross section d a(s1, s2) ! d 0 of the interaction

which is assumed to be completely electromagnetic in character. Second,
one calculates the spin dependent t decay distributions d r l ! d ill and

dr2! d02 for

Finally, one combines the cross section da(sh s2)!dO with the decay
distributions d rl ! dO l and d r2! d 02 and integrates with respect to the
production angle resulting in a double integral. It will be shown that there
is a good single integral approximation to this which lends itself to
numerical evaluation as well as a closed form solution to the integral. The

7 G. Alexander et a1.

a C. A Blocker et a1.

9 Particle data book

38

effect of variation in the mass m(Vt) as well as the degree of variation from

pure V-A coupling is then considered.

3.3 Calculation ofthe Cross Section e+ e- ~ r 't'"

To carry out the calculation of the cross section, it is first necessary to
establish a meaningful frame of reference. The vertex centered frame

chosen is shown in Figure 3.1:

z

x

p(e) xp('t)
y

Figure 3.1 The vertex centered frame of reference that is used in the
calculation of the cross section.

where the production angle e is given by

(3.7)

and

40

E = energy ofe+(e-) beam

~ = velocity oft+(~)

(3.8)

There are two relevant Feynman diagrams for this cross section,
namely the direct and the crossed (or annihilation) diagrams. These are
shown in Figure 3.2.

direct

annihilation

Figure 3.2 The Feynman diagrams that contribute to the cross
section of the interaction et e-~ t+ t-.

Assuming a completely electromagnetic current for the charged lepton
interaction, one expresses then, as always, following the order of

adjoint spinor I gamma matrix I spinor

41

the four relevant currents as

and the photon propagator as

PJIN(q) =- i gJIN
q2

The contribution from the first diagram is

p =fJ~PJIN(qD)J: x (27t)4 B(PI - P3 - q)

X (27t)4 B(P2 + q - P4) _1_ d4q
(27t)4

= f [u(3)(ig,r,J u(I)] (-i:~l [v(2)(ig,Yv) v(4)]

x (27t)4 B(P1 +P2 - P3 -P4) d4q

= (27t)4 ig} [u(3) "f u(l)] [v(2) 'Yp. v(4)]
(PI - P3'fl

X B(PI +P2 - P3 - P4)

(3.9a)

(3.9b)

(3.9c)

(3.9d)

(3.10)

(3.11)

so that erasing the residual (27t)4 B function one finds the magnitude for the
first (or direct) diagram to be

42

or

(3.12)

The second diagram represents the annihilation of the electron and
positron followed by pair production of the tauons

p =f JJ PIJ.V(qA) J~ x (21t)4 a(q - P3 - P4)

X (21t)4 a(Pl +P2 - q) --.l-d4q
(21t)4

(3.13)

so that analogous to the first diagram, the amplitude of the second (or
annihilation) diagram is

(3.14)

The rule for antisymmetrization says that one includes a minus sign
between diagrams that differ only in the interchange of two incoming (or
outgoing) leptons, or of an incoming lepton with an outgoing anti-lepton (or
vice versa). That is the case here so that the total amplitude is then

M = - g} [u(3) 'f u(l)][v(2) 'Y~ V(4)]
{PI - P3)2

+ g} [u(3) ~ v(4)] [v(2) 'Y~ u(l)]
(Pl +P2)2

(3.15)

43

In order to find the cross section, one needs to square the amplitude. To do
this, one first introduces the projection operators for the electron and
positron respectively

(3.16)

which are spinless (because we do not keep track of initial spins). The
notation

(3.17)

indicates the appropriate gamma matrix. The resultant tauon and anti
tauon retain their spins and thus have, respectively, the somewhat more
complicated projection operators

(3.18)

To find the cross section, one squares the amplitude, and upon expansion
introduces the projection operators into the Golden Rule for the Scattering
of two bodies in the center-of-momentum. frame

(3.19)

thus obtaining

dcr(Sh S2) = gf 1 fd3p4
dO. (21t)24(PI.P2) 2E

fd3[J3 4
X 2E a(PI +P2 - P3 - P4)

Xl TR [(iii + ml) 'YJ! <P2 -m2) 'Yv]

x:t TR [(1 + 'Y5 S3) (ji3 + m3) 'YJ!

X (l + 'Y5 S4) (P4 -1n4) 'Yv]

44

(3.20)

where ml =m2 =me and m3 =~ =tnt. Then, doing the Dirac algebra with
me «tnt one obtains the final spin state dependent cross section:

dcr(Sl, sv =~~ [(2 _ ~2 sin20)
dO. 16E2

+SzlSz2(2 cos28 + ~2 sin28)

+Sxlsx2(2 - ~2)sin28 - SYlSY2~2sin:ze

+(SzlSx2 + SxlSz2)(l - ~llf2sin 28] (3.21)

45

3.4 Calculation ofthe Lifetimes to ~ V't 7t- and. t+ ~ V't 7t+

The next step in the calculation is to find the decay rates of the decaying
tauons. Similar to before, the frame of reference for the calculation is the
center-of-momentum. frame. In this case, one considers the decaying tauon
to be "stationary" and thus the resultant pion and neutrino equally share
the momentum. Assuming the decay is mediated by the w± the relevant
Feynman diagram is given in Figure 3.3:

P3,S3 P4,~

V -~
•W: V't P2,S2
•
•q.
•

t-

Figure 3.3 The Feynman diagram which represents the decay

t""~ V't 7t-.

Here the momentum. equation, with P7t representing the momentum. of the
composite pion, is

(3.22)

and the amplitude of the "decay" is given by

- i Mfi =(fl lit pafi(q) l~ Ii)

where the relevant propagator is given by

pap() =- i gap =-i gap cos 6c
q q2 2M~

46

(3.23)

(3.24)

with 6c being the Cabbibo angle. One now performs a calculation in three
parts. The first part is the spin independent (i.e, isotropic only) part. For a
pure V-A (i.e, left handed) case one has the following weak currents:

1t -((1 - 'Y5))lp =d g'Yp -2- u (3.25a)

where the bare d and u stand for the down and up quarks (particles 3 and 4
in the diagram) making up the observable pion, and

-((1-'Y5))J'J. = u(l) g 'Ya -2- u(2)
(3.25b)

where u(l) and u(2) represent the tauon and tau neutrino particles
respectively. Squaring Mfi one obtains

x L [u(2)u(2) P1t (1 - 'Y5)u(I)u(l) (1 - 'Y5)Px"]
polar (3.26)

Letting ml = me and mz = mvt , this is evaluated using the spinless projection
operators as before (both u(l) and u(2) are particles) only in this case one

sums over all polarizations. Performing the Dirac algebra, one finds

~fiP) = (GF cos 8c fnf 4 1
my Tnt

x [(m 2't - m 2y)2 - m2n (m 2y + m2't)]

which is a constant and so the decay is isotropic!

Further, this is physically reasonable because when my ~ 0

47

(3.27)

(3.28)

which means that this process is an allowed decay since m-r > m«. The final
massless V't must be oppositely directed to the final massive w. Similarly, in

order to conserve angular momentum, the angular momentum axial
vectors must be oppositely directed as shown in Figure 3.4.

[mal 1t

along azimuth

fmal V't

along back
azimuth

Figure 3.4 The angular momentum axial vectors that are
representative of the decay products.

Using (jMjif) one then has for the decay

dl"', JGFf.cos 9cF"./{1 +~)2 _~
dQl 641t2 intI mf

X"./(l-~r -~ [(ml-mJf -mi(ml +mJ)]

Now, using the my =0 case as a guide, one defines (the isotropic) A as

{mf -m;f -mi {mf + mJ} = mf {mf -mil A

then

df't =(Gpfrt cos scE "./{1 + mrt)2 _m;
dQt 641t2 me I mi'

X"./(l-:r-~ [ml(ml-mi)A]

48

(3.29)

(3.30)

(3.31)

The second part of this calculation is the spin dependent (i.e.
isotropic plus anisotropic) part of the pure V-A (i.e. left-handed) case. Here

the currents and the expression for qMjil2) are identical but the decaying 't is

considered polarized thus one has the projection operators

which has spin (the "1" indicating the 't particle) and

L u (2)u (2) =P2
2
+ my

polar my

(3.32a)

(3.32b)

49

which has no spin (the "2"'indicating the Vt particle) since the experiment
is insensitive to the spin orientation of the Vt but ultimately is sensitive to

the spin orientation of the t with it decaying into a detectable 1t. Doing the

Dirac algebra, one obtains terms of the form

(2Pn . Pv) (Pn •P-r) -~ (Pv . p.,J

=1- [{ml- ~)2 -mi (mf +m;)]
2

=tml (ml-mil A
(3.33)

which is isotropic and P«- P-r is a product of the appropriate four-vectors,
etc. and

-(2Pn · Pv + mJ) m-r (S . Pn)

=~ (mf -mJ) -Jr-(m-r-+-mn~f:--_-mv-;:;-2

x;,J(me - mnf -mJ S . Pn

=lml(ml-~)B S . P n2 (3.34)

which is anisotropic and S • P-r is a product of two three-vectors. Note that as

m; =0 ~ A = B. Additionally, for convenience one defines the ratios

then

mn ,, __ mv
a= me and '1 me

drl = (Gpfn cos9cf ""(1 +af _1}2

dill 641t2

X "'(1- af _1}2 [ml (mf - mil (A + B s.Pn)]

(3.35)

(3.36)

i.e. an expression containing an isotropic part A plus an anisotropic part B.

00

This brings us to the third part of the calculation.

Now, one wishes to extend this calculation to one which is mixed in
terms of both V-A and V+A contributions. As in the second part, this is
spin dependent being a combination of both isotropic and anisotropic parts.
One starts out by generalizing the currents such that

pure V-A

(1 - 'Y5)

mixed V-A and V+A

(3.37)

then the appropriate weak currents are

J~ =d(~ 'Y~ «(1 - 'Y5) + £ (1 + 'Y5») u

and

f&= u(1) (~'Ya «(1 - 'Y5) + e (1 + 'Y5») u(2)

(3.38a)

(3.38b)

(again where "1" indicates the t particle and "2" indicates the V't particle).

The expression for qMfif> in terms of J~ and f& is the same as before

with the projection operators being those used in the spin dependent
calculation of before. The Dirac algebra leads to the terms

(1 + £2) [(Tn? -mJf -mi (Tn? +mJ)] + 4 e m; m« mi
== ml (mi- mil A

for the isotropic component and

(3.39)

(l - £2) (ml- mJ) ,J(~ + Inn? -mJ
x ,J(~ - Inn? -mJ s .P1t

== ml(ml- mi)B S. P1t

51

(3.40)

for the anisotropic component. These are now the generalized expressions
for A and B which can now be used in the expression for drl/ dOl given
above.

Finally, an analogous expression for dr2/ dQ2 results with the

replacement B ~ -B.

52

3.5 Combination and Integration

Now, one wishes to combine the spin dependent production cross section

da(sl,s2) I dO. with the spin dependent decay widths drll do.l and df'21 dn2 to

find the overall correlation angle dependent cross section da(Scorr) I dO. for
producing back to back observable pions. This is then integrated with
respect to the correlation angle Scorr. The first step is to perform the
combination. From above (symbolically)

and

dr1 == (A + B S . p 7t)
tIDl

~rl ==JAdo.l ==A

dr2 == (A - B S . p 7t)
do.2

~ r2 == JA do.2 == A

(3.41)

(3.42)

The spin dependent components are combined by casting them as
probabilities and taking the product, namely

(3.43)

substituting in the above

(3.44)

53

then

(3.45)

Having combined the pieces, one needs to carry out the integration.

With

dQ=dcos9d<p

then integrating out tIn and introducing the corrolation angle 9corr

z = cos 9 = PI·P2
corr IpIIIP21

with
PIx = PI sin 91 cos <PI

P2y = PI sin 91 sin <PI

etc. and letting

x = cos 91 and y = cos 92

one obtains in particular (and dropping the explicit 9corr reference)

.ldQ. = -1-f dx dy d<Pl d<P2 B[u + v cos (<PI - <P2) - z]
o dz 161[2

(3.46)

(3.47)

(3.48a)

(3.48b)

(3.48c)

(3.49)

(3.50a)

such that

(3.50b)

and with u and v being complicated functions of the form

u =u(x, y, (3, a, 11)

v =v(x, y, (3, a, 11) (3.51)

fixing x and y and using the 5 function to integrate out CPI and cI>2 results in

(3.52a)

such that

where

YI, Y2 == roots of fCy) = v2 - (u - z)2 =0 =g(x,z)

and

WI = WI(x, (3, a, 11)

W2 = W2Cy, (3, a, 11)

This is the exact expression which is a double integral.

(3.52b)

(3.52c)

(3.52d)

(3.52e)

(3.52£)

55

3.6 Single Integral Approximation

In the limit 13 ~ 0, the double integration can be done exactly yielding

.l..mI.=~ [1_1.(B...\lz]
0" dz 2 3 AI (3.53)

which shows that the cross section is greatest for acorr = 1t (i.e. z = -1). In
particular, the largest effect occurs for the largest value of

(~J =1 (3.54)

which holds at e = T\ = 0 (i.e, pure V-A [e = 0] and m» = 0 [T\ = 0]). This is

reflected in Figure 3.5:
1

J..dQ
0" dz

2/3

1/3

-1

(~Y= 1, 13= 0

o
z =cos aeorr

+1

Figure 3.5 Plot showing the variation in cross section with the cosine

of the corrolation angle.

56

and for e =0 with 1'\ « 1

which means it is not very detectable since

a=m7t = 0 081nr •

and

1'\ =mv < 0.14
me

(3.55)

(3.56)

(3.57)

is known by experiment. However, some information can still be obtained if
da I dz is measured and limits on (8 / A)2 determined. A plot of constant
(8 I A)2 contours from which the allowed region in £ and 1'\ gives:

57

0.8

0.80.60.40.2
o.0 i--L--l-..L.-'--L-J...-'--..I......JL.-J..~..L.-.I..-I.-J...-'--..L-.-..I---1..-.L-..L.-L.......L--L-...J

o

11

Figure 3.6 Plot which displays a constant contour of 11 = (B / A)2 vs. E.

As 13 goes from 0 to 1, the cross section is even further enhanced

around z = -1 by the Lorentz boosts given to the 't+ and r" which as shown

above even at b =0 prefer to be oppositely directed. The 13 =0 case suggests

an approximation:

(3.58a)

u=xy (3.58b)

then for f(y) = v2 - (u - z)2 = 0

v2 = (z - U)2

or

y2 _(2 x z) Y + (Z2 + X2 - 1) = 0

then one finds the roots

Yl =X Z -{1 _X2)1/2 (1- Z2)1/2

then

Yo =Y2 +Yl =X Z
2

evaluating f(y) at Y = Yo

((yo) = v 2 = (z - u)2

= {1 -x2)1/2 {1 - z2)1/2 - {z - XYO)1/2

so that (at Y = YO)

(Y2 - Yl) 1 - 1
2 [v2 _{z _u)2]1/2

58

(3.59)

(3.60)

(3.61a)

(3.61b)

(3.62)

(3.63)

(3.64)

(3.65)

59

and in lieu of the double integral one has the single integral approximation

f
l

.l..cia. ... 1 dx Y2 - Yl 1
o dz 4 -1 (2 }[V2 _(z_u)2]112

x {1- _l_(B\2 F} aty =Yo=Yl + Y2
3 _132 AI 2

(3.66)

Figures 3.7 and 3.8 are numerical evaluations of this integral for different
values of ~ and (B / A)2 respectively.

ill

1.25

0.5o-0.5
o.0 0 L-...L---'---L----'----I_.L.-...L---'---L---L.---I.---J'--.L-...L---I--=""-'---'~:::r:::_J

-I

0.50

0.25

I de 0.75---
(J d z

z

Figure 3.7 This plot shows the cosine of the correlation angle of the
observable pions vs. the differential cross section of the interaction
with respect to different values of (3.

61

1.25

1.00

(~r= 1.00I dO" 0.75--- 0.52
0" dz

0.50

0.25

0.00.
-I -0.5 0 0.5

Z

Figure 3.8 This plot shows the cosine of the correlation angle of the
observable pions vs. the differential cross section of the interaction
with respect to different values of (B I A)2 .

----- ---- --- ----------------------------

3.7 Closed.Form Solution

Alternatively, if one is to define

(3.67)

then the integration can be done exactly obtaining a relationship identical
in form to (3.53) which now holds for all values of fl.

(3.68)

3.8 Conclusions on Observable Phenomenology (Especially
with Respect to Generation Universality)

A - The question arises as to how z' can be measured in the

laboratory. The required angles «Ph «P2, 91 and 92 are all defined in terms of

the 't+ 't- axis. Thus, the task is to develop a procedure by which this axis can
be unambiguously identified. Such a procedure is to let the measured x+x

momenta be

and

P2 = Px" =(0,0, P2z)

(3.69a)

(3.69b)

then the t+ t- axis will be the new z axis obtained by two rotations namely
through the angle cp about z and then the angle 9 about about the new x axis.

The third Euler rotation accomplishes nothing since it would not change
the direction of the new z axis. Thus, in terms of the new coordinate system
one has

and

PI =(Pix cos cp, - Pix cos 9 sin cp +Ph sin 9,

Pix sin asin cp +Ph cos 9)

P2 = (0, P2z sin a, P2z cos 9)

(3.70a)

(3.70b)

From this point one boosts PI and P2 back onto the t+ and t- rest frames

respectively. Now, since t ~ 1t V is a two-body decay, the momentum of the 1t

in the t rest frame is fixed. Thus, there will be two equations, one for each 1t

momentum in terms of C\> and 9. Finally, one solves for cjl and 9 and

consequently obtains the t+ 1:- axis.

B . Assuming the reported experimental results, the cases of my = 0
and mv = 250 MeV are indistinguishable by this approach.

C . The effects on the cross section are roughly opposite in character
for increasing my to that of increasing the amount of V+A current in a
predominant V-A current. Thus, they mask each other allowing the

possibility of a finite my '* 0 with some V+A coupling. However, the result of

conclusion B above means that this experiment may be more sensitive to
looking for some V+A current component than in determining an my.

PART II - EXPERIMENTAL CONSIDERATIONS

CHA.PrER 4 - Introduction to the Macrocosmos

4.1The Big - Cosmology

If Astronomy is man's oldest observational science, then Cosmology, or at
least speculation as to our origins must be man's oldest theoretical
adventure. Certainly, the subject is sufficiently important to the species to
be at the very core of man's collective religious experience from the very
beginning of recorded history if not earlier. In the modern context,
Cosmology is the subject of things "big". By big one means literally the size
of the Universe.

If one theme characterizes developments in physics in the 1980's, it is
probably the union of the studies of the very small, particle physics, and the
very big, Cosmology. 20 t h century cosmology has been driven by the
discovery, both theoretically, by Einstein in the General Theory of Relativity
(1915 - although not correctly interpreted at the time), and observationally,
by E. P. Hubble (1929), that the Universe is expanding. Later work (in the
1940's and 1950's) was devoted to the questions of nucleosynthesis. From
this evolved an understanding that only the lightest of the elements could
have been made in some great Cosmic beginning and that other elements
could only have been made later in such energetically favorable phenomena
as stellar evolution and supernova.

In the early 1960's, A. Penzias and R. W. Wilson tried to calibrate a
horn antenna with a maser for the receiving amplifier. Such an
arrangement should be essentially noise free yet they persistently found an
isotropic noise at 7 em whose intensity was independent of such things as
night or day or time of year. This was equivalent to a blackbody noise source

whose characteristic temperature is about 3 oK. At just about the same
time, P. J. E. Peebles had carried out calculations which showed that if
indeed the Universe had begun as a sort of singularity in a Big Bang then
there should be a fossil radiation of just the characteristics measured.

The understanding now that the Universe began as a collection of all
the matter-energy of the Universe in a singularity with energies far beyond
the reach of particle accelerators, was a natural to bring particle physics
into the picture. Here were the energies to unify all force fields. The current
theories used to describe the early Universe are indeed the highest energy
theories of all! Thus, the connection between Cosmology and particle
physics is made. The seemingly two separate disciplines, the study of the
largest scale in the Universe and the study of the smallest scale in the
Universe completely fed on one another in the 1980's. The current
Cosmological theories are known as "inflationary Big Bang" theories which
encompass the idea of an originating singularity which "explodes" (the Big
Bang) resulting in an expanding Universe. The inflationary part is a purely
high energy physics introduction which through the application of phase
transistions has been able to get rid of some earlier problems (particularly
the so-called "horizon" problem). In general, cosmological observations can

be used to constrain particle theories and particle observations can be used
to constrain Cosmological theories. For example, even earlier than the time
when no longer every photon was automatically reabsorbed ("Let there be
light!") which today we see as the 3 OK background, the neutrinos should
have been decoupled from the early Universe. Arguments along these lines
lead to conclusions that no more than four species of neutrinos are allowed
(and thus four families or leptons and quarks). Experimental verification of

this at CERN in Europe and at SLAC in the United States of America
through the availability to produce large quantities of the ZO is one of the
"hottest" research efforts under way at the time of this writing.

The issue whether or not the Universe is open or closed, i.e. whether
it will continue to expand forever or at some point begin to contract, is still
very much in debate. Certainly summing up all the "visible" matter of the

Universe does not result in enough matter being accounted for to close the
Universe. Yet, there are galactic dynamical measurements which show
that indeed not all the mass necessary to account for the known motions
has been found. This is the famous missing mass problem. Numerous
attempts are currently being made to try and account for this, many of
them coming from the direction of high energy physics in the form of
various particles going under the collective term WIMPs for weakly
interacting massive particles. One of the chief candidates are the various
neutrino species which, if the inflationary Big Bang scenario is right, then
the Universe is positively filled with them and they would not need a very
large mass to close the Universe. So far, the electron neutrino, seems to
have an upper bound on its mass that probably rules it out. However, if
neutrinos mix, then over galactic distances (probably very safe to be larger
than the mixing length), all species of neutrinos may appear in equal
numbers. There is a theoretical prejudice! which implies that the neutrino
masses would roughly scale with the masses of their associated leptons so
that

mVe« mv~« mVt (4.1)

A very nice summary combining particle physics and cosmology is given in

the following figure put out by Fermi Lab.

1 This was introduced and used in Chapter 3 above.

11

I K Temperatare

lllleV Enfl'JlYleV

t
Atomlt

Blndlnll Enf'rJl)'

heY

MATTER
DOMINATION
oFormation of 0 Formation

Rtrurturf' ofAtomN
Bf'lllnN • Of'C'uapllnllor

1
Maun and

1""'"''
lO5K

IOeV

QuarklHadron
Tran.ltlon

• Bill Banll
Nurlf'oNynthf'NIN

--"
1010K

1TeV
t t t

CM Enrl'lO' Nuclur Blndlnll
'reV I 'reV II EnrrJl)'

10
9
Ce"

t
Hlllhr.t EnrrJl)'

eo.mleRa)'.

ENDOF
ELECTROWEAK

UNIFICATION
oEndof

Ru~n)'mmrtr)'?

I_ "'~rtm~
1025K I020K lOI5K

10
15Ge'{

t
KEof

Sprln~r

ENDOF
GRAND

UNIFICATION
.Orlllinof

Mat~r·Antimaurr
....ymmrtry
oMonopolu
olnnatlon

1030K

--------------------------------------~ -- • ..-.-~~c~~~~\·f'Photon. Y

I 103 106 109Yean
, I I I I

iii iii iii I iii iii Iii iii Iii iii iii iii iii iii Iii iii » iii iii Iii iii iii i I » • TI me
1O'42te O]0036.eo 1O·30. eo 10.24..0 10'18m 10·12.eo lO'6te O 1tee 106..e 1012. oe 1018.ee

11L-NO\V
Galaxy Solar

CONSTITUENTS Form. S)'atf'mForm,.

. ~(J'e){JI,.\{JIY)77 - L _... 2KNntrino
Leptonund e" \p:l \r ? • V~ ---. -- 3 . 3·Batkllround

Quarka (U)(C)(t)?77 • 8,p--1H+, D+, He+~rlH,D. H~
d s h 4H .+ 7L ·••• e" 4H 'L'e, 1, e, 1

tC W ONS •
Gaalt ,",a Z •

Boeon. X, Y, ...77 • 4-RatloofMat~r/Radlatlons5x 10'10--+

(I,
~~~~ -
~Rut EnrrJl)'
~ of Flu
~
.~ 1~'30 10'25 10.20 10'15 10'iO 10'5 [,;;e

- '" I I , I I I , I , I I , I I , , I I I , I , , I , I , I

-=- 197 lSI 3 165 3 149 133, 117 3 I 3 1'15 -30 3
--'- 10 I.mlem3 lO Imlem 101m/em 10 I.m/em3 10 Im/em3 10 Imlem 101m/em 10 gm..t:m3 10 I.mltm Density

ttl t
Nuc:lear Water Ir I Atom/rm 3
M.t~r , ...

QUANTUM
GRAVITY

oSa~I'InlYlt)'?
oExt.'a Dlmrn.lon.?

oSll~n)'mmrtry?
oSu~ntrlnll.?

o t'..rNil.b,lnS'.

Figure 4.1 The history of the Universe according to standard
cosmology and the standard model for fundamental particle physics

~



4.2 Cosmic-rays

In terms of the early twentieth century definitions of the different forms of
radiation, cosmic-rays differ from the other forms of radiation such as a, ~,

'Y, or X radiation in that they are not made up of a single component. The

primary cosmic-rays, namely the composition of the extraterrestrial
radiation that impinges upon the atmosphere of the Earth, is mainly made
up of ions such as eo's, p+'s, and heavier nuclei along with some neutral
components such as nO's, "('s, and v's (the latter of possibly different

families).

4.2a History and Importance

Cosmic-rays kept showing up as an interference in early radiation
experiments leaving unexpected ionization in early detectors such as cloud
chambers. They were shown to exist even underground through the
seemingly spontaneous discharge of electroscopes. A further piece of the
puzzle was unraveled when in 1912 Viktor Hess made a series of balloon
flights which showed that this background radiation increased
significantly with altitude.

Because one has no control over their generation, cosmic-ray studies

have traditionally had to ride at the back of the high energy bus, so to speak
(for at least the last 30 years or so), when compared to accelerator studies
where the source is well known and well calibrated. Still, cosmic-ray
studies have played an important part in the development of the high
energy physics picture. It is in cosmic-rays that the first detections of the
positron (et), the muon (u), the pion (1t meson), and some of the K mesons

and hyperons were made. Because cosmic-rays are the only source for
studying high energies> 1800 GeV, there is eveJ.y reason to believe that in

the future, when the development of particle accelerators mandates



machines that want to circle the circumference of the Earth, there is every
expectation that they will become even more important. Cosmic-rays even
playa very important role in biological evolution on this planet for they are
a primary source of ionizing radiation (the other being radioactive decay of
terrestrial minerals), which is continuously needed in very low level
quantities to induce random mutations at a rate that does not destroy life yet
allows some regular change to be introduced so that the process of selective
evolution can filter out the useful changes. This process is very evident
when one looks at the evolutionary rates of alpine plants compared to plants
closer to sea level. Radial distribution of plants, isolating populations on
mountain tops, and then bombarding them with doses of cosmic-radiation
above the sea level norm often produces unique species to a given mountain
region. This is even true here on O'ahu island in Hawai'i where closely
related but distinctly different species of ferns have evolved separately in the
Waianae and Ko'olau mountain ranges.

Ultimately, cosmic-rays will hopefully tell us much more than just
something about the properties of the particles involved but also much about
their astrophysical sources. Of course, this makes for a very difficult
experiment since there is no a-priori clean separation of phenomena
between source and target as one has in an accelerator experiment where
there is detailed knowledge and control of the beam. Thus it will take
patience to sort it all out but astronomers have been doing this for years and
compared to accelerator studies, cosmic-ray studies are very cheap.

In fact, cosmic-rays as high in energy as 1012 GeV have been
detected. This is equivalent to about 1022 OK (right in the middle of the
suspected particle desert between the Electroweak and Grand Unifications)
corresponding to a time about 10-24 seconds after the Big Bang.



70

4.2b SecondaryComponents

Most of what is directly observed in terms of cosmic-rays are the secondary
components. The nucleonic components are mostly what are called the
knock-on pv's and nO's. These are due to direct collisions by primary
cosmic-rays or secondary x's of energies> 100 MeV resulting in nucleons

being knocked out of atmospheric nuclei. Because of their charge, the p+'s
rapidly disappear due to ionization losses dominating over any nuclear
interactions. This results in an excess of nO's which at about an altitude of
3500 m above sea level is around 4 to 1. Intimately these nO's thermalize to
around 0.025 eV.

When the nucleonic components are generated by sources with
energies > 300 MeV, larger nuclear fragments such as D+, T+, and a

particles maybe radiate out of the nucleus with typical energies around 10

MeV. These events appear on photographic emulsions as stars and are so
named. Stars make up about 20% of the cosmic-ray secondaries and
nucleonic components make up about 7% (near sea level).

The xOmeson has the short lifetime of around 8 x 10-17 s decaying into
two 'Y rays whose total energy equals the rest mass mxo = 140 MeV plus the

kinetic energy of the xOmeson. In turn, each 'Y ray, when it passes close

enough to a nucleus, undergoes pair creation resulting in an e+, e- pair. In
turn, these particles undergo Bremsstrahlung radiating lower energy 'Y

rays which in turn undergo pair creation, etc. in an electromagnetic
cascade until finally the individual particle energies are below the 1 MeV
threshold for pair creation. With such cascades typically spending
themselves at higher altitudes, these secondary particles are known as the
soft components. About 25% of the secondary cosmic-rays (near sea level)
are made up of soft components.

The charged x mesons are a different story. 'With a much longer
lifetime of around 2.5 x 10-8 s before they decay into u's by way of



n+,- ---> ~+,- + VIJ.

71

(4.2)

those with an energy> 10 GeV are traveling fast enough to experience
significant relativistic time dilation. Thus, they stay around long enough to
interact with atmospheric nuclei much in the same way that primary
cosmic-ray nucleons do with their cross section of interaction being
essentially the geometric cross section of the nuclei involved. When there is
decay and the Il'S are produced, the u's do not interact with the nuclei.
Additionally, because they are so massive (mlJ. =207 IDe), they fail to

produce Bremsstrahlung so their only energy loss is through the relatively
feeble process of ionization. As such, u's can be quite penetrating going to

great depths in rock or the ocean and are known as the hard component of
cosmic-rays making up about 48% of the secondary cosmic-ray spectrum (at
sea level).

-- ------------------



72

4.3 Cherenkov Radiation

In 1934 the Russian Physicist Pavel A. Cherenkov'' observed a form of
electromagnetic radiation that is today named after him. It occurs when a
charged ultrarelativistic particle passes through a material medium. It is
a necessary condition that3

v >---'-
V£(00) (4.3)

where v is the speed of the particle, c is the absolute speed of light (in a
vacuum), and £(00) is the dielectric constant of the material medium. In

other words, the speed of the particle is greater than the local speed of light
(phase velocity of the electromagnetic fields at frequency 00). When such a

condition is met, radiation is emitted with a characteristic angle of
emission 6c to the direction of travel, forming a light cone, given by

COS6c=v~
C £(00)

(4.4)

Following the experimental observation of the (electron) neutrino,
Fred Reines proposed the use of the Cherenkov effect in the deep ocean as a
means of observing Cosmic Ray neutrinos. The effect of the ocean would be
two-fold. First, by going deep and aiming the Cherenkov light detector
downwards so that the earth worked as a shield against other high energy
Cosmic Rays, an unambiguous neutrino detector could be built. Second,
since neutrinos are notoriously hard to detect because of their small
interaction cross-section, such an ocean based detector is essentially
infinitely expandable and so could be built up to sufficiently large detector
area as to be able to detect a signal from astrophysical sources. This idea

2 receiving the 1956 Nobel prize in Physics for his observation

3 see Jackson, p. 638-9

- ----------------------



73

goes by the acronym ofDUMAND for Deep Underwater Neutrino and Muon
Detection. Neutrinos from such sources would come from very high energy
astrophysical processes indeed and as such would potentially reveal much
information about the dynamics of such processes. The only thing that has
kept 20th century science from pursuing this idea (from the 1950's) has been
that it was not until very recently that the technology has existed in order to
be able to do this.



74

4.4DUMAND and the BPS

The technologies needed to do this, besides the associated marine
engineering (which is pretty involved in its own right), are those of large
photomultiplier tubes of 5 ns resolution, fast digitizing electronics of 5 ns
resolution, fiber optics communications, microprocessor controllers, and
high pressure (> 500 atmospheres) housings. These all had to be integrated
into a working instrument. The project which did this, during a cruise off
the Kona coast of the island of Hawai'i in the Fall of 1987 is known as the
SPS for Short Prototype String.

Chapter 5 is a review of the classic experiments that have taken place
in the intervening decades leading up to the technological feasibility of such
an endeavor and as such many associated details are left for there. Here, a
over view of the SPS will be given. Chapters 6 through 10 deal with various
aspects of the instrument design that I was involved in, my particular
emphasis being the microprocessor controller technology, both hardware
and software. Finally, chapter 11 is an analysis of some aspects of the data
from the SPS project concluding that a larger DUMAND array is
technically possible.

The SPS in part deserves its name because geometrically it is a string
of photomultiplier tube detector based modules that are housed in
transparent (machined pyrex glass) pressure housings capable of handling
the deep ocean pressures involved. A cross sectional diagram of such an
optical module is shown below in Figure 4.2:



75

DUMA NO Optical Module

382 0

I I
--~, I Ben thos sphere

~HamamalSU PMT

Silicone gel

Circuit board
/ .

feed through

Figure 4.2 Cross-sectional diagram of an optical module found in
theSPS4.

4 see Matsuno, et. a1. 1988



76

Note that the photomultiplier is big in the sense that it is 16 in in diameter
and that the pressure housing is 17 in in diameter. The photomultiplier has
a resolution of 5 ns and a gain of 107• The electronics to control, power, and
process the signal from the photomultiplier are all limited to the small
space found around the base of the tube. For the purposes of the SPS and its
goal of demonstrating technical integration feasibility, in contrast to any
permanent DUMAND type facility where the principle goal would be to
detect muons induced by Cosmic Ray neutrinos, the photomultiplier tubes
were oriented upwards rather than downwards so that they would be most
sensitive to the more abundant atmospheric muons thus greatly enhancing
the rate at which the SPS telescope would have to reliably detect a muon
track. In total, seven such optical modules were strung together along with
two calibration modules and additional instruments to monitor the deep
ocean environment in a detector string shown in Figure 4.3 belows:

5 see Figure 4.1 Bosetti, et. a1. 1988 (DUMAND II Proposal)



71

The KOlmolino
'rom b.low

PMT .1

PMT_S

Hydrophone _I •

E"v.,onmenlol
Modul.

S'ring BOllom
Co,,'roll.r I

OPTICAL MODULE

CALIBRATION
MODULE

CAliBRATION
MODULE

Figure 4.3 Diagram of the ship suspended Short Prototype String
experiment.



78

At the speed of light (equivalent to 0.333 ns m-1 at c), a 5 ns resolution
yields a maximum travel distance of 1.5 m (actually a bit less for light
slowed in water). Thus, to be on the safe side, the optical modules had to be
spaced at a distance several times greater than this. Dimensionally, the
instrument string was about 50 m vertical with optical modules spaced at
5.1 m intervals (equivalent to about three to four times the minimum
allowable distance). With 5 ns resolution, the intent was to be able to detect a
signal through time of flight separation of the individual photomultiplier
detectors. As such, the path of the relativistic muon (neutrino induced or
otherwise) should be reproducible to a cone about the axis of the string and
its direction unambiguously determined. As you will see in the review of
experiments in the next chapter, this is a considerable improvement over
previous experimental arrangements after several decades of trying on the
part of the world physics community.

As Figure 4.3 shows, the string consisted of a specially designed 7.9
mm diameter electro-optical cable which was suspended from the SSP
Kaimalinof whose particular characteristics plus the cable rigging on
board tended in combination to minimize any accelerations along the cable
cutting back on mechanically stimulated bioluminescence (the other major
background source being K40 decay which is beat down through track
fitting). This cable had three functions to perform. One, it was the
mechanical link between the instrument string and the ship. Two, it was
the optical link for the high speed data being sent to the ship board
laboratory. And, three, it was the electrical conductor for both instrument
power as well as slow speed command and control communications.

As Figure 4.3 shows, the calibration modules were placed half way
between the 2nd and 3rd and the 5th and 6th optical modules. These consisted
of a UV laser source of known and programmable intensity, duration, and
repetition whose light activated a scintillator at the end of an extended rod
(the "dork") emitting a blue light pulse close to the maximally transparent

6 Hawaiian for "calm seas"

--------- ---------



79

region of water. With such pulses programmed into the data stream,
absolute calibrations were possible. Finally, in anticipation of a permanent
ocean anchored array of DUMAND vertical strings, an environmental
module along with two associated hydrophones (in the hopes that one may
see one's way clear to doing an "acoustic" version of DUMAND) and a
"Neal Brown" deep ocean sensor unit for monitoring the deep ocean
environment were deployed. The outputs of all these devices were in tum
fed to the String Bottom Controller (SBC) whose principle task was to
convert parallel fiber optic analog inputs into a single serial fiber optic
digital output which constituted the high speed data stream sent back up
the fiber optic cable to the ship board laboratory and its data harvesting and
system command and control computer.



8)'

CHAPrER5-TheStateoftheArt-AReviewof
Previous Experimental Investigations

With the discovery in 1962 of a neutrino species associated with the muon,
the possibility of detecting high-energy neutrinos from primary cosmic
rays and ultimately interpreting the information that they may convey
about their source became real. The consequence of this was that a series of
cosmic ray detection experiments were proposed, built, and run in the late
1960's through the middle of the 1980's. In this section, a comparative
description of a number of these experiments will be made as motivation
leading up to the development of the DUMAND Short Prototype String
(SPS).

Atmospheric muons are very penetrating and have a rate something
on the order of 1010 times greater than the expected rate of muons from
cosmic ray neutrinos at a depth even as great as several kilometers of
water. To detect such a weak signal against such a strong background
requires an experimental procedure that greatly cuts out the atmospheric
muons. Two approaches are possible, (1) seek a great depth and use a
relatively simple detector to reduce the atmospheric muons or (2) seek a
moderate depth and use a more involved detection scheme whereby only
upward traveling muons, i.e. muons that are unambiguously the
product of neutrinos that traveled through most of the Earth until they
interacted with the material medium near the detector, are accepted. The
former requires depths that are impractical (greater than three kilometers
in mines and ten kilometers in water) so that the latter is the only practical
approach.

These experiments are divided into two basic detector categories.
The earlier experiments, namely the Kolar Gold Field, Case
Witwatersrand-Irvine, LSD, Artymovsk, and Baksan experiments were all
scintillation counter experiments. The later experiments, namely the

Irvine-Michigan-Brookhaven and Kamiokande experiments are water

- --_._---- -----------



81

Cherenkov experiments. These and other recent experiments (Soudan,
NUSEX, MACRO, LVD) were built primarily for other purposes, such as
the search for nucleon decay or magnetic monopoles, but of necessity are
excellent neutrino detectors as well. A number of experiments based upon
both methods of detection will be reviewed here. However, it is important to

note that we are only interested in the higher energy neutrinos and as such
low (MeV to GeV) energy neucrino interaction detectors which look for
contained events such as Artymovsk, LSD, LVD, the work of Davis, Lande,
etc. will not be reviewed but rather only experiments that deal with through
going muons will be considered.



82

5.1 Description ofthe Underground Scintillator Experiments

When an ionizing particle passes through a material medium, some of
the atoms in the medium absorb energy in such a way that outer shell
electrons may be pumped into a higher energy orbit. Some time later,
these electrons return to their normal ground state sometimes radiating
photons which are detectable by very sensitive light detectors such as
photomultipliers. This is the phenomenon of scintillation. Typical
inorganic phosphors (scintillators) such as ZnS used in early nuclear
work by Rutherford have response times (the time between stimulation
and return to ground state) of around 100 ns or longer. For detecting
cosmic rays moving roughly at the speed of light (0.3 m ns·1) , in detectors
with dimensions of a few meters, this does not give sufficient resolution to
discern upward from downward motion. The development of organic liquid
scintillators with a response time around 1 ns partially solved that problem
and permitted the development of improved detectors.

However, in general, these detectors could not tell the difference
between left and right nor up and down and at best, as in the case of CWI
and KGF (described here below), where direction determination is possible,

one is left with a two fold directional ambiguity unless there is an obvious
intruder revealing the direction sense. Generally, liquid scintillators
permitted the development of detectors with a larger detection area for a
smaller cost. Only the large water Cherenkov type detectors such as
Kamiokande and 1MB are to date able to distinguish the direction by timing
as well as by topology. Let's look at some of the detectors and their
evolutionary history.



83

5.1a Kolar-Gold Field

The Kolar-Gold Field experiment was a collaboration of the Tata Institute of
Fundamental Research (India), Osaka City University (Japan), and the
University of Durham (United Kingdom). The basic philosophy of the
experiment was to use a simple detector at great depth. It was located at a
depth of 7600 feet in the Kolar Gold Mines of South India. The
experiment was carried out from early 1965 to June 1969 in basically three
stages. The first stage consisted of muon telescopes as shown in Figure
5.1.

- ---- -----~-----~ -



typeU

84

type UI
\

\

Du Mont 6364:
photomultipliers

plastio scintillators
(total area 6 mS)

, I
neon 2·5cm

1laah tubes lead

Figure 5.1 Geometrical arrangement of the first stage design
(Kolar-Gold Field telescopes 1 and 2)1.

1 Menon, M. G. K, et al (1967)

------------------- - -- -------------



85

The system was made up of two such identical telescopes each consisting
of two vertical walls of plastic scintillators separated by 80 cm each 2 m
long and 3 m high. The scintillator walls were equally divided up into
three sections each with an effective area of 1 m2• Each scintillator
section was viewed by adjacent 5 in. diameter photomultipliers. Four
fold coincidences were recorded between a pair of photomultipliers on
one wall and any pair on the opposite wall. The space between the
scintillator walls was occupied in part by three separate arrays of
(horizontal) neon flash tubes each containing four columns of tubes.
Separating the flash tube arrays were two walls of lead absorber each 2.5
em thick.

Upon a four fold coincidence, the photomultiplier pulses were
recorded on oscilloscopes and after about a 30 microsecond delay, a high
voltage pulse was applied to the electrodes of the neon flash tube arrays.
The flashes were then recorded photographically by two cameras in direct

view of the flash tubes.

This arrangement verified the existence of nonelastic cosmic-ray
neutrino interactions but not much else. The neon flash tubes were 200
em in length and 1.8 em in diameter. Intrinsic to this arrangement was a
resolution of around 1 degree for zenith angle but very poor resolution
for the azimuthal angle since it could only be approximated by noting

which scintillators were involved in an event.

The second stage was developed to improve on the azimuthal
uncertainty and three identical muon telescopes of a newer design were
added as shown in Figure 5.2.

-------.-



t
fl C;;:ll 8 :ll fl
CD ~.o ()

C;;'§ s
~

+> =' '0 o al='+> i- ~+>

'~1 .~~ ".Z=E:; r:: s:: ~ ~.=8 d~ 0 l!l~ ~~s .!::
0

..c:
~

Figure 5.2 Geometrical arrangement of the first stage design
(Kolar-Gold Field telescopes 3, 4, and 5)2.

Each telescope consisted of two vertical walls of plastic scintillators
separated by 130 cm each 4 m squared in area. The scintillator walls were
equally divided up into two sections. Each scintillator section was viewed
by adjacent pairs of 5 in diameter photomultipliers. The absorber was
made up of four 7.5 em thick iron walls placed between the flash tube
arrays. Both zenithal (horizontal) and azimuthal (vertical) flash tubes were
used with four layers of tubes in each array. Using mirrors, a single
camera photographs simultaneously all five flash tube arrays. With the
addition of azimuthal flash tubes, the azimuthal uncertainty was
reduced to about one degree.

2 Menon, M. G. K, et a1 (1967)



=

Initially, triggering was done the same as in telescopes 1 and 2
on a four fold coincidence of any two photomultiplier tubes on each side of
the telescope. These telescopes were run this way from March 1966 when
they were commissioned until early 1968. At this time the triggering was
changed to being any pair of photomultiplier tubes on one (either) side of
the telescope (o.s.t. or one sided triggering). This results in many more
false triggers but its key advantage was that it permitted the detection of
low energy events in which the particle did not penetrate all the way
through the instrument thus permitting the neutrino interactions
within the telescope to be detected as well as opening up the aperture of the
telescope.

The third and final stage saw the addition of two identical
spectrographs to help improve the accuracy of the azimuthal angle as
well as to enhance the chances of distinguishing between muons and
pions. Each spectrograph consisted of two scintillator walls 2 m high and
4 m long separated by 100 em and containing as in the original two
telescopes, horizontal flash tubes. A 40 em thick iron block in the form of a
central magnet was used as a absorber in each of the two spectrographs as
shown in Figure 5.3.

- ---------------------



88

flash tubes

I
I

t
plastic

scintillators

.\
solid iron
magnet

o
I

.t
flash
tubes

Figure 5.3 Geometrical arrangement of the third stage design
(Kolar-Gold Field spectrographs 1 and 2)3.

The absorber layers provided a means by which electrons could be
distinguished from heavier particles such as muons and pions. Also,
studying the production of secondaries from interactions within the
absorber allowed the determination of the sense of direction of the "incident
particle.

3 Menon, M. G. K, et al (1967)



89

Figure 5.4 shows the final arrangement of telescopes and
spectrographs lined up along an East-West axis horizontally in a
tunnel at the 80th level of the Heathcote Shaft in the Champion Reef Mines
of the Kolar Gold Mining Undertaking.

\
~~J---f-f-i

\ I "---tiPI \ t /
spectrographs 1 and 2 telescopes 1 and 2 telescopes 3, 4 and 5

Figure 5.4 Final arrangement of the instruments in the Neutrino
Experiment at the Kolar-Gold Fields,

Neutrino events were distinguished from atmospheric muon

events by making the crude cut of a zenith angle of 50 degrees. Anything
greater than this was assumed to be an atmospheric muon and anything

below this was taken to have passed through so much overburden of rock
that it had to be that much of the path was traversed as a neutrino before
interaction gave rise to detectable muons. Table 5.1 summarizes the
experiment's published events:

4 Krishnaswamy et. al 1971a

----_.- ---------------



Table 5.1

Summary of events in the Kolar-Gold Field experiments,

TABLE 1. DIVISIO~ OF E\'E~TS AND EXPOSURE TDIES

00

tels. I, 2

exposure time/h 49047
number of atmospheric muons 42
number of neutrino-induced 7
events (9 ~ 50')

aperture x time appropriate to 2.10 x 10'
neutrino-induced events/m~s sr
(9~ 50°)

tels, 3.4,5 o.s.t,

17560 26190
2 76t
2 5

0.37 x 10' 0.85 x 10'

specs. 1.2

24813
82

2

1.39 x 10'

t Includes particles passing through only one tray of flash-tubes.

5 Krishnaswamy et. a1. 1971a



91

Finally, the first ever attempt to possibly associate neutrinos with
extraterrestial sources was made by projecting the directions of the
neutrino events back onto the Celestial Sphere.

0°
(a) Northern Celestial Hemisphere

1800

0°
(b) Southern Celestial Hemisphere

Figure 5.5 Projection of the detected neutrino events in the Kolar
Gold Field experiment back onto the Celestial Spheres,

6 Krishnaswamy et al 1971a



5.tb Case-Witwatersrand-Irvine

The Case-Witwatersrand-Irvine (CWI) experiment? was a collaboration
of Case Western Reserve (USA), the University of the Witwatersrand
(South Africa), and the University of California at Irvine (USA). Like the
KGF experiment, the basic philosophy was one of building a simple
detector and placing it at great depth. It was located at a depth of
around 2 miles (10,778 feet in the second stage) where the virgin rock
temperature is reported to be 123 degrees Fahrenheit. The experiment
was carried out from mid 1964 to October 1971 in two distinct stages.

The first stage consisted of an array of large ultraviolet
transmitting lucite tanks filled with a mineral oil based liquid scintillator.
The tanks were grouped in "bays" of six each making up two parallel
walls of three tanks. The three tanks in each wall were stacked one on top
of the other with the one on the bottom designated L for lower, the one in
the middle M for middle, and the one on the top U for upper as shown in
Figure 5.6.

7 Reines, F. (1967)



UPPER

MIDDI:.E

LOWER

EAST

------1.8m

WEST

-------~

u

1.9m

M

L

Figure 5.6 Cross section ofeW! stage I arrayS.

The entire array consisted of nine such bays mounted on two parallel and
discontinuous rails along a mine tunnel 3 meters by 3 meters in cross
section and 150 meters long. The basic orientation of the tunnel was along
a North-South axis so that the detector was most sensitive in the East
West direction. This resulted in a detector array made up of a total of 54
scintillation detector elements covering a total effective area of 160 meters
squared as shown in Figure 5.7.

8 Reines et. al, 1967



Figure 5.7 Perspective sketch of the CWI stage I arrayf',

The individual detector elements, one of which is shown in detail
above in Figure 5.7 were 5.47 m long, 12.7 cm wide, and 55.5 cm high. Each
end of the detector elements had two 5 in photomultiplier tubes facing into
the liquid scintillator (the tube pairs being labeled A and B on one side and
C and D on the other side). This arrangement was chosen to satisfy the
following criteria (Reines 1971):

9 Reines, et. aI. 1971



(1) a large and relatively inexpensive surface area viewed by a
small number of photomultiplier tubes,

(2) a thickness sufficient to ensure energy deposition by a penetrating
charged particle well in excess of that due to natural radioactivity,

(3) a height consistent with the tunnel dimensions and the desired
hodoscope angular resolution,

(4) a response function such that pulse height variations over the
length of the element were not excessive.

Careful study with identical scintillator elements on the surface of
the Earth, selecting atmospheric muons with known paths by means of
two small guide detectors, produced the response function (the relative
signal amplitude seen by a photomultiplier as a function of the event
location). This permitted identification of the center position of the
scintillation along the active length of the detector element to within an

uncertainty of ± 0.15 meters. Thus, with events in which multiple detector

elements were involved, approximate event tracks could be reconstructed.
Figure 5.8 shows this response function.



,.....,-
8

r
:c
(!)3
w
:c
w
(f)

52
o,

w
>
~
-l
W
0:::

2 3 4 5 L

Z [DISTANCE FROM EVENT TO
PHOTOMULTIPLIER TUBE (METERS)]

Figure 5.8 The response function of a detector element in the stage I
array of the eWI experiment-''.

Triggering was accomplished upon a four fold photomultiplier
coincidence and the individual charges were stored on capacitors in an
arrangement called the "chronotron" because it preserved the time
sequence of events for later readout. With this geometry, three angular
ranges on each side of the horizontal, 0 - 20 degrees, 20 - 40 degrees, and
40 - 50 degrees could be established. This experiment verified the presence
of an isotopic muon flux due to muons (produced by neutrinos interacting
with the surrounding rock which in turn were produced in the
atmosphere) as well as a sharply peaked flux of atmospheric muons that
could penetrate to depth around a small zenith angle. The data was found
to be consistent with several maximum likelihood studies yielding a total

10 Reines 1971

._._- -- -----------------------------------_.- --



rate for neutrino induced muons of (6.5 ± 1.1) x 10-7 s-l for an isotropic

neutrino flux of (3.7 ± 0.6) x 10-13 cm-2 sol srI.

Somewhat akin to what was done with the later stages of the Kolar
Gold Field experiment, the second stage of this experiment included
crossed flash tubes to try and pin down the angular distribution better.

The second stage of the CWI experiment was set up in another mine
tunnel about 50 meters deeper at a depth of 10,788 feet or under 8.89 x 10+5

g cm-2 of standard rock. This stage of the experiment, called the ERPM
(East Rand Proprietary Mine), operated from Dec. 13, 1967 until Oct. 28,
1971.

Like the first stage, the second stage consisted of an array of large
ultraviolet transmitting lucite tanks filled with a mineral oil based liquid
scintillator. The tanks were grouped in "bays" of three each making up a
wall three tanks high. At one end, eight bays arranged to form two parallel
walls as in the first stage were set up to permit direct comparison to the
first stage experiment. Each bay was surrounded by a criss-crossed
pattern of flash tubes totaling 48,384 tubes in all. The total effective area for
this array was 174 m2• This is all shown in Figure 5.9 below.

---------------



Z ZENITH DIRECTION

MUON TRACK

8 ~-Z PROJECTION,
"

ZENITH
ANGLE

BAY 20

BAY 15

BAY 14
BAY 13

~.,.\~ ft-----y BAY 12

~~'" "'.I. ',x-y PROJECTION BAY II
~'I;\ "'.,.
~ • '" WEST side BAY 10

BAY9
BAY B

BAY 7
BAY 6

BAY 5

BAY 4
BAY 3

BAY 2
BAYI

x

Figure 5.9 The geometrica1layout of the eWI stage II arrayl'.

The flash tube array was constructed such that 56 tubes in two layers

comprised an "element" 0.5 m x 2.0 m in area. 18 such elements made up a

"module" of six horizontal and six vertical layers extending over a region

the size of 1/3 of a bay. Finally, three such modules covered a bay in a
criss-cross pattern of flash tubes yielding an effective zenith angle
distribution of a few degrees markedly improving the resolution.

11 Crouch, 1978



"Response Function"

I 2 3 4 5
Distance from event

to P.M. tube (m)

<t.E> =20MeV
for a muon at

normal incidence

O.89metric Ion

<,UVT Pluillias lank in
Opaque hausinll

c

D

Prob.

ReI. Pulse Heillht
EnerllY Resolution for
event at center of tank

Figure 5.10 Details of the nth scintillator bay and the (Sn -Dst flash
tube module in the stage II array12.

12 Crouch 1971

---------------- ----_._--------



100

Triggering was again based upon four fold coincidences but with the
crossed flash tube arrangement there was no real need for concern about
such things as "response functions". However, this experiment, like the
Kolar-Gold Field suffered from the inability to distinguish unambiguously
the direction of events along a given track.

Analysis of the data showed indeed an isotropic distribution of
muons attributed to atmospheric neutrinos interacting within the
surrounding rock. Unambiguous neutrino events were taken as large
zenith angle events (> 45 degrees). This flux approximated the predicted
value so that the muon flux due to extraterrestrial neutrinos, taken as no
more than 20 % of the observed horizontal flux or < 10-13 cm-2 s-l sr-1

should the neutrino spectrum have the same slope as the atmospheric

spectrum. The isotropic term gave an atmospheric neutrino flux of (2.23 ±
0.20) x 10-13 cm-2 S-l srI, an experimental value not improved upon for
nearly 20 years.



101

5.le Baksan

Yet another attempt to explore the realm of muons and neutrinos
deep underground through the use of liquid scintillators is the
Baksan Underground Scintillation Telescope located at the Baksan
Neutrino Observatory in the North Caucasus in the Baksan Valley at an
altitude of 1700 m. This experiment is the product of a single group at
the Institute for Nuclear Research of the USSR Academy ofSciences in
Moscow. Unlike the previous two experiments. it is not located in a deep
mine as much as it is buried inside of a mountain thus having the
relatively shorter rock overburden of 850 hg cm-2 and so requiring a more

complex detector to unambiguously separate out the upcoming neutrinos
(see A in Figure 5.11 below). The experiment. begun in the late 1970's
is still operational.

3200 ~...,

k.
2700~

~......
22/JO~

B.

Jnderchi
Mountain-z

KJ

-I
10

-r- .t
~

#J

~... .J.~ 10
c:.,j

'--
tot lJ-6

:::s
o::t...

lJ
~

~

1000 2000 3lXJO

Meters from entrance

Figure 5.11 Diagram showing approximate location of the
scintillation telescope in its relationship to the mountain above it
and to a nearby solar neutrino detector13•

13 Alekseyev, et. al., 1979



102

The basic geometry, consists of eight working surfaces populated
with 3132 (or more recently reported 3156) "standard" (liquid

scintillation) detectors. Four of these surfaces are horizontal (two interior
and two exterior) and four are vertical (all exterior) arranged in a sort of
semi-cube as shown in Figure 5.12. The overall dimensions of the semi

cube are 16 m x 16 m x 11 m high with a total target mass of 330 tons.

16 m

11 m
• ~

~ I ~ ~ deteotors

jJmm8E:t~ "J u. B m
~pecial concrete

Figure 5.12 Cross-sectional drawing of the Baksan telescope-s.

The individual standard detectors consist of an aluminum tank, 70

em x 70 cm x 30 em, filled with oil based liquid scintillator and viewed by a

single 30 em photomultiplier tube.

14 Alexseyev, et. al. 1987

--- ------- ----------------



103

,.....,.
-,

-
~;

"-- - " -- -- - "'"
4t - ---- -- -- -

- .........,

Figure 5.13 The "standard" scintillation detector of the Baksan
telescope-s

The stated goals of the triggering system for recording upward
particles are three in number:

(1) cover most of the solid angle region below the horizon,
(2) respond fast enough so that the pulse shape can be recorded on a

multitrace oscilloscope, and
(3) cut off the downward flux as much as possible.

A combination of three triggering systems is used to accomplish this
covering a zenith angle range from 80 to 180 degrees with time of flight
being used to distinguish real events. Thus, this telescope differs from the
KGF and CWI arrangements in that it is not limited as much to a region
around the horizon as they are for exploring unambiguous neutrino
signals. Azimuthal direction should also be determined. The reported
effective area of the instrument is 100 m2• The papers reviewed here do not
yet report out an atmospheric neutrino flux in a referenced journal.

15 Alexeyev 1979



1M

5.2Description ofthe Underground Cherenkov Experiments

When a charged particle moves through a material medium faster than the
local speed of light in that medium, a shock wave is set up analogous to the
sonic boom heard in air when an object moves through the air at a speed
greater than the speed of sound. This is the phenomenon known as
Cherenkov radiation. The cosine of the angle of the resultant (shock) light

cone is the inverse of the index of refraction in the transparent medium.

For pure water, with an index of refraction of n =1.33, this corresponds to a
Cherenkov angle of 41.4 degrees. Like scintillation, Cherenkov light is

detectable with very sensitive light detectors such as photomultplier tubes
but such arrangements usually have less available light to detect on the
order of a factor of ten or more. The trade off with the loss oflight is that the
Cherenkov technique is potentially highly directional.

One prediction of supersymmetric theories was that the proton
decays (diamonds are not forever) with a half-life on the order of 1029 to 1033

years assuming a simple SU(5) symmetry. To check this prediction, one

could build a detector that sat and looked at one proton for 1033 years (which
is many orders of magnitude beyond the age of the Universe -1010 years)

or one could build a detector that looks at 1033 protons over the course of a
year or so. It was this motivation that lead to the construction of very large

water Cherenkov detectors deep inside mine tunnels where they would be

shielded from most of the cosmic ray background and thus allowed to look

for a signature showing the spontaneous generation of a shower from

within the water indicating that a proton had decayed.

Such detectors, because they are so large and deep also make ideal

atmospheric and possibly extraterrestrial neutrino detectors if they are big

enough.

_ .. _-_. __._--_. -_.- - ._---_._-----------------



105

5.2a Irvine-Michigan-Brookhaven

The 1MB experiment is a present collaboration of the University of
California at Irvine, Boston University, Brookhaven National Laboratory,
Cleveland State University, the University of Hawaii at Manoa, and Notre
Dame University (the original "M", the University of Michigan at Ann
Arbor, having dropped out). The experiment has been carried out in one
form or another from late 1981 until the present. It is located at a depth of
600 meters (1570 meters water equivalent) in a salt mine run by the Morton
Thiokol company near Cleveland Ohio.

The detector consists of an approximately cubic tank (actually 22.5
m x 17 m x 18 m) of about 8,000 metric tons total of very pure water. The
walls of the tank are reinforced concrete lined with two layers of plastic
sheeting. All six sides are plastered with 2048 8 in. diameter hemispherical
photomultiplier tubes. The outputs of all the photomultipliers are recorded
for analysis later by an off line computer. For the PDK (Proton Decay)
experiment, the final fiducial mass is reported out as 3,300 metric tons.
The effective area for through going muons is - 400 m2• This is an
extremely flexible detector with triggering based upon a high number of
photomultiplier tubes being involved within a coincidence time window.
With so many tubes involved, the angular resolution of the instrument
is < 50. The relative time of incidence information is carefully preserved
so that track direction is known. Additionally, the presence of a muon in
the final state of a low energy contained event, allows one to distinguish
between electron neutrino and muon neutrino events. Thus, while waiting
for the signature of a proton decaying within the fiducial volume of the
detector, one can study thoroughly the through going muons and their
angular disposition. A universal time (WWV) clock is used to date time
stamp all recorded events.

._--_ .._--_._-----



106

fMS DETECTOR
2048 PM TUBES

Figure 5.14 Cross section diagram of the 1MB water Cherenkov
detector

In fact, such a flexible detector has resulted in quite a number of
different studies to include such things as proton decay, cosmic ray muon
phenomena, searches for new types of interactions, neutrino bursts,

studies of neutrino oscillations in > 300 MeV atmospheric neutrino fluxes,
dark matter candidates, and the search for extraterrestrial neutrino
sources.



1CJ1

5.2b Kamiokande

Similar to the larger 1MB detector, a largely Japanese collaboration of the
University of Tokyo, KEK, Tokai University, Kobe University, Niigata
University, Osaka University plus the University of Pennsylvania, have
constructed a water Cherenkov proton decay detector in the Kamioka
mine 300 Km west of Tokyo. This is an active lead and zinc mine with a
mountain rock cover of 2400 - 2700 meters water equivalent. The
experiment began in 1982 and is on going.

The detector consists of a cylindrical steel tank with a volume of 3420
m3 containing a fiducial volume of 1000 m3• It is lined with 1000, specially
designed, 20 in diameter photomultiplier tubes where 20 % of the external
surface is covered by photocathode rather than just a few per cent. The
basic advantage of this approach is that it improves the photoelectron
statistics giving good energy resolution and allowing clear identification
of pure electromagnetic decay modes so that different theories based upon
the standard model may be put to direct test.



108

Figure 5.15
experimentlf

Cross-section diagram of the Kamioka mine

The payoff for all of this work after two decades of constant effort at
greater precision in angular resolution and track reconstruction came in
the early spring of 1987. A supernova, SN1987a, was reported by

16 Grant 1982

----_. -----------------



100

observational astronomers to have occured within the province of our own
galaxy, in the Large Magellanic Cloud. This was the first such supernova
in the area of our galaxy in 400 years. After some time, the experimenters
at Kamioka found an unambiguous neutrino burst around the estimated
time of the supernova but could only pin down the absolute time to within
six minutes or so having had problems with their clock. Taking this lead,
the 1MB group (actually the Hawaii branch of it along with Irvine) made
low cuts in energy (around 25 MeV) compared to their usual threshold
and also found the neutrino burst. This confirmed the first extraterrestrial
neutrino source, confirmed the basic prediction that supernovas are
driven by neutrinos, and accomplished the world's first clock calibration
by a neutrino signal giving birth to the new observational science of
neutrino astronomy!

These detectors, with their vast arrays of photomultipliers deployed
in a large water volume, are the obvious predecessors to a DUMAND type
array which uses much of the same kind of technology in about 4,500
meters of ocean water. Such a detector is, at least in principle, almost
infinitely extensible, not being limited to the confines of a mine shaft.
In contrast, the cost per m3 of excavation is on the order of $10 or so and
such excavation is not practical with dimensions > -30 m or so due to rock
capability to resist collapse. The way is now clearly paved to making large
deep ocean neutrino observatories such as DUMAND.

- - ----------------------



110

CHAPrER 6 -Instrument Building Part I - The String
Communications System

6.1 Introduction

This chapter is the first in a series of five successive chapters which will
document in detail those sections of the String Bottom Controller (SBC) for
which I was directly responsible for in terms of their design, construction,
testing, and systems integration. This chapter specifically deals with the

"order wire" or slow speed command and control communications network
linking up the various "smart" instruments found on the string.

6.2 Design Considerations

As was described above-, the SPS consisted of a series of "smart"
instruments strung out over a hamess over 80 m long. Specifically, there
were seven PMT's spaced 5.1 m apart, two calibration modules interleaved

between the second and third and the fifth and sixth PMT's, as well as an
environmental module all housed inside 17 in. (outside diameter) Pyrex

glass housings isolating the equipment from the close to 400 atm. pressures
found at DUMAND depths. Additionally, the environmental module was

connected to a pair of hydrophones and an ocean current meter. All of these

instruments were "smart" in the sense that they contained a
microcontroller which could be directed externally to change switch
settings and thus reprogram the instrument to meet changing
circumstances.

I see Chapter 4

-- ._. --------_._------



111

Not very long into the early design stages of the SPS project, it was
recognized by the group that a command and control network would have to
be developed so that a dynamic reconfiguring of the instruments could be
done. The ocean is a very harsh environment. There are crushing depths
which must be taken into consideration. It is electrically conductive and so
wire based systems could easily be shorted out. It is corrosive, so that in the
long run some exposed surfaces can literally vanish. Additionally, a
combination of all of these factors can result in penetrating salt water
making contact with different metals in different places, resulting through
the different inherent electronegativities of the metals, in a "battery" being
created causing unwanted currents that could play havoc with electronics.

With this all in mind, reliability became my overriding concern in
designing a communications command and control system for the SPS. It
would have to satisfy the twin requirements of being both simple (and thus
with less things to go wrong, with less components to fail) and defensive in
nature in that the attempt would be made from the start to anticipate some
of the worst case problems and to design specifically around these.

An additional requirement, suggested in conference with the
DUMAND collaboration, was to design the system in such a way that
should it be considered meaningful to do so in the future, that the system
would have the ability to not only exchange commands and data but also the
ability to download a new controller program. The idea was to roughly have
the same kinds of abilities that the Voyager space probes have had in that,
as one's understanding of the environment evolved or as hardware tended
to wear down but not completely die, one could still play games in
controlling the system.

Finally, another consideration was dynamic range. As we shall see,
ii is possible to design a simple system in that it has few components that
may well be able to work in the laboratory but still be self limited in its
dynamic range. This is a potential disaster in that the harsh ocean



112

environment is not as forgiving as the laboratory and once the system is
deployed, there is little that can be done should for unforeseen reasons the
overall communications channel begin to degrade. Thus, I considered it
very important to have as wide a dynamic range as possible on the channel
to hopefully overcome such bandwidth degradation.



113

6.3 Some Early Ideas

In this section, I will briefly review some of the early ideas that were floated
around and point out what was wrong with them. Having considered such
ideas is a useful exercise because it helps to focus more clearly upon an
eloquent solution. The need for so much greater consideration is reliability.
In the whole SPS instrument, there were three areas of extreme reliability.
One was the fiberoptic cable, for without it mechanically, one would lose the
instrument, without it optically, there would be no data. Another was the
SBC instrument housing, which we tested time and time again in the ocean
for if it did not protect the SBC electronics, again the experiment would not
happen. Finally, there was the string command and control system. One
could easily afford the loss of an optical module or a calibration module or
even the environmental module but if one can not communicate with the
modules then again there would be no experiment.

One of the earliest ideas was to use the seawater as a return. While
this had the advantage that it required a virtual minimum in terms of
communications medium (a single wire to complete the circuit), it was
easily dismissed because should there be a pinhole leak in the remaining
wire, all communications would be lost as both sides of the
communications circuit felt the same (seawater ground) potential.

The next idea was to use even less wires. Rather than have a
separate communications medium, why not use the power distribution
system and superimpose the signal on the power lines? This was precisely
what was going to be done on the 2 KA power line from the ship to the SBC
so why not just do the same in all the string modules? This was not a good
idea for several reasons. First, in order to drop and insert the signal at a
given optical module, there would be the need for a very sensitive modem
system which would strip away the signal from the power. Second, the
system would have to be made foolproof with respect to power transients so
a lot of error detection would have to be built into the system at different



114

levels to ensure that a command got through and that a response was what
was intended. Third, any such drop and insert scheme would require some
kind of an isolation component (such as a transformer) which would result
in a voltage drop of probably a couple of volts. Since it was decided that the
different string modules would be fed 48 VDC and with ten such
instruments each possibly loosing a volt or two, the overall line voltage
would be too badly degraded to be of any use. Forth, such an arrangement
would be very sensitive to the number of modules on line and there were
real doubts about just how wide the dynamic range for such a system would
be. Fifth, to do all of this would require a real increase in the complexity of
the electronics (called a DAA for "Data Access Arrangement") thus
decreasing the system reliability. Further, the increase in demand for
circuit board space was particularly difficult to justify in the case of the
optical modules where all of the electronics had to be built in the small area
around the neck of the PMT.

From the above arguments, it was pretty obvious that a separate pair
of wires along with another two wire penetrater through the protective
housing should be supplied solely for the purposes of communications. This
was a simple solution requiring no additional overhead in terms of board
space nor error detection and correction programming. As such, it was
intrinsically much more reliable. One scheme proposed the simple
transmission of a standard 5 VDC serial signal with the different modules
all wire "ored" together. This had the advantage of being simpler than the
other schemes and in that sense more reliable. There were several
problems with this. First, the probability of induced voltage spikes in a wire
pair over 30 m long, especially when one of the instruments in the system is
switched on or off, is not infinitesimal. Second, each TTL driver would be
having to drive the entire length of wire (with its distributed capacitance
cutting back on how fast a level may be shifted), a not inconsiderable load.
Thus, a lot of work would need to be done to be sure that TIL logic level
crossings are within specification. Say a command was sent from the SBC

to the nearest optical module and to the farthest optical module, there
would be a great difference in the voltage levels of a logic "high" (nominally



115

> 3.5 V) due to the difference in resistive loading and possibly a great
difference in the time domain positioning of the logic crossings due to the
difference in capacitive loading depending upon the baud rate selected. This
may work, but the dynamic range of the system is limited to a very narrow
linear region and so very susceptible to simple system degradation and
voltage sensitive noise.

To overcome the problems of limited dynamic range, I decided to use
a commercially available 300 baud modem chip. The chip selected was the
Texas Instruments TMS99532. The principle of such communications
systems is frequency shift keying (FSK2) which is a variation of frequency
modulation (FM). In standard FM, one takes a whole range of analog
voltages and associates a frequency shift (about a central frequency called
the "carrier") with each possible voltage. In FSK, one takes two digital
voltages, each one representing either a logic "high" or logic "low" and
associates a unique frequency with each one. The TMS99532 was chosen
because at the time of selection (the Spring of 1984) it was the only such chip
readily available. It is an implementation of the Bell 103
telecommunications standard which supplies two communications
channels (for the possibility of bidirectional or full duplex
communications).

2 Taub and Schilling, pp. 381-382



116

Table 6.1

Bell 103 (300 baud) standard frequenciess,4

communications
mode:

frequency representing
data logic level:
logic 1 logic 0

originate
answer

1270hz
2225hz

1070hz
2025hz

These frequencies, are all faster than twice the specified baud rate (which
at 300 baud would give a Nyquist limited frequency of 2 x 300 = 600 hz)

ensuring 100% sampling of the information. The main point was that 300
baud was "fast enough" for the task at hand and one did not have to go
through the exercise of developing a modem from scratch which would take
up a lot of time, money, and printed circuit board space.

As implied by the use of FSK, the modem contains oscillators and

bandpass filters at fixed frequencies. Thus, communications is neither
voltage level dependent nor is it greatly affected by capacitive loading which

may delay transitions in an unequal way because with a pure sine wave, at

worst there will only be a phase shift which will have no affect on the

receiving bandpass filter. What this means, is that the dynamic range of
the communications system is much larger than the TTL system. The

specifications for this chip claim a typical analog receive voltage into the
chip of 0.700 V p-p (volts peak-to-peak) (or -9.9 dBm)5 with a minimum
analog receive voltage into the chip of 25 mV p-p (or -38.9 dBm) for a

minimum dynamic range of 29.0 dB! Additionally, since the transmit and

3 TMS99532 Application Report, p. 2-3

4 See Jennings, p. 46 for the similar but different V.21 European 300 baud standard.

5 TMS99532 Application Report, p, 2-5



117

receive channels are all on different frequencies, it is possible to
simultaneously use the same communications medium (wire) for all
channels. Something quite impossible with the TTL approach.

Thus, the basic design now became one of a two-wire, common mode
or party line 300 baud FSK modem based system. Such modem chips are
originally designed to be used in point-to-point communications. To
implement this, the SBC would have to have 10 separate communications
ports making the SBC even more clumsy and, with more penetraters, more
vulnerable to failure. Thus, it was decided to design a system in which the
SBC had only one communications port making the string, if anything,
more like point-to-many. Obviously some additional thought was necessary.



118

6.4 Problems Identified

This section will describe the worst case communications problems that
were anticipated in the design and the strategies taken to prevent them.
The details of implementation of some of these strategies will be found later
on in other sections. In general, to make the system highly reliable, it was
decided to try and take a defensive posture by identifying them and
designing around them.

The first problem considered is a very common one in many
communications systems. It is called the screamer. Whenever one has a
communications system in which there is a shared communications
channel among three or more nodes, then the possibility exists that one
node may go into a "transmit always" (or intermittent "transmit almost
always") mode preventing any other node from being able to transmit
information. This is very serious, for while the mechanical integrity of the
communications channel remains, the channel is now made useless and
communications is lost.

I decided on several things to try and control the screamer. First, I
designed a microcontroller based switch yard6 as the main part of the SBC
power distribution system. The idea was that individual power drops were
being made to the different modules on the string from the central 48 VDC
power supply in the SBC. Each power drop was made through a
mechanical relay on the positive side of the current loop. This was essential
for the orderly control of power to the individual modules. The basic idea
was that the system as a whole, upon powering up, would be in a mode in
which individual power drops to the different modules would all be off.
Then, on command, each module, in turn, would be turned on. Among
other things, this gave some control over communications on the string by
allowing the operator to selectively turn on and off modules until the
screamer was shut down and string communications could be restored.

6 discussed in detail in Chapter 6

- - - --------------



119

Another approach to handling the screamer came in the form of a
screamer killer circuit designed to automatically shut off a screamer for
most of the time. The modem chip has a squelch control, in other words an
output disable line, which can be used to disconnect any analog signal
output from the string interface circuit (known as the Data Access
Arrangement or DAA - this is discussed in detail in the next section). At
300 baud, a ten bit long character (one start bit, eight data bits, and one stop
bit) would allow 30 characters to pass by per second. It was visualized that
no message stream would ever be as long as 150 characters or five seconds
in duration. With ten instruments on the string, this means that in ten
times five or 50 seconds one could completely poll around the string. The
screamer is effectively disabled if the transmitter is allowed no more than
its maximum transmit window time on the reply channel and then
squelched for another 45 seconds for a total of only one access per poll time.
Ifit transmits at that time, it is merely garbage that can be ignored without
it interfering with the other modules. As such, the screamer killer circuit
is a series of timers, completely independent of the microcontroller (should
that be the most likely reason the module goes into a screamer mode) which
detect the first transition of a message string and time everything out
controlling transmission through the squelch control line of the modem
chip.

The second problem is the exact reverse of the first. The
communications system could just as catastrophically fail should one node
continuously demand information from one or more other nodes. In a
sense, the system would be entirely tied down by an information black hole
constantly sucking up information for no purpose.

This problem was precluded by giving network control status to the
SBC side of the string with all the other modules being treated equally. In
such an arrangement, the individual modules on the string are never
allowed to transmit unless they receive a command demanding that they do
so from the SBC. This "reply only on command" approach eliminates all
the string modules from ever being able to demand information except the



SBC and should the SBC side fail anyway there would still be no
communication.

Finally, there is the problem I have called the great flood. As has
been mentioned before, the deep ocean is a potentially very harsh
environment. The probability of one of the modules failing due to a
catastrophic implosion (or even a clam shell sort of gulping of seawater as
the two hemispheres of a protective housing accidentally leak while going
through the air-water interface) is probably higher than one might like to
think. It would be catastrophic should the communication lines see the
same potential due to a seawater short in a single module. A physically
simple, yet reliable, method of protecting the communications system from
such a flood was needed. After many false starts, a physically very simple
solution was found. All of the communications lines were isolated from the
sphere interior by being coupled between the interior circuits and the
electrical penetrater through a series resistor. These resistors were in turn
mounted directly onto the interior side of the electrical penetrater and then
physically "potted off' or sealed from the interior. Thus, in the worst case,
should there be a seawater short circuit, the separate communications
lines would not see the same potential. In time, the exposed end of the
resistor would corrode and as such increase in effective resistance loading
down the system even less (since the different modules and thus their
resistive paths are in parallel to one another).



121

6.5 The Modem and the Data Access Arrangement

In order to inject a strong (transmitting) frequency onto a common
channel and not suffer some kind of local feed back effect in the
transmitting modem through frequency spill over in its receiver section,
some means is needed to make the receiver deaf to the local transmission.
Typically, in broadcasting situations, the local receiver is "keyed" or
switched out of the circuit just at transmission time. In the case of old
fashioned ionospheric bounce high frequency stations, the receiving station
was located perhaps twenty miles away from the transmitting station! In
any event, communication was simplex, namely information could only be
transmitted in one direction at a time. However, in our case, with a little
reflection, a DAA circuit was designed which overcame this problem
permitting full duplex communications, if so desired, and absolutely no
need for the communications system to have a means of switching off
between transmitters.

The DAA circuit shown in Figure 6.1 below consists of two LM324
operational amplifiers arranged in a sort of a bridge network so that the
receiver (node 4) does not see the transmitter (node 1) during transmission.
By itself, the first amplifier acts as a transmission amplifier arranged as a
unity gain buffer driving a 390 ohm load (as the string at node 3 will appear
to it) which is also the "potted resistor" on the transmission side installed to
preclude the great flood problem mentioned before. There are two pathways
to the receiver. The first, is from the string through a unity gain buffer

identical to that used in the transmitter. The second, comes straight from
the transmitter through 390 ohm and 100 K series resistors exactly
matching the current (due to local transmission) directly from the output of
the transmitter amplifier to the input of the receiver amplifier. Since the
transmitter amplifier is an "inverter", the phase of these two transmission
signals theoretically should exactly cancel at the input to the receiver
amplifier. Of course, the phase inversion going through all of the
components is not exactly 1800 but it is pretty close, especially if the unity



122

gain buffer of the transmission amplifier is properly adjusted so the
feedback signal can be smaller than any expected receiver signal from the
string and properly adjusting the receiver amplifier gain can separate the
two. Note that the 100 K resistor in series with the receiver amplifier is the
"potted resistor" on the receiver side of the communications line.

--- - - ---------------



'!

DASHED LINES INDICATE
CO~PONENT IS PHYSICALLY
ISOLATED (POTTED OFF)
FRO" ENVIRONMENT

DEFAULT UNITSl

R IN OH~S
C IN MICROFARADS

390
: :

100l<i
: :

................
1 Rll0i
: ~" .. I

................. .
i .~~9 i

NODE 3

NODE 4

lOOK

R14

Rl?

R18
2001<

C16
220 pf

1001<

R13

R15
3902

NOOE 1

~C14
.FSI<OU I w I 21
FSKI j
SWERn--1 0.1

+S VOC}

11<
VOC

V
+12

+15 VOC

Figure 6.1 "Nulled" or two wire based DAA circuit.

~



124

This arrangement is precisely what was used all the way through
the Ersatz SBC cruise of November 1985. Marginal transmission errors
kept occurring in some of the modules and it was decided to take another
look at the circuit. Most particularly, as was noted above, each one of these
circuits had to be carefully "nulled out" in order to minimize the
transmitter feedback. This could be adjusted easily enough in the laboratory
with the protective Pyrex housings off. However, the real situation was one
in which the housing is closed, with additional electronic noise due to the
many switching DC to DC converter power supplies as well as other
oscillators all in the same small enclosure. Additionally, the operating
temperature of the modules in the deep sea was closer to 4 0c rather than
room temperature. As such, the settings made in the laboratory were
probably not optimal for actual deployment.

Looking around at what was available, a solution to this problem
became obvious. Originally, the return path of the communications
channel was a separate (ground) line isolated from the power ground. This
was not really necessary since (let us say there was indeed a flood), if the
ground were suddenly forced to be at the same potential as the seawater
while the communications line remained isolated from it through the
potted resistors, no harm would be done. In this scheme, all transmission
and reception occurred over the exact same common communications line
with the channels separated only by frequency. Now, instead of having a
separate return line for the communications circuitry, the common power
return was used. This was possible because the power distribution logic in
the SBC only switched the hot side of the power, not the ground side. Thus,
an additional communications line was freed up. As such, the solution was
to make one line from the SBC communications port to be a "transmit only"
line connected with only the receiver sections of all of the string modules
and to make the other line from the SBC communications port to be a
"receive only" line connected with only the transmitter sections of all of the
string modules thus completely isolating the receivers from their
transmitters. This change is shown schematically in Figure 6.2 below and
resulted in a much reduced incidence in communications errors.



'I

TO sec

FROH sec

DASHED LINES INDICATE
COMPONENT IS PHYSIC~LLY

ISOLATED (POTTED OFF)
FROM ENVIRONMENT

390

DEF"AUI.T UNITS:

R IN OHMS
C IN MICROF"AR~DS

100K1

: :

· .................

................· .
1 .~~9 1

•••••• 11••••••••· .
1 .~~101

NODE 3

NODE 4

lOOK

R14

R17

R19
200K

C16
220 pr

lOOK

R13

R1S
3902

NODE 1

~C14
FSKOU I w I 2
FSKIN I
SHERrrI 0.1

"" .. "'1
510 lK

+12 VDC
VH

D11
ZENER

+12

Figure 6.2 Three wire based DAA circuit.

t)i



6.6 The Screamer Killer Circuit

The basic design philosophy of the screamer killer circuit is to have an
operational definition of a screamer which can be used to detect such a
situation completely independent of the microcontroller since it is the
failure of the microcontroller itself that would probably constitute a worst
case scenario for the screamer. Once this condition was detected, then the
circuit should squelch all output from the modem chip long enough for all
the other modules to be polled once. Since a screamer is defined as being
any continuous transmission exceeding five seconds, then this means that
the maximum total poll time for all ten of the string modules is 50 seconds.

The procedure used to define a screamer is to trigger two monostable
timers upon the beginning of a transmission by having their (low going
triggered) inputs look at the transmitter data line TXD. The first
monostable called the "packet repetition" timer is set with a time constant
five seconds long. Should the monostable time out and transmission is still
in progress, then a screamer condition exists. To detect this condition, it is
necessary to sample whether or not the modem is still transmitting. This
is done through the use of the second monostable or "transmission active"
timer which is set to 1120 th of a second or about the length of time it takes to
transmit a little less than one byte at 300 baud. As such, it can be used to

sample on a byte by byte basis as to whether or not a byte is being
transmitted at the time. As a monostable, it is retriggered every time a new
low going transition occurs as soon as it times out. A small capacitor is
added to the timer output as a choke so that upon timing out the line will
not immediately return to ground. Since, generally, this timer will
immediately be retriggered by another transition, this prevents glitches
from getting through every time the timer is retriggered. Once
transmission of a packet really is complete, the monostable will time out
and not be retriggered so a low level output at this point indicates that

transmission is not active.



127

IfT1 and T2 are the respective outputs of the first and second timers,
then the logic condition defining a screamer is given by (!A means "not" A)

S=T1+ !T2 (6.1)

where a low level indicates a screamer condition and a high level indicates
that there is no screamer.

The low going transition on the S line which indicates a screamer
condition is used to trigger a third monostable called the "poll timer" which
has a time constant of around 45 to 50 seconds (one string poll time). The
output of this timer is used to gate off the transmitter data line TXD. If a
screamer never occurred, then this monostable does not get activated and
the module is free to transmit again without having to wait out an entire
polling cycle which is really useful should one wish to successively
interrogate the same module (such as an almost continuous read out of
PMT single's rates data, etc.).

The monostable timer used in this is based upon the famous
Signetics Corporation NE555 timer? whose time constant (T in sec.) is
adjusted by an external resistor (R in Q) and capacitor (C in ~f) given by the

formula:

T= 1.lRC (6.2)

The actual version used is a dual CMOS based one designated the ICM7556
and manufactured by Intersil Corporation.

7 Signetics Analog Timer Manual, p.2-3



+5 VDe

VH

T3

t2 t3

-/-'-
POLL TIMER
(~O SEC.)

VL

l
T Cll1
~ 0.01

DISC
, CONT VOLTRESET

~ ITHRESH OUTPUT

TRIC

t1
, ...n I

IeA7SS6 -/---'-
PACKET REPETITION TIMER
(~ SEC.)

C1S
1.0

T3

TXD

mtlDISC

TRANSMISSION ACTIVE
(-1/20 SEC.)

RESET
cear vei.r I' " I ./-V-V-V-'-

I I ;1;;;;:~. om",.. t g~il I I 0" om ""

TIMER DE~AULT UNITS:

R IN OHMS
C IN MICROFARADS

Figure 6.3 The microcontroller independent screamer killer circuit. Note
the use of three asynchronous timers to detect and squelch off
transmission.

§3



129

6.7 Protocol

The message protocol is that part of the communications scheme whereby
the very nature of the information stream itself is used to help control
communications. It is somewhat akin to the grammar of a language. The
protocol was chosen from the point of view of being simple and
unambiguous to use.

First off, it was decided that the information stream would be
represented only by a stream of printable ASCII characters. In this
manner, it would be possible (maybe not desirable but possible) to control
and monitor communications with a simple ASCII keyboard. Should the
need arise in the future for downloading programs, then the program
would have to be exchanged in some representation other than pure binary
code such as a hexadecimal or octal representation.

Second, it was decided that all messages would be made up of
message packets. In this way, it was possible to impose a maximum packet
length per message unit and thus easily define a screamer as any
transmission that exceeded this length. Long messages, such as a
computer program, could be made up of multiple message packets. In
practice, this was never done since for the SPS demonstration project, there
was never a need to download any program changes but the structure for
doing this within the communications system exists. Only short commands

followed by short replies were ever needed.

The structure of a message packet was as follows:

$<dev><dev><cmdl><cmd2>[-cdatab-cdataz»]<CR>



100

where '$' is the dollar sign character in the ASCII character set used as a
message packetf synchronization character indicating the beginning of a
message packet. -cdevs-cdeve- indicates two identical characters containing
a single digit hexadecimal number that was the unique address of a
module on the string. <cmdl><cmd2> indicates a two character command
to be performed which was followed optionally by two data bytes (indicated
within the [ ] as <datal><data2». Finally, the ASCII carriage return
«CR» character was used to indicate the end of the message packet.

The structure of a reply message packet from a module to the SBC
was even simpler being

$<cmdl><cmd2>[<datal><data2><data3><data4>]<CR>

since only one module was permitted to reply at a time, the interrogated
device, the device replying was unambiguous and there was no need for it to
identify itself.

8 Roden, pp. 480-481



131

6.8 Summary

A practical local area network (LAN) for controlling a series of ten "smart"
instruments mounted on a vertical string in the deep ocean was developed.
The network has a network controller collocated with the instrumentation
for channeling the data from the instruments to the surface (the SBC). It
was felt that giving this job to the controller made sense since should the
controller housing fail, the system would cease to function anyway and as
such there was no significant increase in the probability of catastrophic
communications failure. In turn, the simplicity and hence reliability of
such a "reply only on command" network without any need for things such
as "collision detection logic" when two nodes try to transmit at once was
greatly increased.

Three distinct worse case scenarios, the screamer, the black hole,
and the great flood, were identified and defensively designed around. The
LAN is a 300 baud FSK (Bell 103) based system which originally was
implemented as a two-wire one point to many point arrangement with good
separation between the local transmitter and receiver circuits. Later, this
was changed to a three-wire arrangement with excellent separation
between the local transmitter and receiver circuits.

A simple, printable ASCII only, message packet protocol was chosen
to so that communications could be easily monitored using standard ASCII
based terminals and to make the detection of a screamer fairly easy.



132

CHAPrER 7 -Instrument BuildingPart IT- The Design of
Microcontroller Circuits for the Optical (Calibration) Modules

7.1 Introduction

This chapter is the second of a series of five on instrument building of the
Short Prototype String. The main concern of this chapter is to document the
work I did in designing devices based upon the Intel Corporation 8051
family of microcontrollers. This is not a complete documentation of all of
the work done but rather a selective documentation of the hardware and
software actually used in the deployment of the SPS during the October
November 1987 cruise off of O'ahu and Hawai'i. For the sake of rough
completeness, I mention in passing that individual test programs were
developed to exercise and debug each of the hardware driver modules. In
turn, these were collected together, in some sense, and an overall ROM
based test program was developed for testing the optical modules and as an
early exercise in system integration of the optical module. Finally, in
support of the November 1985 "Ersatz" SPS cruise off of O'ahu, a separate
8051 based hardware and software system was developed to control the
Ersatz SBC which was an attempt (failed) to do photomultiplier tube

coincidences in the deep ocean with an as yet incomplete SBC. The failures
were due to mechanical problems associated with the great difficulties of
working in the deep sea environment and were of great use to us later in
learning where to concentrate our efforts.

Before I get into the details of the circuitry, it is important to explain
the difference between a "microcontroller" and a "microprocessor". In a
typical computer, one has both an address space and a data space. The
address space is a series of (parallel) binary control lines which in
combination make up a sequential set of unique binary values (addresses)
which may be used to "address" memory cells or "ports" which in tum
control external hardware that form a basis for communications with and



133

control of the external environment. The data space is a similar set of
binary control lines used to pass parallel data in and out of the computer's
"processor" logic. The processor logic, in turn, consists of a series of
internal registers which temporarily hold all sorts of information such as
the current instruction being executed, the program pointer pointing to the
current instruction, a stack pointer pointing to the (usually) external stack
(which is a sort of "scratch pad" for information), the operands associated
with the current instruction, the accumulatorts) which are registers
within which the actual logical operations are performed, condition codes,
etc. as well as the all important arithmetic logic unit (ALU) which is the
logic that recognizes the instruction and carries out its execution.

The arrangement or "architecture" described above for a typical
computer is what one finds in a microprocessor. A microcontroller differs
from this in one principle feature of its architecture. A microcontroller has
a sort of third space, a controller space, associated with it. In practice, what
this means is that in addition to the address and data lines of the
microcontroller, there are many additional lines which can be directly
toggled on and off for the control of external hardware. The basic idea is
that such an implementation eliminates or reduces the need for address

decoding logic to decode dedicated addresses in the address space in order
to control external hardware. In short, the required amount of board space
to implement a given system should be less than that required by a
microprocessor based system.

At the time of selection! a world search was made for commercially
available microcontrollers. The decision to use a microcontroller rather
than a microprocessor was made based upon one important constraint,
namely that the optical modules have very little space2 in them to house
their electronics. The available space is restricted to the volume around the
neck of the photomultiplier tube. In this space one must accommodate a

1 summer 1983

2 Note the limited space around the PMT neck in Figure 4.2.

--- ----- ---------------



134

vacuum gauge, the programmable high voltage supply for the
photomultiplier tube, the pulse stretcher circuit, the fiber optics driver, the
various analog sensors, the dark current isolation amplifier, the 300 baud
command and control communications circuitry3, and a whole array of 48
VDC to DC power supplies. In fact, it was several months and quite a
number of different ideas before a two tiered printed circuit board
arrangement was finally decided on to mount all of this hardware.

The world search turned up only a few commercially available
microcontrollers. The hope was to select a microcontroller with sufficient
hardware to accomplish the job at hand and ultimately be available in a
CMOS version so that in large scale production circuits could be developed
drawing less current. The first was the Motorola Corporation's 6803. The
main advantage of this chip is that its instruction set is virtually identical to
the 6800 microprocessor. This is a very powerful (for an 8 bit wide machine)
instruction set with many addressing schemes for which at the time a lot of
software already existed. Most particularly, it does not follow the Intel
Corporation fashion of forcing all operations to be executed through the
bottleneck of a single accumulator registers, In terms of its hardware, the
MCM6803 has many nice features. These are summarized along with the
similar features of the other possible microcontrollers below in Table 7.1.

The second microcontroller was the Intel 8048 family. This was an
older microcontroller in the sense that Intel had just recently released a
more advanced microcontroller, the Intel 8051 family, and thus it was
never seriously considered. The Intel 8051 was selected based upon the
comparison of the advertised hardware features as shown in the summary
table where the designations 8748 and 8751 are the UV erasable ROM
versions of the 8048 and 8051 microcontrollers respectively:

3 See Chapter 5.

4 See Chapter 8 for details.



135

Table 7.1

Hardware feature comparison of available microcontrollersf

Feature MCM6803 8748 8751

Parallel I/O lines 13 Zl 32
On-board RAM (bytes) 128 64: 128
16 bit timers, 1 1 2
Serial I/O ports 1 1 2
UV ROM (kilobytes) 0 1 4

Total addressable memory
(kilobytes) 64 128

As such, at the time, there was little choice since there was no firm.

system description for the optical module nor would there be for some time
so the microcontroller with the most built in hardware would be the logical
selection. Unfortunately, the instruction set of the Intel 8051
microcontroller family leaves much to be desired'[,

The internal registers of the Intel 8051 are structured in such a way
as to directly accommodate the hardware. Of real advantage to the problem
of the optical module is the availability of two serial I/O ports. This
permitted the establishment of full duplex communications? in the SPS
order wire. Using the serial I/O ports meant the loss of one timer port to
establish the baud rate. Still, one timer was left and, in the case of the
optical modules, served the important function of timing out and reporting
the photomultiplier singles rate as a crude measure of activity. A single 12
Mhz crystal provided timing for all the synchronous hardware of the

5 Note, typically to do serial communications, one must dedicate a timer for establishing

the baud rate.

6 Chapter 8 is dedicated to precisely this problem.

7 As was described in detail above in Chapter 5.



136

microcontroller. In truth, only about 13 parallel I/O lines (the number
advertised on the Motorola MCM6803 chip) were really available for
controlling hardware. This is due to the fact that the control lines of the
8051 family are not dedicated but rather can be selected for different
functions. For example, the serial I/O ports and the timers are listed both
by their function and as parallel I/O lines. Additionally, many of the serial
I/O lines actually have to be dedicated as address and data lines for an
external data memory. The advertised internal data memory of 256 bytes
(not kilobytes) is actually much more limited since should one wish to
implement a stack, 48 of the internal bytes is the largest stack possible plus
128 bytes are dedicated to the direct control of all of the on-board functions
leaving a total usable internal data memory of only 80 bytes! As such it
becomes necessary to implement an external data memory, because there
is almost no room for program variables in a program as sophisticated as
the optical module executive.

- ------ - --- -. --------------



137

7:J Optical Module Circuit Description

Before I dive directly into the circuit descriptions, it is worth while to
consider briefly what the objectives were in designing the optical module
and very briefly how these were attacked. After that, a detailed description
of the optical module digital circuitry will follow.

The main objective for the optical module was to provide a
programmable or "smart" photomultiplier which would be capable of
detecting the faint and rapid Cherenkov flashes from passing muons in the
surrounding seawater medium. At a minimum, there was the need to be
able to adjust the gain of the photomultiplier tube. This is accomplished by
varying the applied high voltage across the dynode chain. Thus, a
programmable power supply would need to be selected which would adjust
the output voltage based upon the different analog control voltages applied.
To select a desired analog control voltage and thus a desired gain, an eight
bit D to A (digital to analog) converter, the Analog Devices AD7528 was
chosen. Similarly, a threshold control as the front end of the
photomultiplier tube output pulse stretcher circuit needed to be controlled
so that a signal above the ambient noise would be selected. One may not
normally think of it, but in some cases the PMT is used more for its ability
as a noise source than as a light detector. During World War II, the
application of PMT's as a broadband white noise sourcef increased
production from hundreds per year to thousands per month. Again, an
AD7528 was selected for the job.

In the opposite direction, there was the need to be able to sample a
collection of sensors. The DUMAND SPS optical module probably has more
sensors than is actually needed but it was useful engineering wise in
understanding and testing out the concepts incorporated in the SPS test.
Altogether, allowance was made for up to 16 analog sensors to be

8 By applying a non-modulated input light source and operating with high gain so that the

amplifier photoelectric shot noise was "white". See (RCA) Photomultiplier Handbook, p. 5.



138

accommodated. This was accomplished through the use of the National

Semiconductor ADC0816 which is an eight bit A to D (analog to digital)
converter with a built in 16 channel multiplexer capable of sampling an
addressed channelf in about 100 us. Ultimately, 15 of these were assigned as

shown in Table 7.2:

Table 7.2

Analog sensor channel assignments in the optical modules

Channel
number

o
1

2

3
4

5

6

7

8
9
A
B

C
D

E
F

Analog
signal

ANAO
ANAl
ANA2
ANA3

ANA4

ANA5

ANA6
ANA7

ANA8
ANA9
ANA10
ANA11
ANA12

ANA13

ANA14

ANA15

Assignment

unassigned
+5 VDC A
+5 VDC B
-5VDC
+15VDCA

+15VDCB

-15VDCA
-15VDCB

total current
dark current
temperature A
temperature B

temperature C

accelerometer

PMT high voltage

discriminator threshold

As you can see from the table, seven of these sensors monitared the
different DC to DC converter power supplies and two monitored system

9 See specification sheet for the ADC0816 in the National Semiconductor Linear Handbook.



139

currents. Three temperature sensors were mounted in different regions of
the optical module to get some idea as to thermal distribution within the
limited housing. One channel was used for an accelerometer to get some
idea as to the accelerations the module was feeling since we were
concerned about stimulated bioluminescence. Finally, two channels were
dedicated to directly monitoring the actual values that the two control
signals, namely the high voltage and discriminator threshold, settled at.
This was considered very important since we did not want to get into the
situation of thinking that by issuing a command that the intended value
was absolutely the actual value. This gave us real feedback. It would have
been possible to develop an algorithm to take this information and have the
microcontroller compare it to the intended value and then automatically
modify the control value output until, in a closed loop, the system settled
down into precisely the value desired. Upon reflection, it was desired not to
do this because it was potentially very dangerous should the system go into
some sort of hunting mode by always slightly missing the mark. The result
could be a system that would continuously try and fail to reach the exact
desired value and thus oscillate or "hunt" about the decided value and so
guarantee a variable value rather than some settled constant.

Finally, there was the objective of providing a communications
interface. This was cleanly done through the use of the Texas Instruments
TMS99532 300 baud modem chip along with a specially designed DAA (Data
Access Arrangement) circuit and a screamer killer circuit.J'' Basically, the
digital side of the modem chip was directly connected into the
microcontroller's two serial I/O ports (one receive only, one send only).
Timing was derived from a common clock circuit used to provide timing
pulses to both the modem and the A to D converter.

The best place to start the description of the digital circuitry is with
its central controller, namely the Intel 8751 microcontroller. This is
documented in Figure 7.1 below:

10 This was the subject of Chapter 5.



'i

RESET

00
01
02
03
04
05
D6
07

AS
A9
Al0
All
A12
A13
A14 / DAC
A1S

/RD
/WR
/PSEN
ALE
TXD
RXD

PO.O
PO.l
PO.2
PO.3
PO.4po.s
PO.6
PO.7

P2.0
P2.1
P2.2
P2.3
P2.4
P2.S
P2.6
P2.7

~
PSEN

ALE/P
TXD
RXD

VH
"1CS7S1. SOSl)

, .
~S03S)

~~I] Iii il2Yl ~~.K,"
lY4
lY3
lY2
lYl

+S VDC

LOG I C "HI" 1R22
SOURCE· lK

V

HARD WIRE THblIDENTITY CODE
TO THESE INP

N 1"
A1S
A13
A12

Figure 7.1 The Intel 8751 based microcontroller circuit.

§



141

The 8751 microcontroller (UI22) is a 40 pin chip requiring a single +5 VDC
supply. Timing is generated by directly connecting a 12.0 Mhz crystal
(YI20) across the two pins XTALI and XTAL2 along with a decoupling
capacitor C22. Internally, the main control cycle timing of 1 Mhz is derived
through a divide by 12 circuit. This same clock is used for the two 16 bit
timers (TO and Tl), one of which is ultimately used to generate the baud
rates for the two serial I/O ports (RXD and TXD). Two levels of interrupts
are available (INTO and INTI) as well as the write (l¥..R) and read <RID
memory control pulses. These last eight lines constitute parallel I/O port 3
of the 8751.

System start up is accomplished with the resistor and capacitor
combination made up of C21 (a 150 pf tantalum) and R21 (3 kn) tied directly

into the RESET line. Upon power up, C21 feels the +5 VDC supply and is
charged thus pulling the RESET line high. In time, R21 bleeds off C21 so
that the RESET line goes low. The power on reset requirements for the 8051
microcontroller are such that the RESET line should be held high for at
least one ms after the power supply stabilizes to allow the oscillator to
stabilize. The microcontroller remains dormant until the line goes low. The
other lines of the microcontroller assume their initialization states within
24 oscillator periods. Upon the RESET line going low, a sequence is initiated
which takes about 12 oscillator periods before ALE is generated (permitting
dialog with the memory) and normal operation begins with the program
counter pointing to the first instruction at absolute program memory
location OOOOH.11 The EA (External Address NOT) line is used to tell the
microcontroller whether it is an 8751 or 8051 version (logic high condition)
of the microcontroller which has some on-board ROM with a program in it
or not as is the case for the 8035 version (logic low condition). This way,
when the microcontroller starts up, it looks in the right place to find its
controlling program. The symbol VH stands for a common logical "high"
line that can be used in all cases where a digital (+5 VDC) high is needed. It
is formed by tying a 1 kn resistor into the +5 vue supply. In this way, less

11 MeS-51 User's Manual, p.2-28.



142

current is drawn by the chips than if they were directly tied in. This also
means that should an over voltage occur, these inputs which are more
sensitive than the power inputs, are afforded a degree of protection through
current limiting.

The eight parallel I/O lines comprising port 0 are dedicated as the
data transfer lines DO through D7 inclusive. Actually, these lines are
multiplexed in time so that they also act as the lower eight address selection
lines for external memory. The ALE (Address Latch Enable) output of the
microcontroller is the strobe signal for differentiating these two roles. The
eight parallel I/O lines comprising port 1 are dedicated as the principle I/O
lines for transferring information from the microcontroller to the different
D to A channels and from the different A to D channels to the
microcontroller. These are labeled 100 through 107 inclusive.

The eight parallel I/O lines of port 2 basically are divided into two
different sections. The lines labeled A8 through All are used to address the
ADC0816 (U130) 16 channel A to D converter picking out one of 16 possible
channels. Lines A12, A13, and A15 are used (among other things) along
with the interrupt line INTI as inputs to one half of U131 (74HC244 non
inverting bi-quad tri-state buffer) to generate the chip enable lines DAEO.
DAEl. ADC. and MIpS. These are separated in time from other uses of
some of these lines by strobing with the timer output Tl (labeled IOEN for
I/O Enable). Table 7.3 documents the use of these different chip enable
signals:



143

Table 7.3

Assignment of the chip enable lines in the optical module.

Signal

DAEO

DAE1

MIDS

Assignment

D to A Enable 0
(High voltage control)

D to A Enable 1
(Threshold discriminator control)

Multi-channel A to D
(16 channels)

Module Identification System

Finally, in terms of the direct microcontroller associated circuitry,
there is the module identification system. The need existed to be able to
assign a unique identifier to each of the modules on the string. One
possibility was to assign this identification in the ROM code. In principle,
this would be easy to do but in practice it would be a disaster. The danger
lay in accidentally assigning the wrong identity to a given module. If the
problem was one of a simple exchange, then commands intended for one
module would go to another one and, until the mistaken identity was
corrected, both tubes would essentially be limited to their default values and
feedback from them (on the 300 baud order wire) would be useless. A
variation on this, which would be harder to correct, would be to accidentally
assign the same identifier to two tubes. Then you would have a real data
collision from both tubes trying to reply to a single command
simultaneously. Ultimately, at least one of the modules would have to be
opened up to correct the problem. All of this boils down to the problem that
one would have to generate multiple versions of the same ROM with only
one byte being different and the need to have one hundred percent backup
should the microcontroller give out in a module since a universal part
would no longer exist.

--- ----------------



144

Out of this understanding, a hardware module identification system
was developed, documented below in figure 7.2, which would allow the
optical module assembler to identify the module by visual inspection should
if be necessary. Basically, a series of four input lines were soldered on the
board to either a logic high or logic low state and tied into the remaining
half ofU131 (74HC244 non-inverting bi-quad tri-state buffer). At the time the
program wants to establish the identity of the module, the MIPS signal is
asserted as a strobe and the output of the buffer is fed as input lines 100
through 103 inclusive into the microcontroller.

/OAEO
/OAEl
/ADC
/MIDS

I03
I02
IOl
IOO

A12
4 A13

A15
/INT 1

l
/IOEN
/HIDS

MODULE IDENTIFICATION
INPUTS TIED "HI" (VH) OR
"LO" eGND) DEPENDING
UPON UNIQUE POSITION
OF MODULE ON STRING

MODULE IOn BIT PATTERN

10001
20010

F 1 1 1. 1

Figure 7.2 The optical module identification system.

An external memory circuit was provided from the beginning for the
purposes of easing the problem of system development and later found to be

_____ ° ~ _



145

absolutely essential. The Intel 8051 family is weird12 in comparison to other
eight bit microcontrollers and micro-processors. One of these areas of
"weirdness" is in its memory design. As mentioned above, it is advertised
as having a 128 kilobyte addressable memory space. In reality, it actually
has two 64 kilobyte memory spaces which have absolutely nothing to do with
each other. The two separate memory spaces are called the "code memory"
and the "data memory". This separation of code from data is known as the
Harvard architecture. It is in contrast to the more common total mixing or
interleaving of code and data in the same memory space known as the Von
Neumann architecture.P In practice, what this meant for optical module
development is that code could never be down loaded and thus one of the
original intentions with the optical module, to update the program should
better algorithms be developed in the future, would not be possible with this
microcontroller.

I said that the implementation of an external memory became
essential because it did not take too long in program development before
more than 79 internal data bytes was achieved just to handle program
variables. Figure 7.3 documents the external memory circuit:

12 This is discussed in detail in Chapter 8.

13 Named after Johnny Von Neumann who first thought of the idea. He wanted to do

artificial intelligence where a given piece of information in the common memory might be

interpreted alternately as code and as data so that through some feedback mechanism

("learning") the code (data) is updated through inter-action with the environment.



DATA I ApDRESS ROM EXPANSION RAM EXPANSION

SEPARATION (CODE MEMORY) (DATA MEMORY)

DO AO DO AO DO
01 A1 01 A1 01
02 A2 02 A2 02
03 A3 03 A3 03
04 A4 04 A4 04
OS AS OS AS OS
06 A6 06 A6 06
07 - A7 07 A7 "'.. 07

A8 A8
A9 A9
Al0 Al0
All All
ROMAO A12

20 ,.,..
ICE2 6-/IOEN

i .(803S)

A12~~~ROMAO
A13 :'C8751. 8051)

C86

MEMORY MAp

OATA

EXTERNAL RAM 0 - 8K

CODE (87S1. 80S1)

INTERNAL ROM 0 - 4K
EXTERNAL RAM 4K - 12K

COOE (803S - NO INTERNAL ROM)

EXTERNAL ROM 0 - 8K

Figure 7.3 The optical module external memory circuit.

~



147

The first part of the circuit is the data / address separation logic. Here, the
multiplexed data / address lines DO through D7 inclusive are fed directly
from the microcontroller (U122) to U123 (Intel 8282 straight octal latch)
which acts as a demultiplexer separating off the address lines AO through
A7 inclusive. The time at which the multiplexed lines contain valid address
information is indicated by the ALE (Address Latch Enable) signal directly
from the microcontroller. In tum, the address lines are directed to both the
external ROM (code only) memory and the external RAM (data only)
memory along with the original (multiplexed) data lines DO through D7
inclusive. The 8051 family microcontroller provides two separate strobes or
chip enable signals to indicate in data time (as opposed to address time) that
valid data information is available. The external ROM U121 (2764 +5 V only
8 kilobyte by 8 bit) is strobed by PSEN (Program Sense ENable) directly from
the microcontroller. Analogously, the external RAM U120 (HM6264 static
CMOS +5 V only 8 kilobyte by 8 bit) is strobed by 1m. (ReaD) during a read
cycle and by:wE (WRite) during a write cycle, both originating directly from
the microcontroller. The timer output T1, instead of being used for its
intrinsic function as a 16 bit timer, is used to provide a common external
memory strobe signal IOEN (I/O ENable). Finally, the higher address lines
A8 through A13 inclusive are used to fill in the remaining address control
lines. In the case of both the RAM and the ROM, A8 through All inclusive
directly drive four of the address lines. For the RAM, A13 is used to directly
drive the remaining address line. For the ROM, a combination of A12 and
A13 through U125A (74HC86 XOR) is used to generate the remaining
address line ROMAD (ROM ADdress) according to the formula:

ROMAD = A12 XOR A13 for the 8751 and 8051 versions

ROMAD =A12 for the 8035 version. (7.1)

The communications interface is as good a place as any to continue
the description of the digital circuitry of the optical module. The reader is
referred to Figure 6.1 of the previous chapter, specifically to the modem
chip Ull1. Three external signals are required by this chip to make it do



148

anything worthwhile. These signals are labeled RXD, TXD, and MCLK
RXD and TXD are the "Receive (digital) Data" and "Transmit (digital)
Data" signals respectively and tie directly into the 8751 microcontroller chip
(U122 of Figure 7.1). The remaining signal, MCLK is the "Modem Clock"
signal and is an exact 4.032 Mhz square wave clock generated by the timing
chain logic shown in Figure 7.4 below:

~
10 Cl1

1-1---...,11
4.0 MHZ 3~ PF

Rl1

10M

R12

lK

T C 1 2
~ 47 PF

VH

MCLK
(4.032 MHZ)

T C1 3
~ 300 PF

~~,ADCLK (504 KHZ)

(OIVIOE Bye)

Figure 7.4 Optical module A to D and communications timing

chain.

The 4.032 Mhz crystal frequency is needed by the modem chip in

order to provide the right frequencies to meet the Bell 103 300 baud
specification. A high speed CMOS gate, Ul12A (74HC04 inverter), with

--------------- --- ---



149

resistor RI1 (10 Mil) in parallel to bias the gate in its linear region, form the

basis of a "high speed CMOS" self oscillating circuit that starts up upon
feeling a power on transient. Resistor R12 (1 Kn) provides an impedance

that adds some additional phase shift in conjunction with capacitor CI3
(330 pf), This has the effect of cutting out spurious high frequency
oscillations isolating the gate output from the crystal network YI10 (4.032
Mhz) so that a clean square wave results. The value of R12 is chosen so that
it will be roughly equal to the capacitive reactance of C13 at the frequency
involved. Capacitors C12 (47 pf) and C13 form the load resistance for the
crystal. Most crystals are cut for either 20 or 32 pf load capacitance. Using
values larger than this, C12 and CI3 swamp out the effects of temperature
and supply voltage change on the input and output impedances. Since CI3
is so much greater than this, capacitor C11 (33 pf) is placed in series with
the crystal to act as the load for the crystal and thus assure an impedance
match so that the crystal will not be loaded down. The result is the 4.032
Mhz square wave MCLK pulse train. This is fed both directly into the
modem chip as well as into UI13 (74HC161 asynchronous binary counter)
where a divide by eight is performed generating the 504 Khz clock ADCLK
which in turn, as a system clock, is tied directly into the ADC0816 (U130) 16
channel, 8 bit, analog to digital converter chip.

Figure 7.5 below documents the control circuitry interface. Two
individual channels are controlled, the high voltage (PMT gain) and the
(noise limiting) discriminator threshold. Both circuits use the Analog
Devices AD7528 dual eight bit A to D converter. In each case, only one
channel was used in this prototype to ensure that there was no crosstalk on
such a critical matter as controlling the PMT voltage and establishing the
noise cutoff level. This was considered especially critical since variation of
either one of these parameters will affect the PMT's single's rate. As such,
massive confusion could result if crosstalk occurred and one did not know
which parameter had effectively changed the single's rate that one was
monitoring.



R32

150

100
101
102
103
104
105
106
107

OAC
/DAEO

/WR

OACPWR

56K

o CONT
(CHANNEL F")

100 OBO101 DBl OUTA102 OB2103 OB3 RF"BA104 DB4105 OB5 OUTB106 OB6107 OB7 RF"BB
OAC /DACA / DACB/DAEl /CS AGNOAIR /WR

DACPWR VOD VREF"A
DGND VREF"B

+5 VDC

>o'.:L...,..._,ANA15

R34

15K

NOTE: REF"l (1.000 VOLT REF"ERENCE) COMES
F"ROM AN LM10 PRECISION VOLTAGE
REF"ERENCE ASSOCIATED WITH THE PHT
HIGH VOLTAGE CIRCUIT.

RESET :X>-=''----1c. ~~~~04
C2SC372)

DACPWR

Figure 7.5 The (D to A) control interfaces.

~- --- ~ ~-------------------



151

U135 and U136 are the D to A converters for the high voltage and
discriminator threshold channels (E and F) respectively. Both are not
powered on immediately like the rest of the electronics in the optical
module. The same RESET signal which is used to enable a controlled power
up of the microcontroller is used to control the power applied to the D to A
converters. RESET is applied to U132B (74HC02 inverter) whose inverted
output is in tum used to switch on transistor Q130 (2N3904 or 2SC372). This
switched power, labeled DACPWR, is then applied to the A to D converters.
As soon as the microcontroller starts up, it goes into a loop initially
"turning off' the high voltage supply so that no damage is accidently done
to the PMT because some random high value was initially impressed upon
the high voltage control channel upon system power up. Digital
information is transferred directly from the microcontroller to the D to A
converters by way of lines 100 through 107 inclusive. In both cases, the
strobe signal DAC is used to select the channel in the D to A converter
actually used. Since, when the microcontroller is actually writing to one of
the D to A converters it can not be, at the exact same time, writing or
reading memory, the address line A14 acts as the source for the control
signal DAC. This is an example of the advantages of the microcontroller
approach where one line can be effectively multiplexed in time to do two
different things. To select out the time in which this I/O transfer will take
place, the WE. strobe directly from the microcontroller is used. The
distinction as to which D to A device is to be used is made by the chip enable
signals DAEO and DAEI mentioned before (Table 7.3). Finally, common to
the two D to A converters is the signal REF!. This is provided outside the
digital logic circuitry. It is a precision 1.000 V reference source for the D to
A converters. It is produced by a National Semiconductor LMI0 (precision
voltage reference) associated with the PMT high voltage analog circuitry.
As such, the range of voltages to be found from these two control outputs is
from 0 to 1.000 V.

The high voltage control output, OUTAl, is fed into U133A (Precision
Monolithic OP420 operational amplifier) where it is inverted and then
fedback into the D to A converter as reference signal RFBA1. RFBAI is in

--------------------



152

turn fed to a unity gain buffer U133B which directly drives the
programmable high voltage supply of the PMT. Similarly, the
discriminator threshold control output, OUTA2, is fed into U133C where it
is inverted and then feedback into the D to A converter as reference signal
RFBA2. RFBA2 is then used to directly control the level of the threshold
discriminator. As was mentioned before, it was decided to directly monitor
the actual levels that the high voltage and threshold discriminators
actually settled into. In the case of the threshold discriminator, this
feedback was established by amplifying the maximum 1.000 V level signal
to a 0 to 5 V level range by in turn passing it through the 5 times amplifier
U133D whose output ANA15 (ANAlog channel 15) is at the right level to be
fed directly back into the A to D converter (UI30). The feedback for the other
channel comes from the PMT high voltage analog circuitry.

Figure 7.6 documents the sensor input interface. A single chip U130
(ADC0816 eight bit wide, 16 channel A to D converter) is used to convert all
15 assigned analog sensor channels, ANAO through ANA14 inclusive, into
digital input information which is directly conveyed to the microcontroUer
by way of lines 100 through 107 inclusive. The A to D converter starts the
conversion process when it receives a START signal made up of the
combination in U132 (74HC02 NOR)

START = WR AND ADC (7.2)

where ADC is the (Analog to Digital Converter) strobe mentioned before
(Table 7.3). U124 (Analog Devices AD584) forms a precision +5 VDC voltage
reference. Timing pulses for the conversion process are supplied by the 504
Khz square wave clock ADCLK (Figure 7.4)14.

14 Which is just about nominal (500 Khz) according to the ADC0816 specification. See

National Semiconductor Linear Handbook.



153

IOO 4 DO INO B ANAO
IOl 9 ANAl
I02 01 INl 0 ANA2
I03 02 IN2 ANA3
I04 03 IN3 ANA4
I05 04 IN4 ANA5
I06 05 INS ANA6
I07 06 IN6 ANA707 IN7

INS ANAB
IN9 ANA9

ANA10IN10 ANAllINll 0 ANA12OE IN12 1 ANA13EOC IN13
IN14 ANA14

REF'+ IN1S 4 ANA15
REF'-

+15VOC CLI<

MUX-oUT
AODA

COMP-IN ADDB
EXP-CNTL AOOC

AOOD

ALE /AOC
START /WR

Figure 7.6 The (A to D) sensor interfaces.



154

When the conversion process is over, an end of conversion (EOC) signal is
generated and applied directly to the microcontroller as lliT.O. (INTerrupt
0). Since a polling rather than interrupt philosophy was adopted, an actual
interrupt is not generated in the microcontroller but rather, at this time,
the microcontroller is dedicated to monitoring the sense of this input. When
the microcontroller senses that the conversion is complete, then it starts the
data read process upon receiving an OE (Output Enable) signal made up of
the combination in U132B (74HC02 NOR)

OE = RD AND ADC. (7.3)

The A to D converter includes a 16 channel multiplexer. The internal
line COMP-IN (COMParison INput) is the input to the A to D section of the
chip. An analog signal in the referenced range of 0 to +5 VDC will be
converted to its eight bit digital equivalent. The internal line MUX-OUT
(MUltipleXer OUTput) is the output of the 16 channel multiplexer section of
the chip. A given channel is selected through the channel address inputs
ADDA through ADDD which are tied directly into the microcontroller as
address lines AS through All inclusive strobed by the START signal. These
two lines, COMP-IN and MUX-OUT are tied together to connect the two
sections of the chip.

A calibration module-f was deemed necessary so as to be able to
assure what light levels were actually measured by the optical modules
when deployed in the deep ocean to measure the actual attenuation length
of light there and to do in situ calibration. A pulsed nitrogen laser with a

diffuser / scintillator ball was used as the light source. An on-board
photodiode was used to confirm light generation. Additionally, a
mechanical light attenuator was used to provide, on command, a series of
different known light levels. All of these requirements necessitated digital
control circuitry quite similar to the optical module. As such the digital

15 This is documented in detail in the pending (1989) dissertation of John Clem, Vanderbilt

University.



155

logic circuitry of the optical module, after it was developed, was borrowed
wholesale for the purposes of controlling the calibration modules. Figure
7.7 documents the adopted interface.

/WR

/DAE1

LATCH CONTROL

LINES

Figure 7.7 The calibration module interface.

There was no need for a threshold discriminator control so this
(channel F) became the means by which the calibration module was
controlled. Replacing the AD7528 D to A converter chip was a 74HC573 octal
latch. The same time slice used before for this channel was provided by a
74HC02 NOR gate driving the EN (ENable) input ofthe latch

EN = WRAND DAEI.

------ ------------------

(7.4)



156

In this time, I/O lines 100 through 107 inclusive, provided up to eight
control lines. Thus, writing a desired bit pattern (of up to OFFH or 256

combinations) to channel F provided control of the calibration module.
What was particularly nice about this approach was that no changes at all
were needed in software development and as such the calibration modules
were treated on a completely equal basis with the optical modules. Order
wire communications, etc. were all the same.

------------------------



157

7.3 Diagramming the Flow ofa Computer Program

Before documenting any of the software efforts it is important to establish
some conventions. A computer program consists of a sequence of
instructions occasionally interrupted by a branch or jump to some other
location in memory where again a sequence is picked up. The flow chart
is a tool for diagramming the flow of a computer program. It consists of
only a few symbols connected together by flow arrows indicating the
direction of flow out of one symbol and into another. The symbols are all
boxes of sorts enclosing either a node label, a routine name, or some logical
condition to be tested. The symbols are as follows:

Circle - this is used to indicate a node in the flow. For example, the
beginning of a program or a routine typically will start with a node
containing the name of the program or the routine. Later, if the flow chart
is going to be too big to represent on a single piece of paper, a common node
name may be given to the last point on the paper and the first point on the
next paper to indicate a continuation of the flow. A node, at most, has only
one input arrow and one output arrow associated with it.

Rectangle - this is used to indicate a code sequence. It may contain
some indication of what the sequence is doing or it might contain the
name of the routine called upon to perform the sequence. On the grossest
scale, the computer program itself can be represented by one such
symbol. A sequence has only one input arrow and one output arrow
associated with it.

Diamond - this is used to indicate a decision that the program

makes by testing a logic condition. The condition being tested is indicated
inside the symbol. A single input arrow enters this symbol. As a decision,
in which different directions in program flow are possible due to
different results of testing the logic condition, more than one output arrow
is associated with the symbol. It is usually best to limit the number of



158

output arrows to two and to break down more complex decisions
accordingly. The output arrows are labeled as to the results of the decision.

circle - node

rectangle - sequence

diamond - decision

Figure 7.8 The three basic flow chart symbols



159

7.4 The Microcontroller Development System (!\IDS)

At the time initial development of an 8051 family microcontroller based
system was undertaken in the DUMAND laboratory in Hawai'i, there were
no real third party development systems available. INTEL corporation, the
manufacturer of the 8051 microcontroller had two, a very crude ROM based
system which required the use of a ROM in the development cycle and a
microcomputer based system, known as the Microcontroller Development
System (or MDS for short). Hewett Packard corporation also had a system
but it cost about four times as much as the INTEL MDS.

The use of a ROM based development system, with no real way to
create and store programs, would have been absurd to get any production
work done. The need to use ROM's in the development cycle would have
been almost as disastrous. In general, it is a good idea to set up a
development system with the ability to do ROM simulation. In such a
system, one does not have to go through all the effort of burning and erasing
ROM's just to try a new change in code. It gets old fast and the ROM's
themselves are soon used up by exceeding the practical limits of the
number of times they can be recycled before they are worn out. ROM's are
very important in many applications but they are a disaster in development
because their use wastes so much development time. There are a number of
ways to simulate ROM's. Generally speaking, these methods work on the
variation of the theme of building a RAM circuit which can be written to
under system initialization conditions by an external controller and then
have the RAM locked out for reading under program execution. In this
way, to the circuit under test, the RAM looks like ROM.

The alternative then, was to obtain an INTEL Microcontroller
Development System. This system, consists to two parts. The first part is
the IvID8-225A smart terminal. It is an 8085 microprocessor based bench top
computer with a somewhat unique (but ASCII) keyboard and a single sided
8" floppy-disk. The operating system running on it is proprietary to INTEL



100

and is called ISIS-II. ISIS-II is akin to a number of eight bit operating
systems somewhat like CP/M, but because it is unique to INTEL, this
means that the development software running on it is restricted to INTEL.
The second part is the 8051 in-circuit emulater (ICE-51). This device
consists of a series of boards which plug into the MDS-225A. A ribbon cable
then leads out to a special 40 pin plug which plugs directly into the circuit
under test as if it were the microcontroller. The ICE-51 provides both ROM
simulation and 8051 family microcontroller simulation. ROM simulation is
accomplished by loading an assembled program into the memory of the
ICE-51. Microcontroller simulation is accomplished by letting the control
program of the ICE-51 execute the program loaded into the memory. A
crude ability to set two breakpoints is provided and a symbol table is
accessible. It is interesting to note that while INTEL went out of its way to
create a microcontroller with totally separate DATA and CODE memories,
it combines the symbol tables from both limiting the usefulness of having a
symbol table in tracing program execution because of the high probability of
two different symbols appearing with the same value, the most recent one
clobbering the former one.

Once the decision was made to go with the 8751 microcontroller
family, the effort began to purchase an MDS-225A and ICE-51 with the
necessary support software. Eventually, this was accomplished, but only
after a nine month exercise of frustration with University of Hawaii
purchasing procedures. Thus, development got started later than originally
desired.

The system came with a reasonable screen oriented editor (AEDIT),
an 8051 cross assembler (MCS51), a linker (RL5l), a series of
communications programs (ACL commands ONLINE, SEND, UPLOAD,
AND DNLOAD) linking the MDS to the VAX computer at HDC, and the
driver for the in-circuit emulater (lCE5!). Thus, the development cycle
would go something like Figure 7.9



Edit Program

- (AEDIT)

,
Assemble
Program
(MCS51)

,
Link Program to
other modules
(RL51) .

,
Test Program in
circuit (ICE51)

,
Write Files to

Does it Work - the VAX for

no ? yes archieving and
ROM burning

Figure 7.9 :MDS development cycle.

161



162

The MCS-51 (cross) assembly languagetf is a rather unusual
mixture. On the one hand, in terms of the assembly options that one can
choose from (and, in a certain sense, must at least partially understand in
order to minimally satisfy the assembler to do something), it is a very rich
package. There is much to choose from. This includes a macro facility,
known as MPL (Macro Processor Language), with strong facilities for
defining functions as well as a good collection of control functions (such as
IF-THEN-ELSE, REPEAT, and WHILE). However, the macro definition
functions follow a syntax that differs from the more popular syntax found
in common in MACRO-II (the PDP-II and VAX assemblers) and the CP/M
standard MACRO-80.

On the other hand, the instruction set of the 8051 family
microcontrollers is the worst I have ever seen. It is unnecessarily burdened
with "single byte" instructions which do almost nothing and use up the
instruction set space so that there is no room for even some of the more
common instructions one would expect on a microcomputer else where
(such as the Motorola 6800, 6809, and 68000 series or the Intel 8080, 8085,
and 8086 series). Altogether, MCS-51 is a poor development system mainly

because of the limited instruction set. In order to be able to program this

microcontroller to the relatively sophisticated level that was demanded by
the optical modules, calibration modules, power controller, and the Ersatz
SBC, a more malleable programming system was needed. This I
accomplished by developing a language based upon the MPL macro facility
called UHPS (Underwater Hawai'i Programming Language). UHPS is the
subject of Chapter 9 and its details are left for there. Suffice it to say that
UHPS is a structured language akin to C and PASCAL and that it has
many macros added that allow it to do things that ought to be intrinsic to
the instruction set and yet are not.

One of the great advantages of structured languages is that they
readily lend themselves to the development of independent modules that

16 See MeS-51 Macro Assembler User's Guide



163

can be easily tested in isolation from the application that they are intended
for. One effective class of such modules in the hardware intensive
environment of the SPS are the device drivers. These are the routines which
directly interface with and control the hardware such as an AtoD
controller, etc. With the aid of simple laboratory test instruments such as
bench power supplies, an oscilloscope, and a digital voltmeter one is able to
set up an independent testing and debugging environment for the device
driver. A small throwaway routine is written which is used for passing
information either to or form the device driver under test as if it were
embedded in the applications program. The disadvantage of this approach
is the need for throwaway code. However, these are usually very straight
forward and typically only variations upon a common theme and as such,
once one or two are working, it is not a really involved job to bring up others.
The main advantage of this approach is that the modules are independent
of one another and they have been thoroughly debugged before being linked
into the applications program. In short, one tames the beast by dividing and
conquering.



164

7.1J Optical Module Program Description

The string optical module program (SOM) is used to provide control
and communications over the common party line string for both the optical
and calibration modules. With seven optical modules, two calibration
modules, and the ability to communicate with only one module at a time,
most of the time this program spends "listening" to the string for
commands. The principle objectives of this program are (1) to provide party
line communications, (2) to provide control of the PMT high voltage and
threshold discriminator level, and (3) to report back values of various
analog channels as well as the PMT single's rate.

The program SOM is made up of some 23 separate routines, not
counting the modules associated directly with the UHPS language such as
the telecommunications and timing routines. The routines found in SOM
logically divide themselves into eight classes as is summarized in Table 7.4
below:



Table 7.4

Summary of SOM Routines

165

Class

Main:

Name

SOM
INITIAL

Description

Main program
Initialize stack and 300 baud serial port

Communications control:
CREPLY Echo back valid command
RREPLY Send back single's rate value
SYNCH Synchronize on first byte of command

string

Parser:

CMDPOLL Parse the command string for a valid
command

Table handler:
ANAPOLL
ANLKUP

UPDATE

Poll all (16) analog channels
Look up (read) analog value from table

for specified channel
Update (write) analog value to table for

specified channel

Command executive:
CMDSERV Service the command request
RRATE Read the PMT single's rate value



166

1rable 7.4(contUnued)

Summary of SOM Routines

Class Name Description

Device drivers:
ATOD

DTOA

MODID

SETDSCR
SETHV

Error handling:
CMDERR
DEVERR
FORERR

Glue:
ISALNO
ISHEX
RAMPDN
RAMPUP

Drives AtoD converter for specified
channel

Drives DtoA converter for specified
channel

Look up this module's identification
number

Set the threshold of the discriminator
Set the PMT's high voltage

Report a command error
Report a device error
Report a format error

Check if byte is alphanumeric
Check if byte is a hexidecimal number
Ramp down the PMT's high voltage
Ramp up the PMT's high voltage

A complete description of this program. would take up an inordinate
amount of space. For the interested reader, Appendix 4 is a complete listing
of this program including many in line comments. The program is written
in the language UHPS which is detailed in Chapter 9. This chapter must be
studied in order for the reader to be able to really follow the program listing
in the detail necessary to make intelligent changes. What follows is a
greatly simplified description of some of the salient features of the program.



167

Understand that much of the important implementation detail is left out of
this description so as to make the overall thrust of the program
comprehensible.

The "main" or "root" level of SOM is flowcharted in Figure 7.10
below. Upon powering up, the microcontroller first executes an
initialization routine INITIAL. This routine, which is common to both the
optical module and power module programs, is flowcharted in Figure 7.11.
It is initiates the system stack and sets up the bidirectional 300 baud serial
communications port.



OPTICAL MODULE

168

INITIAL 
INITIALIZE STACK s,

DTOA - TURN OFF
PMT HIGH VOLTAGE

DTOA - TURN OFF
PMT DISCRIMINATOR

DELAV 1/4 SECOND

Figure 7.10 String Optical Module main program.



,
~:

ALWAYS

SYNCH - BUSY WAIT
FOR'S'SYNCHRON

IZATION CH RACTER

CMDPOLL - PARSE
FOR VALID COMMAND

BYTE BY BYTE

ANAPOL - POLLALL
ANALOG CHANNELS

AND UPDATE TABLE

Figure 7.10 (Continued) String Optical Module main program.

lW



170

INITIATE 300 BAUD
COMMUN ICATIONS
PORT AND STACK

Figure 7.11 Common microcontroller initialization routine.

After completing the initialization, the program goes into loop where

by it sends values to both of the DtoA channels repeatedly turning off the
PMT high voltage supply and maximizing the threshold level of the
discriminator. This is done to place everything is a known, safe condition so
that no damage is done to the PMT. The loop is repeated every 1/4 of a
second for a total of five seconds to be sure that everything has had power
long enough so as to become stable and is under control. An example of a
device driver routine, DTOA, is flowcharted in Figure 7.12.



171

CONVERT B INARV
VALUE TO ANALOG

VOLTAGE ON
SPECIFIED CHANNEL

Figure 7.12 Flowchart of the digital to analog device driver DTOA.

At this point, the program. enters into an infinite loop. The function of
this loop is to satisfy the main objectives of the program. The first objective,
the handling of party line communications, is achieved in part by the
routine SYNCH. This routine is common to both the optical module
program and the power module program. It is flowcharted in Figure 7.14.
All commands sent down to the optical and calibration modules are of the
form:



$<DEV><DEV><CMDO><CMD1>{<DATO><DAT1>}<CR> where

172

<DEV>

<CMDO>

<CMD1>

<DATO>
<DATI>

= device indentification number
(1..7 for optical modules and A..B
for calibration modules)

= command byte 0 - either 'R' for read
or 'W' for write

= hexidecimal channel number (O•.F) or
'R' for single's rate

= optional first data byte
= optional second data byte

Figure 7.13 Optical module command line



173

GET_CHAR - READ
A CHARACTER

Figure 7.14 Command line synchronization routine SYNCH

SYNCH is a busy wait loop which continues to look at successive
characters in the serial communications stream for the special
synchronization character '$'. When this character is found, the SYNCH is
exited and program control is passed on to the main parser routine
CMDPOLL. This is the most complicated routine in the entire program. A
highly simplified flowchart is given in Figure 7.15.



v

174

FORERR - ISSUE
FORMAT ERROR MSG

RESVNCHRONIZE 
BEGINING OFMSG

END OF MSG FOUND

Figure 7.15 The main command line parsing routine CMDPOLL



175

N

Figure 7.15 (Continued) The main command line parsing routine

CMDPOLL



176

Basically, CMDPOLL looks at each byte in turn after a synchronization byte
is found. It parses the list of bytes to be sure that they adhere to the defined
command line format above. If, at anytime, a synchronization byte is
encountered, the appropriate flag is set and the routine is exited at which
point SOM loops back and calls it again. If, in the course of parsing, a
syntax error is encountered, the routine is exited at which point SOM loops
back again to the synchronization routine SYNCH searching for the
beginning of the next command string. Finally, should a proper command
for the particular module executing SOM be encountered, CMPOLL is
exited without any error conditions and SOM then calls ANAPOLL.

ANAPOL, which is flowcharted in Figure 7.16, is the main ANALOG
table handing routine. When entered, the first of 16 channels is pointed to
and the ATOD routine called returning the analog value. In tum, UPDATE
then places this value into ANALOG. The channel number is incremented
and the process repeated until all of the channels have been updated. This
was done in part because it was easier to program. The time it takes to loop
through and update all 16 channels is fast in comparison to the time it
takes to perform 300 baud communications.



1Tl

POINT TO FIRST
CHANNEL

UPDATE - PERFORM
ATOD CONVERSION

AND PLACE VALUE IN

TABLE ANALOG

POINT TO NEXT
CHANNEL

N

Figure 7.16 The main ANALOG table handler ANAPOL

Finally, Figure 7.17 flowcharts CMDSERV. This routine takes the
command parsed out by CMDPOLL and checks to see if it is a lexically
correct command. If it is not, a error reply message is generated by
CMDERR. If it is correct, then the appropriate device driver is called either
returning a requested analog value or the single's rate or changing the
setting of the either the PMT high voltage (SETHV) or the threshold level of
the discriminator (SETDSCR). In the later two cases, the new settings are
automatically read on the appropriate analog channel and reported back as
part of the reply message so that the operator can see what the real settings
are and not just assume that the requested settings are correct.

.._---_._----------------



'I

v

v

CREPLV -
".:> ...-1 READ HEX CHANNEL

RREPLV -
".:> .. I READ SINGLE'S RATE

v

CMDE~R -
ECHO BACK

BAD COMMANDS

Figure 7.17 The command executive CMDSERV

!;j
00



l'

SETHV -
SET PMT HIGH
VOLTAGE

v

v

SETDSCR -
~ ~ I SET THRESHOLD OF

DESCRIMINATOR

v

CMDERR -
ECHO BACK

BAD COMMANDS

CMDERR -
ECHO BACK

BAD COMMANDS

Figure 7.17 (Continued) The command executive CMDSERV

f8



lID

CHAPTER 8 -Instrument Buildingm - The Design ofthe SBC
PowerDistribution SystemMicrocontroller Circuit

8.1 Introduction

This Chapter is the third of a series of five on instrument building of the
Short Prototype String. The main concern of this chapter is to document the

hardware and software of the microcontroller based power distribution
circuit. The microcontroller used in this circuit is identical to that used in
the optical module control circuitry, namely the INTEL 8051 family.
Chapter 7 which documents the optical module control circuitry discusses
in some detail this microcontroller, its selection, peculiarities, and
development environment and as such need not be duplicated here. The
language used to program the microcontroller is again the same language
as used in the optical module, namely UHPS, which is the subject of
Chapter 9. The hardware is documented here in complete detail and the
software is outlined with the complete listing, including in line comments,
making up Appendix 5.

8.2 PowerDistribution CircuitDescription

The need existed to dynamically control the distribution of +48 VDC feeder
power on an individual basis to the different instruments on the SPS. As
such, as part of the SBC, an intelligent circuit, also based upon the INTEL
8051 family microcontroller was developed. This circuit, whose 300 baud
communications was logically wired in parallel to the string, monitors
exactly the same commands from the ship that the string does. The power

distribution control circuitry consisted of four basic circuits: (1) 8751
microcontroller, (2) external memory, (3) communications interface, (4)

analog to digital control and timing chain, and (5) parallel I/O power latch

control.



181

Again, we start the description of the digital circuitry with its central
controller, namely the INTEL 8751 microcontroller. This is documented in
Figure 8.1 below:

-------- -----



Ii

+S VOC

LoeIC "HI" 1
SOURCE 1

VH

POWER RESET

R22
lK

RESET

VH

l~.~.~.~.~.: 80S 1 )

I/O SELECTION

PO.O DO
PO.l 01
PO.2 02
PO.3 03
PO.4 04
PO.S OS
PO.6 06
PO.7 07

P2.0 A8
P2.1 A9 A1S ~.A."'" -:-~ [IC/ADC
P2.2 Al0 A13

.A.
P2.3 All A12
P2.4 1'112
P2.S 1'113
P2.6 A14 / OAC
P2.7 A1S

Bi /RO
/WR

PSE~
/PSEN

ALE/ ALE
TXO TXO
RXO RXO

Figure 8.1 The power module INTEL 8751 based microcontroller
circuit.

~



183

The 8751 microcontroller (U401) is a 40 pin chip requiring a single +5 VDC
supply. Timing is generated by directly connecting a 12.0 Mhz crystal
(Y120) across the two pins XTAL1 and XTAL2 along with a decoupling
capacitor C22 (22 pf), Internally, the main control cycle timing of 1 Mhz is
derived through a divide by 12 circuit. This same clock is used for the two 16
bit timers (TO and T1), one of which is ultimately used to generate the baud
rates for the two serial I/O ports (RXD and TXD). Two levels of interrupts
are available (INTO and INT1) as well as the write (NR) and read (RD.)

memory control pulses. These last eight lines constitute parallel I/O port 3
of the 8751.

System start up is accomplished with the resistor and capacitor
combination made up ofC21 (a 150 pf tantalum) and R21 (3 kn) tied directly

into the RESET line. Upon power up, C21 feels the +5 VDC supply and is
charged thus pulling the RESET line high. In time, R21 bleeds off C21 so
that the RESET line goes low. The power on reset requirements for the 8051
microcontroller are such that the RESET line should be held high for at
least one ms after the power supply stabilizes to allow the oscillator to
stabilize. The microcontroller remains dormant until the line goes low. The
other lines of the microcontroller assume their initialization states within
24 oscillator periods. Upon the RESET line going low, a sequence is initiated
which takes about 12 oscillator periods before ALE is generated (permitting
dialog with the memory) and normal operation begins with the program
counter pointing to the first instruction at absolute program memory
location OOOOH.l The EA. (External Address NOT) line is used to tell the
microcontroller whether it is an 8751 or 8051 version (logic high condition)
of the microcontroller which has some on-board ROM with a program in it
or not as is the case for the 8035 version (logic low condition). This way,
when the microcontroller starts up, it looks in the right place to find its
controlling program. The symbol VH stands for a common logical "high"
line that can be used in all cases where a digital (+5 VDC) high is needed. It
is formed by tying a 1 kQ resistor into the +5 VDe supply. In this way, less

1 MeS-51 User's Manual, p.2-28.



184

current is drawn by the chips than if they were directly tied in. This also
means that should an over voltage occur, these inputs which are more
sensitive than the power inputs, are afforded a degree of protection through
current limiting.

The eight parallel I/O lines comprising port 0 are dedicated as the
data transfer lines DO through D7 inclusive. Actually, these lines are
multiplexed in time so that they also act as the lower eight address selection
lines for extemal memory. The ALE (Address Latch Enable) output of the
microcontroller is the strobe signal for differentiating these two roles. The
eight parallel I/O lines comprising port 1 are dedicated as the principle I/O
lines for transferring information from the microcontroller to the different
D to A channels and from the different A to D channels to the
microcontroller. These are labeled 100 through 107 inclusive.

The eight parallel I/O lines of port 2 basically are divided into two
different sections. The lines labeled A8 through AI0 are used to address the
ADC0808 (U402) 8 channel A to D converter picking out one of 8 possible
channels. Lines A12, A13, and A15 are used (among other things) as inputs
to one half of U131 (74HC244 non-inverting bi-quad tri-state buffer) to
generate a series of chip enable lines, only one of which is used, AI!Q (A to

D Control). These are separated in time from other uses of some of these
lines by the strobing with the timer output Tl (labeled IOEN for I/O Enable).

As mentioned before in the case of the optical module circuitry, the
8051 actually has two 64 kilobyte memory spaces which have absolutely
nothing to do with each other. The two separate memory spaces are called
the "code memory" and the "data memory". The implementation of an
extemal memory becomes essential because the intemallimit of 80 data
bytes is easily exhausted just to handle program variables. Figure 8.2
documents the external memory circuit:



'!

DATA I ADDRESS ROM EXPANSION RAM EXPANSION

SEPARATION CCODE MEMORY) CDATA MEMORY)

DO IO 00 AO 00 DO AO DO DO
01 Xl 01 Al 01 01 Al 01 01
02 A2 02 A2 02
03 I2 02 A3 02 03 A3 02 03
04 I3 03 A4 03 04 A4 03 04
OS 14 04 AS 04 OS AS 04 OSIS OS OS 0506 I6 06 A6 06 06 A6 4 06 D6
07 I7 07 A7 07 07 A7 _3

~.. ~.. D7
AS AS
A9 A9
AI0 AI0
All All
ROMAD A12

20 7t:'rr

ICE2 26jIOEN

,.., .....<:S035)

A12~~Ar-ROMAO

A13 :_ '<:S751. S051)

HCS6

MEMORY MAP

DATA

EXTERNAL RAM 0 - SK

CODE <:S751. SOSl)

INTERNAL ROM 0 - 4K
EXTERNAL RAM 4K - 12K

CODE <:S035 - NO INTERNAL ROM)

EXTERNAL ROM 0 - SK

Figure 8.2 The power module external memory circuit.

~



186

The first part of the circuit is the data / address separation logic.
Here, the multiplexed data / address lines DO through D7 inclusive are fed
directly from the microcontroller (U401) to U405 (INTEL 8282 straight octal
latch) which acts as a demultiplexer separating off the address lines AO
through A7 inclusive. The time at which the multiplexed lines contain
valid address information is indicated by the ALE (Address Latch Enable)
signal directly from the microcontroller. In turn, the address lines are
directed to both the external ROM (code only) memory and the external
RAM (data only) memory along with the original (multiplexed) data lines
DO through D7 inclusive. The 8051 family microcontroller provides two
separate strobes or chip enable signals to indicate in data time (as opposed
to address time) that valid data information is available. The external ROM
U406 (2764 +5 V only 8 kilobyte by 8 bit) is strobed by PSEN (Program Sense
ENable) directly from the microcontroller. Analogously, the external RAM
U407 (HM6264 static CMOS +5 V only 8 kilobyte by 8 bit) is strobed by Rll
(ReaD) during a read cycle and by:wE (WRite) during a write cycle, both
originating directly from the microcontroller. The timer output T1, instead
of being used for its intrinsic function as a 16 bit timer, is used to provide a
common extemal memory strobe signal IOEN (I/O ENable). Finally, the
higher address lines A8 through A13 inclusive are used to fill in the
remaining address control lines. In the case of the both the RAM and the
ROM, A8 through All inclusive directly drive the four of the address lines.
For the RAM, A12 is used to directly drive the remaining address line. For
the ROM, a combination of A12 and A13 are used to generate the remaining
address line ROMAD (ROM ADdress) according to the formula:

ROMAD = A12 XOR A13 for the 8751 and 8051 versions

ROMAD =A12 for the 8035 version.

(8.1a)

(8.1b)

The next circuit to consider is the communications interface. This is
a fairly simple affair in which the TTL level microcontroHer serial
communications lines RXD and TXD, "Receive (digital) Data" and
"Transmit (digital) Data" signals respectively, are translated into RS-232C



187

level lines through the use of level translators U411A (1489 EIA receiver)
and U412A (1488 EIA Driver). The communications lines RXD and TXD tie
directly into the 8751 microcontroller chip (U401 of Figure 8.1). This is
documented below in Figure 8.3.

U4:2A
TXO-R5232~ ~ TXO

14 a

RXD-RS232~
U411A
1489

RXO

Figure 8.3 Serial communications in the power module.

The idea is that within the String Bottom Controller, the different serial
communications paths, namely from the fiber-optics cable, the string, and
the power module all to the central brain of the String Bottom Controller2
would conform to a normal RS-232C specification so that in system

2 The subject of Chapter 7.



188

development and testing, anyone of the communications pathways could be
broken and a terminal attached to either end to monitor and isolate
communications problems.

An eight channel, eight bit wide, analog to digital circuit was
provided initially for sensor monitoring in the Erzatz String Bottom
Controller cruise. This was later set aside for a larger system run directly
by the SBC microprocessor system. This system is based upon the National
Semiconductor ADCOBOB A to D chip which is virtually identical to the
ADC0816 used in the optical module circuit only it has eight instead of 16
channels. Figure 8.4 below documents this circuit.



I'

100 00 6 ANAO
101 INa
102 01 INl 7 ANAl

103 02 IN2 8 ANA2

104 03 IN3 ANA3

lOS 04 IN4 ANA4

106 OS INS AN AS

/RO
107 06 IN6 ANA6

07 IN7 ANA7

OE eLK AOCLK
EOC

AOOA A8
REF'+ Aooe A9
REF'- AOOC Al0

ALE /AOC

+lSVOC------l3 __ [~.;:10Vl_Y

START
A[)COeOlr

/\olR

EF'S

Figure 8.4 Power module A to D circuit.

~



100

The ADC0808 A to D converter needs a 500 KHz clock. This is
provided by the high speed CMOS gate, U413A (74HC04 inverter), with
resistor R11 (10 MQ) in parallel to bias the gate in its linear region, form the

basis of a "high speed CMOS" self oscillating circuit that starts up upon
feeling a power on transient. Resistor R12 (l Kn) provides an impedance

that adds some additional phase shift in conjunction with capacitor C13
(330 pf). This has the effect of cutting out spurious high frequency
oscillations isolating the gate output from the crystal network Y110 (4.032
MHz) so that a clean square wave results. The value of R12 is chosen so that
it will be roughly equal to the capacitive reactance of Cl3 at the frequency
involved. Capacitors C12 (47 pf) and Cl3 form the load resistance for the
crystal. Most crystals are cut for either 20 or 32 pf load capacitance. Using
values larger than this, Cl2 and Cl3 swamp out the effects of temperature
and supply voltage change on the input and output impedances. Since Cl3
is so much greater than this, capacitor Cl1 (33 pf) is placed in series with
the crystal to act as the load for the crystal and thus assure an impedance
match so that the crystal will not be loaded down. The result is the 4.032
MHz square wave MCLK pulse train. This is feed both directly into U414
(74HC161 asynchronous binary counter) where a divide by eight is
performed generating the 504 KHz clock ADCLK which in tum, as a system
clock, is tied directly into the ADCOBOB (U402) 8 channel, B bit, analog to
digital converter chip.

This single chip U402 is used to convert all B analog sensor
channels, ANAO through ANA7 inclusive, into digital input information
which is directly conveyed to the micro controller by way of lines 100
through 107 inclusive. The A to D converter starts the conversion process
when it receives a START signal made up of the combination in U400A
(74HC02 NOR)

START =WR AND ADC (8.2)

where ADC is the (Analog to Digital Converter) strobe mentioned before.
U404 (Analog Devices AD584) forms a precision +5 VDC voltage reference.



191

Timing pulses for the conversion process are supplied by the 504 Khz
square wave clock ADCLK (Figure 8.5). Figure 8.4 documents the sensor
input interface.

Rl1 VH

.rtl-t O
__.....,IFll

4.0~ MHZ 3~ PF

ADCLK (504 KHZ)

(DIVIDE BY S)

MCLK
(4.032 MHZ)

lK

R12

CLR
LOAD

t---""--------.V7l"Hr----,~CLK
---,'-;;H ENT

ENP
RCO

QD
QC
QB
QA

10M

T C12'\747 PF T C139' 330 PF

Figure 8.5 The 504 KHz square wave clock ADCLK for the A to D

converter.

When the conversion process is over, an end of conversion (EOC) signal is

generated and applied directly to the microcontroller as IMTQ. (INTerrupt
0). Since a polling rather than interrupt philosophy was adopted, an actual
interrupt is not generated in the microcontroller but rather, at this time,
the microcontroller is dedicated to monitoring the sense of this input. When
the microcontroller senses that the conversion is complete, then it starts the
data read process upon receiving an OE (Output Enable) signal made up of

the combination in U400B (74HC02 NOR)



OE = RD AND ADC.

192

(8.3)

The A to D converter includes an eight channel multiplexer. The
internal line COMP-IN (COMParison INput) is the input to the A to D
section of the chip. An analog signal in the referenced range of 0 to +5 VDC
will be converted to its eight bit digital equivalent. The internal line MUX
OUT (MUltipleXer OUTput) is the output of the eight channel multiplexer
section of the chip. A given channel is selected through the channel
address inputs ADDA through ADDD which are tied directly into the
microcontroller as address lines A8 through A10 inclusive strobed by the
START signal. These two lines, COMP-IN and MUX-OUT are tied together
to connect the two sections of the chip.

The final circuit of the power module is the latch control circuit
which is documented in Figure 8.6. The primary function of the power
module is to control the distribution of +48 VDC power. This was done by a
mechanical relay board that controlled 12 separate devices (including 10
string modules [seven optical modules, two calibration modules, one
environmental module], the high speed communications laser (fiber optics
driver), and the high speed circuitry of the string bottom controller. The
programmable output pins lMT1 (INTerrupt 1) and TO (Timer 0) were used
to generate the chip enable signals LATO and LAT1 (LATch 0 and 1)

respectively. These strobes are then used to latch in the eight parallel I/O
lines 100 through 107 inclusive into either U409 or U410 (74HC573 or 574)
eight bit wide latches (D flip-flop), the outputs of which are wired each to the
control input of a single mechanical relay controlling the power to a single
module.



POWER RELAY SELECTION

4

01 Q1
02 Q2
03 Q3
04 Q4
OS QS
06 Q6
07 Q7
08 Q8

/LAT O'_-*-'lH C
OC

/LAT 1._~'-I

Q1
Q2
Q3
Q4
QS
Q6
Q7
Q8

'3

Figure 8.6 Power module latch control interface.

The default, upon power up, is to have all powers off. This is accomplished
by having the microcontroller in the power module circuit, upon powering
up, to enter a loop for several seconds issuing the commands that disable
all of the power relays. Later, under operator command, each module may
be turned on one by one.



194

8.3 Power Module Program Description

The power module program (PWR) is used to provide control and
communications over the common party line string for power distribution
module. Like its bigger brother, SOM, the PWR program spends most of its
time "listening" to the string for commands. The principle objectives of this
program are (1) to provide party line communications and (2) to provide
control of the power distribution system of the string bottom controller.

The program PWR is made up of some 10 separate routines, not
counting the modules associated directly with the UHPS language such as
the telecommunications and timing routines. The routines found in PWR
logically divide themselves into six classes as is summarized in Table 8.1
below:



195

Table 8.1

Summary of PWR Routines

Class

Main:

Name

PWR
INITIAL

Description

Main program
Initialize stack and 300 baud serial
port

Communications control:
ECHOM Echo back valid command
SYNCH Synchronize on first byte of command string

Parser:
CMDPOLL Parse the command string for a valid

command
Command executive:

CMDSERV Service the command request

Device drivers:
PWRON
PWROFF

Error handling:
CMDERR
FORERR

Power on specified device
Power off specified device

Report a command error
Report a format error

A complete description of this program would take up an inordinate
amount of space. For the interested reader, Appendix 5 is a complete listing
of this program including many in line comments. The program is written

---- ------ --_._------------



196

in the language UHPS which is detailed in Chapter 9. This chapter must be
studied in order for the reader to be able to really follow the program listing
in the detail necessary to make intelligent changes. What follows is a
greatly simplified description of some of the salient features of the program.
Understand that much of the important implementation detail is left out of
this description so as to make the overall thrust of the program
comprehensible.

The "main" or "root" level ofPWR is flowcharted in Figure 8.7 below.
Upon powering up, the microcontroller first executes an initialization
routine INITIAL. This routine, which is common to both the optical
module and power module programs, is flowcharted in Figure 7.10. It is
initiates the system stack and sets up the bidirectional 300 baud serial
communications port.



197

WER MODULE MAIN

INITIAL -
INITIALIZE STACK &
-- 'INI~A- - -Ll WWI I I lJNS

,
n-URN OFF ALL INSTRU-

MENTS (PWROFF)

.
~

CMDPOLL - PARSE
COMMAND LINE AND

SAVE IT

CMDSERV - EXECUTE
VALID COMMANDS OR

RETURN ERROR
MESSAGE

PO

Figure 8.7 Power Module main program.



198

After completing the initialization, the program first "gently" tums
off one at a time all the devices whose power is controlled by the circuit by
repeatedly calling PWROFF. Then, as a precaution, to be sure that indeed
all the devices are off, it writes values directly to the latches snapping off
any and all remaining devices all at once.

At this point, the program. enters into an infinite loop. The function of
this loop is to satisfy the main objectives of the program.. The first objective,
the handling of party line communications, is achieved in part by the
routine SYNCH which is called from within CMDPOLL. This routine is
common to both the optical module program and the power module
program. All commands sent down to the power module are of the form:

$AA<CMDO><CMDl><CR> where

A

<CMDO>

<C:MDl>

=device indentification number for the
power distribution module

=command byte 0 - either
'S' for toggling off the power or
'Q' for toggling on the power

=hexidecimal power channel number (O..F)

Figure 8.8 Optical module command line

SYNCH is a busy wait loop which continues to look at successive
characters in the serial communications stream for the special
synchronization character '$'. CMDPOLL is the main parser routine, a
highly simplified flowchart of it is given in Figure 8.9.



GET_CHAR - READ
NEXT CHARACTER

GET_CHAR - READ
NEXT CHARACTER
INTO CND

GET_CHAR - READ
NEXT CHARACTER
INTO CND + I

GET_CHAR - READ
NEXT CHARACTER
INTO CHAR

FORERR - ECHO
BAD COMMAND
WITH'?,

Figure 8.9 The main command line parsing routine CMDPOLL

------ --------------------

199



Basically, CMDPOLL looks at each byte in turn after a synchronization byte
is found. It parses the list of bytes to be sure that they adhere to the defined
command line format above. If, in the course of parsing, a syntax error is
encountered, the routine is exited with an format error message generated
and ultimately PWR loops back searching for the beginning of the next
command string. Finally, should a proper command for be encountered,
CMPOLL is exited without any error conditions and PWR then calls
CMDSERV.

Finally, Figure 8.10 flowcharts CMDSERV. This routine takes the
command parsed out by CMDPOLL and checks to see if it is a lexically
correct command. If it is not, a error reply message is generated by
CMDERR. If it is correct, then the appropriate bit pattern is written into the
latch , masking out all devices except the one to be toggled. This is done
either by PWROFF or PWRON depending upon whether or not the device is
to be powered off or powered on. A good reply message is generated by
ECHOM and an error message is generated by CMDERR should a lexical
error be encountered.



N

2>1

PWROFF -
TURN OFF

ACTIVE BITS

ECHOM -
ECHO BACK WRITE

ONlV COMMAND

PWRON -
TURN ON

ACTIVE BITS

ECHOM -
ECHO BACK WR ITE

ONl V COMMAND

CMDERR -
ECHO BACK BAD

COMMAND

Figure 8.10 The command executive CMDSERV



CHAPrER 9 -Instrument BuildingPart IV - UHPS
(UnderwaterHawaii Programming System), a Structured

MicrocontrollerProgrammingLanguage

9.1 Introduction

This chapter is a self-contained description of the motivation for and
implementation of the Underwater Hawai'i Programming System (UHPS)
which is a macro based structured programming language for the INTEL
8051 family of microcontrollers. As such, for those interested in the details
of UHPS, its implementation and use, it is essential reading. The
appendices containing the programs for the String Optical Module and the
Power Module are written in this language. One may be able to gain some
crude understanding of these programs without reading this chapter but
the subties of implementation will be completely lost if this chapter is not
throughly studied.

UHPS is a macro based language developed for programming the
Intel 8051 family of microcontrollers. At the time programming for the
optical modules in the SPS began, back in early 1984, there were no
inexpensive, readilly available, programming languages for programming
the 8051 microcontroller. An Intel MDS-225A microprocessor developement
system with its associated ICE-51 in circuit emulator was purchased by the
group to provide a direct hardware emulation environment for the 8051
microcontroller. Accompanying this system was the Intel (Microcontroller
System) MeS-51 Macroassembler. The assembler had the contrasting
characteristics of being very powerful in its pseudo instructions and macro
options and yet the intrinsic instruction set was unbelievably crude.

The claim of the manufacturer is that the 8051 has 255 instructions
(out of a possible 256 in an eight bit wide instruction set space). Further,
they like to point out that 44% are intrinsic one byte instructions needing no

._-------------------------



operand and 41% need only a single byte operand implying a fast executing
instruction set-. This is a very misleading claim.

To understand why, it is necessary to consider what a typical
minimum microcomputer architecture might consist of. This idea has
been around for quite a while and is today known by the term RISC for
reduced instruction set computer.

To provide the reader with the proper background to understand the
nature of the problem encountered with the very reduced instruction set
provided by the 8051 microcontroller family, it is necessary to briefly
introduce a few topics germane to the motivation and subsequent
development of UHPS. First, an overview of computer architecture is
presented. Then, a model minimum instruction set for a computer, the
ABX model is discussed. Next, the actual architecture of the 8051 family is
introduced which is compared to the ABX model. Then, the Intel MCS-51
cross assembler is briefly described in terms of its most important features
along with a description of its macro facility MPL. Next, the initial
motivation for UHPS is discussed in terms of filling in the missing
operands needed by the 8051 to satisfy the ABX model. This was done by

making extensive use of MPL. The subject of structured languages and
their advantage of intrinsic modularity is considered. The implementation
of program control structure in UHPS is described as a response to the
dynamic requirements for code generation for the various 8051 based SPS
modules since direct assembly level programming would have been a trap
of uncontrollable spaghetti. Finally, the extensions ofUHPS to overcome the
very limiting internal memory limitations of the microcontroller along with
a description of the use and implementation of primatives to hide from the
application programmer many of the routine internal hardware
peculiarities is given.

1 The 8051 Users' Manual



2n4

9.2 Overview ofComputer Architecture and the Von Neumann
Model

The most commonly used computer architecture was developed shortly
after World War II by the physicist Johnny Von Neumann and is known as
the Von Neumann architecture. The basic idea of this architecture is
ingenious in its simplicity. A memory array, i.e. a device capable of
sequential storage and retrieval of quantized information, is used for two
purposes: first, to store the instructions for the computer to execute and,
second, to store the data that the computer works on. This was essential
to do the artificial intelligence work that Von Neumann was interested in
because it allowed the reinterpretation on an additional pass of the data as
instructions thus giving the system a means by which it could "learn".

The Von Neumann architecture is not limited to artificial
intelligence work but rather has been accepted as the most common
architecture used in the computer world because of its inherent
simplicity. Among other things, it makes system memory decisions
flexible so that the memory can be allocated in different ways without
having to change the hardware (i.e, if the program memory gets too large,
one does not have to add program memory one simply reallocates
software wise from the system memory).

A computer program is a list of sequential instructions that
control the computer in such a way as to perform some meaningful task of
information processing. These instructions come from a set of instructions
intrinsic to the hardware of the system. Unfortunately, every computer has
its own unique set of instructions and thus programs written on this level
are not portable to other systems. Still, there are general guiding principles
which do tend to transcend any particular machine. By orienting one's
thinking in terms of some typical or common model, the task of

programing on the instruction level can be simplified. This is particularly



important in the present era of microcomputers in which the computer
hardware itself is inexpensive and programming labor is expensive-.

Probably the best known general purpose computer model is the
"ABX" machine. The internal architecture and the instruction set
constitute a very practical minimum system that all real systems ought to

be a superset of. With this minimum system, it is possible to write any
sequential computer program as long as the requirements do not exceed
the intrinsic hardware limitations of the system (memory, speed, etc.),

2 Lewis, T. G.



206

9.3 The ABX Model

The ABX model is named after the three most basic internal registers of
the model, namely the accumulator or arithmetic register (A) where the
logic operations of the computer are performed, the basic auxiliry register
(B), and the memory pointer or index register (X). Typical microcomputers
process information in B bit (or one byte) wide pieces. They access this
information (as well as fetch instructions to be executed) through a 16 bit
(or two byte) wide memory array. Thus, the codes representing either
instructions or data are limited to 256 (= 21\8) possible combinations and
the memory space is limited to 65,536 possible memory locations (or
addresses).

The internal architecture of a microcomputer ABX machine reflects
this arrangement in terms of the registers found in the central processing
unit (CPU) of the computer.

register A: Bbits

register B: Bbits

indeX: 16bits

Program Counter: 16bits

Stack Pointer: 16bits

Condition Codes: Bbits

Figure 9.1 The Registers of the ABX Programming Model,



Register A: 8 bit Accumulator register. The purpose of this register
is to provide a connection between the arithmetic logic unit (ALU) of
the computer which is the calculation logic of the computer and the
computer's common memory. Data values read into this register along
with absolute values or values referred to in memory, if needed, are acted
upon by the ALU. The result is stored in the accumulator.

Register B: 8 bit Basic auxiliary register. The purpose of this register
is act as a temporary internal storage area for data. Internal register
operations are typically faster than memory references if for no other
reason than that when a register is specified, its internal address is
immediately known in comparision to the typical extemal address which
must be calculated. Thus, when chain calculations are made, the ability
to temporarily move a result from the A register into the B register so that
an intermediate result may be found and then recall the previous result
can enhance throughput.

Register X: 16 bit indeX register. The most primative use of this
register is to act as a memory pointer or address register. Thus, this
register is first loaded with an address and a subsequent memory to
register transfer instruction is executed. Such an operation, of just holding
the address, is sort of an address analog to the B register. In more
advanced systems, the X register is capable of address arithmetic,
analogous to the A register, and thus more dynamic methods of memory
access are possible. This is considered in a bit more detail in the next
section.

Register PC: 16 bit Program Counter. This register is the pointer to
the memory location containing the current instruction being executed.
Its counting is automatic in that when the instruction is fetched into the
ALU, part of the ALU logic knows intrinsically how many bytes of operand
to skip over to the next instruction. The major modification to this is a
branch instruction in which the next instruction address is supplied as the
operand of the branch instruction. Use of the PC is automatic and is of



208

importance to the programmer mostly at debugging time when trying to
single step through a piece of code.

Register SP: 16 bit Stack Pointer. A stack is a reserved area of
general memory that is used as a sort of information scratch pad. It is a
FILO (first in, last out) type buffer. For example, it is into the stack that
context information «A>, <B>, <X>, <PC>, and <CC» is saved when a
program is interrupted by calling a subroutine or a hardware interrupt is
serviced. This register is used to point to the most recent entry of the stack
memory.

Register CC: 8 bit Condition Codes. This register is made up of one
bit flags indicating the status of various logic conditions. Typical of such
flags may be the carry / borrow flag C (used in arithmetic overflow and
underflow) and the zero flag Z (used to indicate if the most recent logic
operation resulted in a zero).

The terminology and nomenclature for the ABX model is
summarized below in Table 9.1:



Table 9.1

Nomenc1ature for the ABX model.

(a) Terms

accumulator - a register in which the result of an
operation is formed

bit - a quantum (or unit) of information (either zero
or one)

byte - a group ofbits operated on as a unit
(typically 8)

CPU - central processing unit, the
collection of registers and arithmetic logic
that makes up the central information engine

of the computer
register - a device (typically internal to the CPU)

capable of storing a specified amount of data
(one or two bytes)

memory - a device (typically external to the CPU)
capable of storing a specified amount of data
(one byte)

(b) Operators

XY = (internal memory) register or (external)
memory XY

<XY> = contents of XY

<-- =is transfered to
and = Boolean AND
or = Boolean (inclusive) OR
xor = Exclusive OR

= Boolean NOT

200



Table 9.1 (Continued)

Nomenclature for the ABX model.

(c) Registers in the CPU

A =register A (1 byte accumulator)
B =register B (1 byte auxilary)
CC =Condition Codes register (l byte)
X =indeX register (2 byte memory cell pointer)
XH =high order byte of X
XL =low order byte ofX
PC =Program Counter (2 byte program

instruction pointer)
PCH =high order byte of PC
PCL =low order byte ofPC
SP =Stack Pointer (2 byte stack memory pointer)
SPH =high order byte of SP
SPL =low order byte ofSP

(d) Memory and Addressing

M =a memory location (one byte cell)
M +1 =the next higher location to M
ReI =Relative address - number ofbytes

desired address is offset from a base
address

210



211

Table 9.1 (Continued)

Nomenclature for the ABX model.

(e) Condition Codes register

C =Carry I borrow flag - indicates if operation
resulted in a carry (set) or borrow (clear)

Z =Zero flag - indicates (set) if operation resulted in
a zero value in the accumulator register
(set) other bits are typically defined for this
register such as controlling interrupts, etc.

Finally, it is instructive to establish a minimum instruction set for
the ABX model. This is done in Table 9.2 where the instructions are divided
into the catogories of general register and memory transfer, subroutine
control, indexing, stack control, logic, and binary arithmetic.



Table 9.2

The operands of the ABX model

GENERAL REGISTER AND MEMORY TRANSFER:

LOAD ACCUMULATOR REGISTER <A>

LDA LABEL A<-- <M>

LDA #$hh A <-- #

TBA A<-- <B>

LOAD AUXILARY REGISTER <B>

LDB LABEL B <--<M>

LDB #$hh B <--I

TAB B <-- <A>

STORE MEMORY <M>

STA LABEL M<-- <A>

STA LABEL M<--<B>

SET STACK POINTER FROM MEMORY <SP>

212

LDS #immediate SPQow) <-- <M>

SP(high) <-- <M +1>



21.3

Table 9.2 (Continued)

The operands of the ABX model

SUBROUTINE CONTROL:

EXECUTE (AND RETURN FROM) SUBROUTINE

JSR

RTS

INDEXING:

LABEL push context on stack
PC <-- new address

retrieve context on stack
PC <-- old address

LOAD MEMORY ADDRESS POINTER
(INDEX REGISTER) <X>

LDX LABEL X(1ow) <-- <M>

X(high) <-- <M +1>

INX
DEX

INCREMENTIDECREMENT ADDRESS POINTER

X<-- <X> +1
X<-- <X>-1

~- - ~-~ - --- ------------



Table 9.2 (Continued)

The operands of the ABX model

STACK CONTROL:

PLACE CONTEXT ON STACK MEMORY (SM)

PSH A (excludes CC) SM <-- <.A>

SP <-- <SP> +1

PSH B SM <-- <B>

SP <-- <SP> +1

RETRIEVE CONTEXT FROM STACK

214

PUL

PUL

A

B

SP <-- <SP>-1
A<-- <SM>

SP <-- <SP>-1

B<--<SM>



215

Table 9.2 (Continued)

The operands of the ABX model

LOGICAL:

COMPARISION

CBA

CMP #$hh

BRANCHING

set CC by <.A> - <B>

set CC by <.A> - #

BRA
(orJMP

BEQ

BNE

BLT

BGT

BLE

BGT

LABEL
LABEL)

LABEL

LABEL

LABEL

LABEL

LABEL

LABEL

PC <-- <PC> +2 +Rel

if<.A> == <B> in CC
PC <-- <PC> +2 +Rel

if <A> != <B> in CC
PC <-- <PC> +2 +Rel

if<.A> < <B> in CC

PC <-- <PC> +2 +Rel

if<A> > <B> in CC

PC <-- <PC> +2 +Rel

if<A> <= <B> in CC
PC <-- <PC> +2 +Rel

if<A> >= <B> in CC
PC <-- <PC> +2 +Rel



216

Table 9.2 (Continued)

The operands of the ABX model

BINARY ARITHMETIC:

BUSY WAIT

NOP PC <-- <PC> +1
(i.e. do nothing)

BYTE SIZE LOGIC

ADD

ADDC

SUB
SUBB

AND
OR
XOR

COM

NEG

DEC

LABEL

LABEL

LABEL

LABEL

LABEL

LABEL

LABEL

BIT SIZE LOGIC

A <-- <A> + <M>

A <-- <A> + <M> + <C>
A <-- <A> - <M>

A <-- <A> - <M> - <C>
A <-- <.A> and <M>
A <-- <A> or <M>
A <-- <A> xor <M>

A <--!<A> == FF -<A>
(one's complement)

A <-- -<A> == 00 -<.A>
A <-- <A>-1

LSLA

LSRA

RSLA

RSRA

CLC
SEC

logical shift left all bits in A, clear AO
logical shift right all bits in A, clear A7

rotate shift all bits in A left thru C

rotate shift all bits in A right thru C

C<-O

C<-1



217

9.4The Index Register and the Stack

To more fully understand the ABX model, as well as the concept of
structured programming which will be discussed below, two of the
registers mentioned above, namely the index register and the stack need to
be looked at in greater detail.

9.4a The Index Register and Different Methods of Memory
Access

The index register is used in a variety of ways to point to a memory
location. Some typical methods are as follows:

Immediate Addressing - a single byte operand which is the
numerical value of the address being pointed to.

Relative Addressing - a single byte operand which indicates the
offset (relative location) from the current location in the PC that must be
either added or subtracted from the PC to access the desired location.
Typically this is for a "nearby" jump instruction.

X := <PC> + <RA>

Indexed Addressing - address is the location contained in the index
register.

X:=<X>

. - -_ ..._-------



218

Direct Addressing - single byte operand which contains the address
in unsigned 8-bit binary form (thus intrinsically limited to the lower area
of memory).

X:= data-8

Extended Addressing - double byte operand which contains the
address in unsigned 16-bit binary form.

X:= data-16



219

9Ab The Stack

The stack in a microcomputer is a structure with associated operations
of sufficient importance as to merit closer attention. The idea of a stack
is to provide a reserved section of common memory that is used for
temporarily holding information much as a scratch pad might be used.
The organization of a stack is that it is a last in, first out buffer. As such,
stacks are either push up stacks where successive information is placed
sequentically in higher memory locations thus "burying" the earlier
information or pull down stacks where successive information is placed
sequentially in lower memory locations.

Access to the stack is made through reference to a hardware
pointer, the stack pointer (SP) which always points to the current location,
called the top of stack (TOS), where the next byte of information would be
stored.

The advantage of a pull down stack is that you can place it in some
used area of high memory and let it build downward while the program
residing in low memory builds upward. One has to be a bit more careful
in the case of push up stacks in allocating enough memory space for the

stack.

Probably the most important use of a stack is in the storing and
retrieving of context information in calling subroutines and handling
system interrupt requests. Here the information required to return the
system to the condition it was in before the interrupt is stored and then
moved back into the system upon returning. The stack is also an
excellent way of hiding information from different subroutines by
passing subroutine parameters on the stack rather than allowing more
than one subroutine direct access to a global variable (which if not
carefully monitored can always be clobbered iii some nasty way).



To not have a stack in a system is a nightmare. If one wants to
temporarily store and retrieve some data without a stack, one has to
explicitly define variables for every tempory storage of a variable and then
one has to keep track of the storage on a case by case basis which is very
prone to nasty errors. At best, one might have only as many variables set
aside as would eventually be used by a stack for that purpose anyway and
often many more. The stack solves all of this by keeping track of everything
automatically.

The other use of a stack, namely calling subroutines, also is not
absolutely essential in theory but is in practice. It is possible to write a
computer program without subroutines but it rapidly becomes a very
complicated affair. A subroutine allows one to break down a big problem
into a succession of smaller problems. Often these smaller problems are
needed more than once in the program and when written in subroutine
form they do not require to be repeatedly written allover the program, just
called. This technique is called modularization and is recognized as
useful by every major computing language although to varying degrees.

Thus, the model computer architecture given here might be more
correctly referred to as an ABX with stack model.

The use of a stack for passing parameters in subroutine calls
has become increasingly important in the development of computer
languages because of the concept of data (or information) hiding. In data
hiding, a program is broken down into a number of subroutines each of
which have access only to those variables that they really need to know
about.

There are several advantages to this. First, it severly limits the
number of possible interconnections that a subroutine has with the rest
of the program. In practice, this means that the subroutine can be
written and debugged independently of the program. Such a subroutine is
called a filter which simply takes input information, transforms it, and



221

then returns the transformed information as output. All that is needed to

test a filter is to write a simple dummy driver program that passes
values to a subroutine upon calling it and displays the returned values.

The disadvantage of this approach is that some throwaway code,
in the form of the driver, must be written. However, in practice this kind
of code becomes very straightforward by simply setting up dummy input
values, calling the routine, and then reporting the returned values. Thus,
using known cases, one debugs the filter completely independently of the
program.

From this point of view, a program then becomes basically a
sequence of subroutine calls. In fact, the basis of the UNIX operating
system is a mechanism by which the output of one filter is redirected to

the input of another filter, etc. so that the command line becomes the
actual program.

There are two basic methods by which one may use a stack to
pass parameters to and from a subroutine. The simplest but less efficient
method is to pass the parameters to the stack, then call the subroutine
which in so doing will place the address of the return location from the
subroutine calIon the stack. Now, inside the subroutine, in order to make
use of the information that has been passed, one must first pop off the
stack the return address and temporarily save it. Next, one pops off the
desired parameters. After completing the action of the subroutine one
returns by carrying out the same steps in reverse.

Some computer architectures allow one to define any number of
stacks in memory. With such an architecture, one uses one stack only for
the purposes of passing parameters between subroutines and the other
for handling the return addresses. In such a situation, execution speed is
greater because there is no need to pop the return address off the stack in
order to get to the passed parameters.



222

9.5 The Architecture of the 8051 Microcontroller Family

The architecture of the Intel 8051 series family microcontroller is
plainly weird. To begin with, the chip has good hardware. As a
microcontroller, in contrast to a microprocessor, the aim of the chip is to

control a lot of hardware rather than to execute a lot of software intensive
code. The connections of the microcontroller are designed in such a way
as to make interfacing the chip with external hardware relatively easy.
As such, there is a lot of hardware built into the chip.

Internal to the chip are a system oscillator which only needs an
external crystal (and some by pass capacitors) to set the operating
frequency, a restart circuit which only needs an external resistor and
capacitor to define the restart timing, and four separate 8 bit wide ports
which can be programmed down to the individual control line (bit). One of
these ports has additional hardware connected to it which serves a number
of very useful functions should one or more of these be desired in a given
implementation. The single bit control lines in Port 3 can be used as
follows:

P3.0 - Receive serial data
P3.1- Transmit serial data
P3.2 - (hardware) Interrupt line 0
P3.3 - (hardware) Interrupt line 1
P3A - Timer 0
P3.5 - Timer 1
P3.6 - Write (external) memory strobe
P3.7 - Read (external) memory strobe

Figure 9.2 The single bit control line definitions ofport 3 of the 8051
Microcontroller



223

Those lines which do not have to be dedicated to their built in
hardware function are free to be used like the lines in the other ports to
toggle hardware.

Port 0 also has a built in function and that is to act as the multiplexed
data buss and lower address buss to any external memory. Similarly,
additional lines of Port 2 are used as higher address lines. Finally, only
Port 1 is completely free of any intrinsic function assignments and can only
be used to control external hardware (i.e. as "I/O" lines).

External hardware is controlled quite simply in a microcontroller.
In a traditional microprocessor, one assigns some address in the address
space of the processor for the hardware to be interfaced at. Then,
appropriate address decoding circuits must be implemented to provide the
unambiguous address. In contrast, a microcontroller does not need any
external address decoding circuitry. Instead, individual lines are directly
accessible through the instruction set which can be used to toggle hardware
on and off accordingly. Thus, there is no need to design an I/O area into the
system memory.

In support of these intrinsic functions is an internal architecture of
"special function registers" (Table 9.3) which are located at reserve areas
of internal memory. Every intrinsic hardware function has one or more of
these registers in support of it. This includes registers for buffering
information, recording status, and programming control of the different
hardware options. Additionally, among these registers are to be found
the more usual CPU registers somewhat akin to the ABXmodel.

The memory architecture of the Intel 8051 family is unnecessarily
clumsy. There are three different types of memory. Internal to the 8051
chip is what is called the "internal memory". It is a 4095 byte (FFF hex)
long memory. The lowest 256 bytes (FF hex) of this memory is random
access memory (RAM or read / write memory) with the upper 127 bytes (7F
hex) of RAM being reserved as the locations of the special functions



registers. Thus, the first thing that should be noted about the memory is
that the CPU and hardware registers exist in it and are preassigned.

The 8051 family has two "external" memories. First, the external
program memory which starts off where the internal program memory
ended filling a memory space up to 65,536 bytes (FFFF hex) long. Second,
the external data memory which starts at location 0 filling a memory
space up to 65,536 bytes (FFFF hex) long. Thus, the second thing to note
about the memory is that it does not conform. to the Von Neumann
architecture in which both code and data coexist! This kind of
architecture, known as the Harvard architecture, precludes in a computer
designed around it the sort of ideas that Von Neumann had of programs
which could dynamically change their programming based upon some
kind of feedback system. Ostensibly the advantage of such a system is
that if the computer's program counter should somehow get confused
and point to the wrong area of memory to fetch instructions, such an
architecture precludes the possibility of the computer executing data
assuming that it is code. The idea is that the computer may skip something
but have a chance at recovery. This is really all quite "ify" since often in
a hardware intensive environment if something is skipped a program
could still hang waiting forever for a status bit to change which never will
because something was skipped.



225

Table 9.3 The Special Functions Registers

8051 Family

ACC
B

DPH
DPL
IE
IP
PO
PI
P2

P3
PSW
SBUF
SCON
SP
TCON

THO

TH1

TLO
TLI
TMOD

accumulator
multiplication register
data pointer <high byte>
data pointer <low byte>
interrupt enable
interrupt priority

portO
port 1

port 2

port 3
program status word
serial port buffer
serial port control
stack pointer
timer control
timer 0 <high byte>
timer 1 <high byte>
timer 0 <low byte>

timer 1 <low byte>
timer mode

ABX Model

A
B
X
X

SP

The instruction set of the 8051 and its capabilities are another matter
altogether. To quote the Intel literatures "The MCS-51 instruction set

includes 111 instructions, 49 of which are single-byte, 45 two-byte and 17

three byte." The implication of all of this is that the microcontroller is
fast. This is because of the large number of instructions requiring only one

or two bytes of code and thus the machine should not be having to expend

too many cycles on instruction fetching but rather on mstruction execution.

3 The 8051 Users' Manual, p. 8-1



Further, when one looks into the instruction set just a little bit further,
one finds that the 111 instructions are implemented in 255 (out of a
theoretically possible 256 for one byte wide instructions) separate opcodes.
Why is the possible opcode space so full?

There are a number of reasons why the opcode space for the 8051
family is so crowded. The biggest one is its designer's obsession with so
called fast, one byte instructions. For example, there are 32 possible I/O
lines that can be independently toggled (assuming that that is all you want
to do and that you do not want to talk with external memory or handle
interrupts or serial communications or make use of any of the other built in
hardware in the microcontroller). Every one of these 32 lines has associated
with it a separate instruction for toggling on or off the bit associated with
the I/O line. Thus, already, 64 of the 256 possible instructions are accounted
for. This philosophy prevails throughout the instruction set so that it is very
full of instructions that do not do very much. Other microcontrollers and
microcomputers sacrifice speed of the individual instruction to have a
second byte or operand that in this case would point out to only two separate
instructions, namely the instructions to either set or clear the I/O line bit,
which I/O line was intended for the operation. As such, two bytes, namely
the instruction and the operand would have to be fetched, but the opcode
space would have considerably more space left in it for more comprehensive
instructions which, if intelligently chosen and used, could significantly
speed up overall system throughput. In the case of the 8051 family, the
opcode is so full of truely primitive instructions that there is no room left
over for what within the ABX model or its like would be considered barely
essential.

Another limitation of the 8051 is the use of the lowest 32 bytes of its
internal data memory. It has the flexibility to be programmed a number of
ways which on the surface may seem like an advantage but which in
practice can be a real pain. The lowest 32 bytes can be divided into one to
four "register banks" consisting each of eight registers each labeled RO
through R7 inclusive. These are general purpose (data) registers like the B



register of the ABX model. Also, RO and Rl can be used as eight bit wide
pointers. Basically, the idea is that if one wanted to speed things up by not
having to save the context on a stack everytime an interrupt or a subroutine
changed the execution path of the program, the context is automatically
saved by switching register banks. One of the problems with this approach
is that one is limited to subroutine calling only four layers deep (something
not necessarily true in the optical module). Actually, the main problem
comes about that now the programmer must keep track of just how deep
subroutine calls are now at any given time in the execution of the program
rather than letting the system handle it. Additionally, there are plenty of
cases in which the context is not a whole eight bytes wide and as a
consequence there is a wasting of very limited internal memory. Instead,
only one register bank was used (bytes one through eight) and a stack was
implemented in the remaining space (bytes nine through 32 which runs
right up against the reserved area for the internal hardware registers). The
remaining internal data memory not used by the register bank, stack, or
hardware was used as general purpose memory for holding variables, etc.
Altogether, the internal data memory, including reserved hardware
registers, consists of only 128 bytes.

Another misleading feature of the 8051 family is the 64 kilobytes of
"code" memory. Part of this can be internal in the sense that the 8751 part
has a built in 4 kilobyte ROM. If the code exceeds this, then all of the code
must be in an external ROM since the control line that indicates that the
memory requirement is greater also disables the internal ROM. The biggest
problem is that this is indeed a separate memory from the data memory
(following the Harvard architecture rather than the Von Neumann
architecture) and there are absolutely no instructions permitting any kind
of data transfer to and from the code memory and the ALU of the
microcontroller. Thus, ideas such as having the ability to override a default
program by down loading a new program are impossible to implement.
Fortunately, for the optical modules and other devices in the SPS using the
8051 family, this does not seem to be a problem (the ability to override a
program existed with the SB-180 computer used in the SBC). This inability



to download a program made testing the system potentially very difficult.
The ICE-51 in circuit emulator was specifically obtained to avoid the
dangers of being forced into having to bum a ROM every time a program
change was made and needed to be tested.

Finally, it should be pointed out that one of the truely desirable goals
of any instruction set designer is to develop a symmetrical instruction set.
What this means is that operations generally have an inverse operation. If

there is an addition, there should be an accompanying subtraction, etc.
This is not the case at all for the 8051 family instruction set. An annoying
example of this is the case of the datapointer incrementation instruction. It
exists, but the datapointer decrementation instruction does not!



9.6 Analysis ofthe 8051 Instruction Set

It is instructive to see how truely deficient the 8051 family instruction set is
by directly comparing it to the ABX minimum model. There are certainly
no complaints about the instructions that are peculiar to the direct control
of the internal hardware of the 8051 since that is what it is advertised to do
better than other microcontrollers. However, for a comprehensive control
program to be written, say beyond some simple look up table such as a
keyboard encoder circuit, the minimum ABX model or its equivalent should
be satisfied or a lot of time is going to be spent fighting with the instruction
set to hammer something out. This comparison is done in Table 9.4 which
reproduces the opcodes of the ABX model defined in Table 9.2.



Table 9.4

Comparison of the operands in the 8051 family to the ABX model

ABXOPERAND 8051 OPERAND

GENERAL REGISTER AND MEMORY TRANSFER:

LOAD ACCUMULATOR REGISTER <A>

LDA LABEL MOV A, LABEL

LDA #$hh MOV A, #hh

TBA

LOAD AUXILARY REGISTER <B>

LDB LABEL MOV B, LABEL

LDB #$hh MOV B, #hh

TAB

STORE MEMORY <M>

STA LABEL MOV LABEL, A

STB LABEL MOV LABEL, B

SET STACK POINTER FROM MEMORY <SP>

LDS #$hhhh



231

Table 9.4 (Continued)

Comparison of the operands in the 8051 family to the ABXmodel

ABXOPERAND

SUBROUTINE CONTROL:

8051 OPERAND

EXECUTE (AND RETURN FROM) SUBROUTINE

JSR LABEL

RTS

INDEXING:

CALL LABEL

RET

LOAD MEMORY ADDRESS POINTER
(INDEX REGISTER) <X>

LDX LABEL MOV DPTR, #hhhh

INX
DEX

INCREMENTIDECREMENT ADDRESS POINTER

INCDPTR



Table 9.4 (Continued)

Comparison of the operands in the 8051 family to the ABX model

232

ABXOPERAND

STACK CONTROL:

8051 OPERAND

PLACE CONTEXT ON STACK MEMORY (SM)

PSH A
PSH B

PUSH LABEL

RETRIEVE CONTEXT FROM STACK

PUL A
PUL B

LOGICAL:

COMPARISION

CBA
CMP #$hh

BRANCHING

BRA LABEL
BEQ LABEL
BNE LABEL
BLT LABEL
BGT LABEL
BLE LABEL
BGT LABEL

POP LABEL



Table 9.4 (Continued)

Comparison of the operands in the 8051 family to the ABX model

233

ABXOPERAND

BINARY ARITHMETIC:

BUSY WAIT

NOP NOP

8051 OPERAND

BYTE SIZE LOGIC

ADD

ADDC

SUB
SUBB

AND

OR

XOR

COM
NEG

LABEL
LABEL
LABEL
LABEL
LABEL
LABEL
LABEL

ADD

ADC

SUB
SBB

ANL

ORL

A, #hh
A, #hh
A, #hh
A, #hh
A, #hh
A, #hh

DEC

INC INC LABEL



234

Table 9.4 (Continued)

Comparison of the operands in the 8051 family to the ABX model

ABXOPERAND 8051 OPERAND

BIT SIZE LOGIC

LSLA RL A

LSRA RR A

RSLA RLC A
RSRA RRC A

CLC CLR C
SEC SETB C

Scanning Table 9.4 shows that the major deficiencies in the 8051
instruction set when compared to the ABX minimum. model lie in the area
of comparison and branching instructions. Believe it or not, there are no
simple comparison instructions in the 8051 instruction set by which a
decision might be made in alternative program pathways! One composite
(definitely not simple) instruction does exist. This instruction is the
"compare, jump not equal" instruction written symbolically as:

CJNE A, #hh, LABEL

where the LABEL is the destination of the program should the condition
that the contents of the <.A> register are not equal to the immediate value
hh. Since the value being compared is indeed an immediate or absolute
value, it is a constant that must be determined at assembly time and not
something that can be computed during program execution. This is a very
severe restriction on program control.



235

One "branch" instruction also exists which again is a composite

instruction and of limited use. This is the "decrement and jump not zero"
instruction written symbolically as:

DJNZ LABELl, LABEL2

where LABELl is the destination should the <A> register be cleared and
LABEL2 is the entry point for the loop. This is a fairly sophisticated

instruction, the kind one finds in more powerful instruction sets than the

ABX model where the desire is to help the development of structured
programming languages for the computer. However, one instruction of this

kind does not make up for the lack of the other similar instructions that
would be needed for an advanced system nor does it make up for the lack of
minimal instructions demanded by the ABX minimum architecture.

As has been pointed out, the 8051 is very limited in terms of its
available "internal data" memory. In developing the program for the

optical module, this limit was exceeded. It turns out that if one is to deal

with "external data" memory, then the instruction set is even further
reduced to only two instructions, namely the ability to transfer data between

the internal and external data memories by way of the <A> register written
symbolically as:

MOVX

MOVX

@DPTR,A
A,@DPTR

Finally, in terms of major deficiencies in the 8051 instruction set, it

must be noted that the logic and arithmetic functions are again limited

because they compare only the <.A> register to an immediate value. This is
not quite as bad a deficiency since at least the operations exist. Interestingly
enough, the 8051 also includes instructions for multiplication and division,
again, beyond the minimal ABX model.



236

In sum, the designer of the 8051 instruction set seems to not be able to

make up its mind what it is. On the one hand, it has useful internal
hardware with appropriate control instructions that make it attractive. It
has some particularly advanced instructions, yet these are more of a tease
than useful since they are quite incomplete. It is capable of being set up in a
number of different modes, both stack oriented and register bank oriented,
yet its usable "internal data" space is very limited indeed. As such, it
almost assures that "external data" memory will have to be accessed, yet it
provides a very limited set of instructions for this. Thus any use of external
data memory is bottle necked by having to pass everything to and from
external data memory to internal data memory. Additionally, with only one
accumulator (the <A.> register), as is the fashion of INTEL instruction sets,
everything is bottlenecked going in and out of the accumulator too. It is the
single accumulator that is the first thing that is always criticized in the
ABX model. Comparison with the ABX minimum model shows that the
8051 has no useful comparison or branching instructions making anything
other than the simplest of programs a real nasty chore to write let alone
debug or modify.

It is precisely these observations that form the motivation for
developing the programming language which is the subject of this chapter.



2Zl

9.7 A Look at the Conventions of the MCS-51 Cross Assembler

MCS-51 is the cross assembler supplied by INTEL in support of its 8051
family of microcontrollers. It runs on the INTEL MDS-225A
Microprocessor Development System and its assembled code is downloaded
into the circuit under test through the INTEL ICE-51 In Circuit Emulator.
Since it supports the 8051 instruction set, in this respect, the assembler is
quite crude. On the other hand, it has imbedded in it a tremendous number
of functions, the most important of which will be covered here. These
functions include preassembler commands, pseudo-operands, link
referencing, memory segmentation, numerical resolution, and in line
comments among others.

A quick way to get into MCS-51 with an eye towards understanding
UHPS is to look at some of the conventions of MCS-51. These are briefly
listed in the following:

Names - there are several kinds of naming conventions used in MCS
51. First, the file name is dictated by the limitations of the ISIS-II operating

system that runs on the MDS-225A. Filenames are made up of a maximum
of six alphanumeric characters in a string with the first character always
being alphabetic followed by the option of a delimiting period and up to three
alphanumeric characters as an extention. Thus, a representative file name
may have the form:

ISITHX.A51

Each file has internal file name. This is indicated by directly preceding
keyword "NAME". This name must be an alphanumeric string of
(essentially) any length. All alphanumeric strings in MCS-51 may use an
underline character to connect together words to form a continuous string.
Strings are terminated by white space. Thus, near the begining of the file,
one may label the file internally as:



238

Labels within the code of an MCS-51 file, used to designate a point within
the program (code memory), are terminated with a colon as in:

CODE_LOCATION:

Strings used to label variables and constants abide by the same rules but
have no terminating colon.

Comments - can be placed anywhere within the file. Comments are
indicated by a single semi-colon character being placed before whatever is
to be commented on that line. The only restriction is that once a comment is
started on a line, everything which follows it on that line, with the exception
of a macro declaration (see below), will be interpreted as a comment.
Typically, one uses comments in three ways. One, to place comment lines
between code lines. Two, to place a comment to the right of any code in a
line (following the usual assembler convention of LABEL OPCODE
OPERAND COMMENT). Three, to "comment out" any line of code that one
might wish to temporarily remove.

Preassembler commands - these are commands to the MCS-51
assembler to do special things when they are encountered. They are
indicated by a leading dollar sign character before the command. Two
commands are of particular importance. First, the command

$DEBUG

at the very top of a file indicates to the assembler to retain code memory
symbols of that file in a special symbol table that is created by the relocatable
linker (RL-51) and retained and loaded by ICE-51 during programming
testing. As such, break points can be set using those symbols (assuming
that they are not overridden by the tendency for ICE-51 to mix up all
symbols, from all memories, and to only retain the last one with the same



239

value greatly confusing everything especially since INTEL went out of its
way to separate everything with the use of the Harvard architecture).

The second command,

$INCLUDE (FILENM.EXT)

calls for the assembler to locate and read in the file named FILENM.EXT.
This is real handy for calling in definitions of constants and macros as will
be seen later.

Link references - are made explicitly in MCS-51. If no explicit
reference is made, then all routines (code addresses) are automatically
local and not knowable by other routines. This is good modular
programming technique. Two commands cover this. First, the command to
declare that the routine defined in the current file is available for linking
with others is

PUBLIC LABELl, LABEL2, LABEL3

Thus, in this case, the routines (or entry points) LABELl, LABEL2, AND
LABEL3 are made available. The second command is

EXTRN (SUBRl, SUBR2, SUBR3)

This indicates that the routines SUBRl, SUBR2, and SUBR3 are needed by
the code in the current file and that they are to be found elsewhere. Thus,
the linker RL-51 uses these two commands to identify and link up routines.
What this means, is that the same symbols may be used in more than one
file as long as none of them are declared as "global" with the above
commands.

Memory segmentation - is explicitly indicated in MCS-51 by the use of
the commands SEGMENT and RSEG being associated with one of the three
possible types of memory, namely DATA (internal data), CODE (program),



240

or XDATA (external data). The first command is used to associate a name
for the memory segment as well as to define the type of segment it is. For
example,

SEGMENT DATA

defines the memory segment as a DATA segment and assigns the name
ATOD_DATA to it. Later, just at the point where one wishes to define the
contents of the segment either by filling the space with something such as
code or constants or by reserving space for variables, one uses the second
command as in

RSEG

This will continue to be the space that everything following will be put into
until a new RSEG command is given with a differently defined and named
space. The obvious exception to this is if code in the form of operations and
operands is given. Then the assembler unambiguously knows that this
must go into the most recently defined code space.

Originating memory segments - is accomplished by a couple of
pseudo-operations. Code segments begin with the pseudo-operation

ORG OH

here indicating that the segment began at location OH. Data segments are
originated with

DSEG at 8

for an internal data segment that begins at location 8 (i.e, the byte just
beyond the first possible register bank). Finally, external data memory
segments are originated with

XDATA lOOH



241

for an external data segment that begins at location 100H (i.e, the byte just
beyond the internal memory space).

Numeric representations - a series of conventions, closely akin to
most other commonly found assemblers, are used to represent
informational patterns on a byte by byte basis. Numbers can be represented
in one of three ways which are demonstrated here for the number eight:

8
00OOl000B
OBH

decimal
binary
hexadecimal

In the case of immediate addressing, etc. where one is going to use a
number directly as a constant value as an operand in an instruction, the '#'

symbol is placed in front of the number. Finally, in this regard, ASCII

strings can be directly represented by enclosing them in single quotation
marks such as in:

'This is an ASCII string.'

Strings - are usually one of two kinds. Code strings, by their very
nature, are fixed in length. As such, two pieces of information are used to

control them, the address of the first entry into the string and the length of

the string in bytes. Data strings, being variable, require a special

terminator character, such as the value OH. Again, the address of the first

entry into the string is supplied and the string is "gobbled up" byte by byte

until the terminator character is encountered.

Pseudo-operations - are commands that are entered into the
assembly code as if they belonged to the instruction set of the
microcontroller and yet do not. These commands inform the assembler of
choices and other information that it needs to translate the list of assembly
mnemonics which make up the program into code that the computer can



242

directly execute. Several have been pointed out above. The remaining
important ones are now considered. Basically, one wishes to either reserve
space in data memory for variables or to define values of constants in code
memory. Variables in data memory are defined by the "define space"
pseudo-operation as in:

STACK: DS 24 ; reserve space for a stack

Constants in code memory are defined by the "define byte" pseudo-operation
as in:

STRING: DB 'This is a string'

Finally, along these lines, one can assign names to values and to other
names. The most common one is the "equate" pseudo-operation as in:

JOHN
FUNG_CHU

EQU
EQU

FUNG_CHU
m

so that different names can be used to reference the same value. This is
very important to use when the same value is being used in many different
parts of a program for should the value be changed, the proper use ofEQU
can save a lot of heartache in having to properly track down all occurrences
to change them.

Single bits can also be defined similarly. In the 8051, more typically,
one toggles on and off the single I/O bits which can be directly addressed by
their reserved names such as P3.2 for the second bit in port three which you
might associate in your application as say the "hallway light". In this case,

you would define

BIT P3.2



243

9.8 The Concept of a Macro Assembler and a Summary of the
MCS-51 Macro Facility MPL

An assembler is a computer program which translates the mnemonics
representing the different computer instructions into the numerical code
of those instructions. Additionally, at assembly time, it calculates
referenced addresses such as a branch to a subroutine. This saves an
enormous amount of time by not having to depend upon programmers
who would otherwise have to spend most of their time hand translating
the code.

A macro instruction is a single instruction name of a list or a
sequence of other instructions. A subroutine is a sequence of instructions
that appears only once in a program while it may be called (referenced)
from many different places. A macro differs from a subroutine in that
everytime the macro name appears, the macro handler in the assembler
expands the macro into its component instruction list. Thus, the macro
may appear in more than one place in the program and it is never
referenced but rather expanded when encountered. This expansion is
done at assembly time and is an exercise in string substitution
(substituting the instruction list for the macro name). A good macro
handler permits the use of dummy string variables. This makes the macro

a powerful tool allowing variations on the common theme of the macro.
Typically a macro is a small piece of code which may be viewed as a
single instruction with options. The options are the actual parameters
passed to the macro at the time it is expanded. A subroutine on the other
hand usually is more like a function that does some complete job in and of
itself and so tends to contain much more code than the typical macro.

The variables in a macro are fixed at assembly time whereas the
variables in a subroutine are fixed only at the time the subroutine is called.
As such, the variables in a macro are quite static compared to those in a

subroutine.



244

For example, let us say that there is no instruction in the instruction
set for transfering a byte stored at one location in memory to another
location in memory. One only has the ability to load a byte of information
from a memory location (LDA locl) to internal register A and store it back
again to another memory location (STA loc2). Should it turn out that the
nature of one's program is such that the need to make memory to memory
transfers occurs quite often, then this is a prime candidate for defining
and invoking a macro instruction. Such a macro might be defined as:

%*DEFlNE(MMT(X,Y» LOCAL LABEL
(

LDA %X
STA %Y

)

where X and Yare the macro dummy variables. The macro instruction
name is MMT (memory-memory transfer). Macros are typically collected
together in an include file so that they are easilly modified by the
programmer while made readillyavailable to the assembler. Let us say
that later on in the program, there are two memory locations called
PORT23 and INBUF2. The need arises to move the byte contained in
PORT23 to INBUF2. Rather than explicitely write out the code to do this in
the intrinsic instructions of the assembler, one can invoke the macro MMT
by the line

%MMT(PORT23,INBUF2)

which then tells the macro handler of the assembler to expand this code
and to substitute PORT23 for the dummy variable X and INBUF2 for the
dummy variable Y.



245

9.9 Filling out the 8051 Instruction Set - The Origins ofUHPS 
the Runtime Macros (RUNMAC.INC)

As was pointed out above, in comparing the 8051 family instruction set to
the mimimal ABX model, the most glaring deficiencies are in the areas of
comparing and branching instructions. There are none! This is the
original motivation for the development of UHPS.

In order to be able to do basic decisions in program control, both
comparison instructions for different logical combinations and branching
instructions are needed. This lack was made up for by a defining and using
a series of macros and associated primitive subroutines (called "primitives"
for short, these are explained in more detail later on) that filled in for the
missing instructions.

The primitives are all found in the file RUNLIB.P51. Altogether,
there are six similar primitives which compare two variables, X and Y,
and return either a TRUE or FALSE condition depending upon the logical
comparison requested. The six primitives handle the six logical
comparisons as shown in Table 9.5 below:

Table 9.5 The six logical comparison primitives

Logic function

x» Y
X< Y
X= Y

X!=Y

X>=Y

X<=Y

Primitive

XGTY
XLTY
XEQY

XNEY
XGEY
XLEY



246

It is illustrative to see how this is accomplished. As an example, consider
Figure 9.3 which shows the XGTY primitive:

XGTY:

MOV A,RI ;Y
CPL A
MOV RI,A ; IY
MOV A,RO ;X
CLR C
ADDC A,RI
RET

Figure 9.S The comparison primitive XGTY

Upon calling XGTY, the value of X is moved into <RO> and the value of Y is
moved into <RI>. This is a common programming model for all six
comparison primitives. The value of Y is then complemented to produce its
binary additive inverse. Next, the value of X is moved into the accumulator
<A> and the <C> (carry) flag cleared. Finally, the complemented Y and the
X values are added with the <C> flag being set if and only if a carry is
needed, Le. X is not greater than Y. The result is returned as the carry flag
to be read by the calling routine.

As a reminder, consider the equivalent code in the ABX model,
namely

LDA
LDB
BGT ELSEWHERE

where the comparison and the branch have all been accomplished in three
instructions. We have yet to do the branching.



247

Similarly, one calls such primitives with code like the following:

MOV

MOV

CALL

RO,XVALUE

Rl,YVALUE

XGTY

and then one proceeds to test for the result in the <C> flag. The point is that
the designers of the 8051, in the enthusiasm to develop a microcontroller
with fast executing instructions, force the programmer to use many more
instructions than would otherwise be used wasting expensive
programmer's times and memory space all with no real net increase in
throughput.

To facilitate the incessant calling of these comparison primitives, it
makes sense to "encapsulate" them within macros that are much closer to
what the programmer really wants to do, namely make a direct
comparison between two values and then branch accordingly. The file
RUNMAC.INC contains, among other things, six complementary calling
macros as shown in Table 9.6.

Table 9.6

The six complementary calling macros for the comparison primitives

4 Lewis, T. G. (1979)

Primitive

XGTY

XLTY

XEQY
XNEY

XGEY

XLEY

Complementary macro

MXGTY

MXLTY

MXEQY
MXNEY
MXGEY

MXLEY



248

MXGTY is a typical example which is defined in Figure 9.4:

%*DEFlNE(MXGTY(X,Y» LOCAL LABEL
(

)

MOV
MOV
CALL

RO,%X
Rl,%Y
XGTY

Figure 9.4 The MXGTY calling macro

so that in our code now, the single call

MXGTY(XVALUE,YVALUE)

does it all! One still needs to evaluate the returned logic value in the <C>
flag and then make the branch, but this is a lot closer to what one would
want. Before going any further, it is useful to take a look at the subject of
branching in computer programs.



249

9.10The Conventions ofUHPS

The conventions of UHPS are an extension of those of MCS-51. The
overridding philosophy was to adopt a set of conventions along the line of
the programming language PASCAL. PASCAL was chosen as a model
because in it everything has a place and this kind of imposed discipline was
needed to tame MeS-51 so that a consistent, relatively easy to modify and
test, programming system would evolve.

PASCAL is famous for a "formula" which in modified form could be
expressed like this

Module =Data Structures + Logic Control Structures
+ Algorithmsf

The term module refers to the idea that a program is logically broken
down into one or more subprograms (subroutines or functions). Typically,
there is one such module per file and so isolated, the module is debugged
independent of its application. Eventually, all of the modules are linked
together to produce the desired program. Some code in the form of "throw
away" test code must be written, but this kind of code becomes very easy to
write and this kind of emphasis on dividing and conquering the
programming task tends to result in more general purpose modules which
get used over and over again in different programs so that time and effort
are not wasted reinventing the wheel. Finally, in this regard, such
modularity permits the development of large software projects with more
than one programmer since once the required modules are identified,
different programmers can be given the task of writing different ones as
long as agreement is reached in terms of information passing.

5 Jensen, Kathleen and Wirth, Niklaus (1974)



200

The initial conventions of UHPS to be considered here are basically
those in the category of presenting data structures. A PASCAL like order of
doing this thus divides a given module into two separate parts, a "header"
section (the data structures) and a "code" section.

The header section is started with the internal file name following
the MCS-51 conventions mentioned before. For UHPS this is typically a
"long" version of the file name chosen to represent what the function of that
module is. Next, comes the basic order of information listing as follows:

Description of the module - this is a series of comment lines
identifying the purpose of the module, how information is passed into and
out of it, and any information concerning who wrote it and what the latest
revision date is.

Link references - here the global declarations are made using the
MCS-51 commands PUBLIC and EXTRN as described before.

Global variables and constants - are defined next using the MCS-51
pseudo-operations DS, EQU, and DB. Those so defined here are declared
immediately above by the PUBLIC command so that the linker RL-51 can
find them. Typically, a set of common constant definitions, which is merely
a list of EQU statements, is called in from an external file using the
$INCLUDE preassembler command.

Local variables and constants - are defined next, again using the
MCS-51 pseudo-operations DS, EQU, and DB. Since they are not explicitly
declared global, they are local to the module.

Data memory segmentation - here the data memory segments, both
internal (DATA) and external (XDATA) are declared and assigned names
using the iviCS-5i SEGMENT and RSEG commands as described before.



251

This sort of an arrangement is always better documented by an
example. As such, Figure 9.5 summarizes a typical header section for a file
named EXAMPL.A51:

NAME EXAMPLE_MODULE

; subroutine EXAMPLE - this subroutine is an
;example module that does nothing but shows
; the imposed order ofUHPS on to MCS-51

; author - Name Of Author, University of ...
; revision date - June 30, 1997

; link. references

PUBLIC EXAMPLE; this module is the
; source of EXAMPLE

EXTRN CODE (XEQY) ; and needs the

; external routine
;XEQY

; global constants and variables

$INCLUDE (CONSNT.INC) ; which is a big
; collection of EQU
; statements

Figure 9.5 An example header file named EXAMPL.P51 in UHPS

- - ------- ----------



252

; local definitions and variables

; const

TSWITCH BIT P2.4 ; a local constant

XAMP_MSG SEGMENT CODE
RSEG XAMP_MSG

XAMP_INSTO:
DB 'This is a dummy message' ,OOH

; var

XAMP_DATA SEGMENT DATA
RSEG XAMP_DATA

OCHAN: DS 1 ; output channel

; begin subroutine

Figure 9.5 (Continued) An example header file named EXAMPL.P51
in UHPS

This example points out several things. The include file
CONSNT.INC is a collection of universal constants that is almost always
included in every UHPS module. It is a list of EQU statements and is
discussed later in detail. The terminating comment line

; begin subroutine

is the boundary between the heading and code sections of the module.
Finally, note that the names given to the different memory sections found in
the module are all variations on the theme of the module name (either the
external short file name or the internal long name). This helps identifying



253

where things come from in reading over a symbol table generated by the
relocatable linker RL-51.

In practice, as UHPS evolved, CONSNT.INC is not the only include
file (and thus the reason for the extention name ".INC") commonly used.
The two others, which will be looked at in detail later, are RUNMAC.INC
and LCSTRC.INC which contain the run time macros and logical control
structures of the language respectively. So many files in fact required all
three of these that the file reference UHP8.INC is often included instead. It

is merely a list of these three common include files.

Next, let us consider briefly the conventions of the code section.
Basically the section is begun with an address label that is based upon the
name of the module, in our case EXAMPLE: would do fine. This is followed
by the code in the form of 8051 operations and operands, UHPS macros, and
MCS-51 pseudo-operations. Whenever intermediate address labels are
needed, these are based upon the starting address label as a sort of
variation on the theme. In our case these may be something like
EXAMPLE1: and EXAMPLE2:. Finally, the code is terminated by defining a
final address label at the very end of the code. By convention in UHPS, this
is the starting address label spelled backwards (thus mirror imaged words
like "WOW" do not make good address labels in UHPS). In our case, this
would be ELPMAXE: This actually helps to identify code locations in the
symbol tables of the linker RL-51 quite unambiguously.

Finally, it should be noted that a trick has been borrowed from the
RATFOR language projects. This project was a transition effort to move
FORTRAN users over to C. About 90% of the syntax of RATFOR is identical
to C. The major differences between the languages is that RATFOR (which
is really FORTRAN) must maintain the information passing conventions of
FORTRAN, (namely passing by location with the accompanying danger of
clobbering variables mentioned in the next section), and the usual

6 Kernighan, Brian W. and PIauger, P. J. (1976)



254

limitation that FORTRAN does not permit recursive code (i.e. a routine
may not call itself).

As part of this approach, for example to insist that constants be given
names and reference be made in the program to the name rather than the
value so that changes are easilly made in at one location, RATFOR
introduces a series of reserved names all in capital letters to symbolically
indicate ASCII values. For example, "carriage return" is given the name
"CR" and "capital a" is given the name "BIGA", etc. This approach was
taken in UHPS in the include file CONSNT.INC where these constant
definitions are all collected. The reader who is interested in this is referred
to that file.



255

9.11 The Concept ofStructured Programming

Structured programming is a somewhat involved subject yet it is furniture
of computer science. It is "the" technique that was used in UHPS to tame
the 8051 beast. This section briefly reviews the history leading up to the
ideas of structured programming and then defines the structures that
evolved from the work of mathematicians in the late 1950's and early 1960's.

9.lla History

Ben Franklin defined man as the toolmaking animal. While this is no
longer accepted as uniquely defining the human species, it is nevertheless
true that the extent or degree to which man makes tools exceeds probably
any other species on the planet. What I mean by this is that man just does
not make tools but rather makes tools that make tools that make tools ad
infinitum. Since the industrial revolution, the ideal place to see this kind of
behavior has been in the machine shop. Now, in the emerging information
age, one finds the equivalent in the "software" machine shop where
programs are written to aid the development of programs which in turn aid
the development of yet more programs. Just as in the machine shop, one
would not start with raw materials and expect to directly make something
as complicated as a jet aircraft engine, one does not just jump into writing
a sophisticated software application without mustering the necessary tools.
Some you buy elsewhere and some, because they do not conveniently exist,
must be constructed in house.

The first real example of a software tool is the assembler. Modern
electronic computers first evolved out of'World V/ar II. Originally, they had
to be "coded" by hand. This was very tedious and required a lot of repetitious
detail - precisely the type of thing that a computer does much better than a



256

human being just as metal filing is done much better by a milling machine.
Thus, one day, a frustrated computer "coder" coded his last program by
writing a crude assembler that accepted as input a list of mnemonics for
the instruction codes and then proceded to translate these into the
appropriate codes along with resolving the address references. Once this
was working, the program could be changed to add more features and the
current working version used to assemble the new version and thus update
itself.

The next logical step came in the mid 1950's when the first so-called
"high level" or more human readable languages emerged. In the U.S.,
these were the business language COBOL and the engineering / science
language FORTRAN. This placed the programmer one step further away
from the computer and hopefully that much closer to the application being
considered. Typically, many such "compilers" generate assembly code as
their output which in turn can be assembled and linked to other assembled
modules. Several problems emerged in time with these brave software tool
techniques. One was that there was the tendency to produce programs that
looked more like a huge spaghetti factory out of control. The infamous "GO
TO" statement allowed an accidental increase in program complexity that
was not needed for completing the task at hand. This complexity of
interrelationships lead in turn to increasingly difficult programs to debug
and maintain, especially as the demands upon computing increased in
time. Programs remained the kind of thing that a "programmer" did and
did alone. Rarely did more than one programmer work on the same
programming project at the same time",

By the 1960's, the concept of modularity and structured
programming emerged. Initially this was developed in Germany with Dr.
Bauer and his famous team that developed Algol 60. ffiM picked up the idea
in PL/I and FORTRAN began to adopt it with the WATFOR project. By the
end of the decade, the concept of "data hiding" emerged where it was

7 Cummings, W. C. (1974)



'}fj7

realized that one of the truely important ways to unburden the task of
writing large programs was to hide information from different modules on
a "need to know" basis much as security agencies do with their employees.
This gave rise to the concept of "pass by value" rather than "pass by
location" as is done in FORTRAN. FORTRAN is famous for clobbering
variables. When variables are passed by location, it is possible for a
seemingly buried subroutine to change the value. The result is quite
unpredictable and can take forever to debug because the system as a whole
has to be debugged rather than single modules.

Passing by value is accomplished by using a stack for passing the
values to and from subroutines. It is a bit slower in execution than passing
by location and a lot safer. If there is a demonstrated need for speeding
execution (which in practice is quite rare), there is nothing to prevent
making the variable global and thus directly accessible.

Passing by value eliminates the problem of clobbered variables
because in a sense it means that subsequent subroutines have only a sort of
"read only" access to the data. Even deeper, in terms of tool making
philosophys, data hiding facilitates the development of truely general
modules which tend to be application independent and as such a library of
these evolve in time developed by different programmers so that any given
project does not have to start out reinventing the wheel.

By the early 1970's languages such as PASCAL in Europe and C in
the U.S. evolved which included all of these features. Just as important was
what was not included. PLII, for example, is a monster language developed
by a large committee with everything, probably including the kitchen sink,
included. Older languages kept changing to "add" features but in the
attempt to satisfy their following, they never changed their underlying

philosophy which is the most important advance of all. The newer

8 Kernighan, Brian W. and PIauger, P. J. (1976)

---_ .. - ------



258

structured languages were designed from scratch to be tool makers rather
than accidental spaghetti factories.

A good example of this is C. C was developed by one man", Basically,
it is a universal assembler, allowing convenient contact with the unique
registers and hardware of a computer system in the same way that
assemblers do and yet its syntax is that of a higher level language.
Functional capabilities are done through the use of application libraries
that evolve as mentioned above. The main point is that C is written in C and
that when a new piece of hardware comes along, one need only hand
translate a small runtime package and the well documented code
generation tables to accomodate a new instruction set. Thus, suddenly
everything that was written in C on an older system will run, just as people
expect it to on the new system. The problem of waiting two years for
software to emerge after the hardware does-? is solved and there is no
learning curve for the user. These ideas were put dramatically to the test
when the original version of the UNIX operating system was translated
into C in one summer and installed onto various dissimilar machines
throughout Bell Labs-! thus giving rise to the world's first portable
operating system.

9.11b Structures

Mathematicians dominated computer science in the 1960's and out of their
way of looking at the subject emerged some interesting ideas. Some of the
terminology, such as "vectoring", is now part of the furniture of computer
science. Probably one of their greatest influences lies in the development of
logical control structures. These structures, when used in a language,

9 Kernighan, Brian W. and Ritchie, Dennis M. (1978)

10 Cummings, W. C. (1974)

11 Kernighan, Brian W. and Ritchie, Dennis M. (1978)



259

eliminate the notorious problem of the "GO TO" statement. What they all
have in common is that they have exactly one entry point and exactly one
exit point. Thus, debugging is greatly controlled because undesired
interconnections within a program are kept to a minimum and when
things do go wrong, one debugs by seeking out the offending structure
rather than having to keep track of the whole program or major parts of it.
The improvement is quite comparable to the invention of assemblers over
hand coding.

Mathematicians, being who they are, found that all sequential
computer programs could be written using a set of three basic structures.
In mathematical terms, the set is complete. Additionally, in practice, one
commonly finds three other "nice to have" structures, which while not
required for set completeness, nevertheless make programming much
easier. Finally, something free comes with all of this, namely that
structured programs tend to be "self documenting" in that once one learns
how a structure (data or logic control) works and what it means, then
reading someone else's code, or even worse, your own code five years later
(which I have had to do a lot of recently to write this chapter) becomes
possible!

The logic control structures are documented in the following,
Figures 9.6 and 9.7, where Sn stands for a statement or sequence of code
and Cn stands for a logical condition to be tested while the {}'s indicate the
range of a structure.

- --- -- - ----- ----- - ----- -- --------



SEQUENCE OR STATEMENT

{

S

}

IF-THEN-ELSE

if(C) {

Sl

}else {

S2

}

TEST AT THE TOP

while (C) {

S

}

Figure 9.6 The three fundamental logic control structures

200



TEST AT THE BOTrOM

repeat {

S
} until (C)

TEST (AND EXIT) IN THE MIDDLE

{

Sl
}test (C)

S2
}

CASE:

if(Cl) {

Sl

} else if (C2) {

S2
}

else if (Cn) {

Sn
} else (

S(n+1)
}

Pigure 9.7 The three auxilary logic control structures

261



262

Completeness of the set comes from the SEQUENCE structure (which
a whole subroutine or even the entire program itself may be considered an
example 00, the decision structure (IF-THEN-ELSE) and anyone of the
three loop structures (TEST AT TOP, BOTTOM, or MIDDLE). The other two
loop structures are convenient in practice. Similarly, the case structure is a
composite of IF-THEN-ELSE structures and is not esscential. It is best
implemented with a final default statement (S(n+1» so that it is clear that if
none of the cases tested are true, a known, controlled statement is executed.



263

9.12 Implementing Program Control Structures in UHPS . the
Logic Control Structure Macros (LCSTRC.INC)

As should be evident to the reader, the SEQUENCE structure comes free, all
programs are a sequence in their own right, but the others have to be
actively developed. In basic UHPS, the decision structure and two of the loop
structures are implemented. Again, extensive use was made of the MPL
macro facility of MCS-51.

The decision structure in UHPS is made up of two macros, MIF and
MELSE. It has the following form:

%MIF(VALUE1, OP, VALUE2, LABELl)

Sl

%MELSE(LABEL1, LABEL2)

S2

LABEL2:

The TEST AT THE TOP structure in UHPS is made up of two macros,
MWHILE and MWEND. It has the following form:

%MWHILE(VALUE1, OP, VALUE2, LABELl, LABEL2)

s

%MWENDCL.A..BEL1, L.ABEL2)

- -- ----



264

Finally, the TEST AT THE BOTTOM structure in UHPS is made up of
two macros, MREPEAT and MUNTIL. It has the following form:

%MREPEAT(LABELl)

S

%MUNTIL<VALUEl, OP, VALUE2, LABELl, LABEL2)

In all cases, the terms VALUEl and VALUE2 stand for the two values,
either constant or variable, that are being logically compared by the logical
operation OP. LABELl and LABEL2 are local program location labels that
must be unique within a module and are used to set up the scope or range of
the logic control structures. It should be noted that this approach permits
essentially infinite nesting of structures.



265

It is instructive to consider how one set of these macros is
implemented. Figure 9.8 documents the implementation of the decision
structure:

; if (CONDITION) { }

%*DEFINE (MIF(X,CONDITION,Y,ELSELAB» LOCAL LABEL
(

%%CONDITION(%X,%Y)
JNC %ELESELAB

)

; else { }

%*DEFINE(MELSE(ELSELAB,ENDLAB» LOCAL LABEL
(

JMP %ENDLAB
%ELSELAB:

)

Figure 9.8 The decision structure in UHPS

The complete collection of these macros implementing the different
control structures makes up the contents of the include file LCSTRC.INC to
which the curious reader is referred.



266

9.13 ''External'' Memory Macros in UHPS

It has been emphasized before that the 8051 has an extremely small
internal data memory. A good part of it is completely reserved for control of
the special hardware in the 8051. The remainder is left for one or more
register banks, a stack, and any program variables, either local or global. It
did not take long before the optical module program exceeded this limit in
spite of considerable effort to minimize this possiblity (while retaining the
flexibility of the structured language approach mentioned above). The only
commands in the 8051 instruction set that deal with the external memory
are the ones for moving a byte in and out of external memory and the
accumulator. The impact of this was that a whole series of macros, similar
to those already developed had to be written so that the use of external
memory would be virtually just as automatic in UHPS as the use of internal
memory. The desire was that the syntax be totally compatible so that
routines that had already been written and used in internal memory could
be easily modified for use in external memory. These extensions are found
in the include file RUNMAC.INC.

First, it was necessary to develope external data handling macros
that are analogous to the 8051 MOV operation. Five of these were brought
up as shown in Table 9.7:



Table 9.7

The external data MOV macros

Macro

TMOV
FMOV

TAMOV
FAMOV

EMOV

Description

move "to" DATA from XDATA
move "from" DATA to XDATA

move "to" <.A:> from XDATA
move "from" <A> to XDATA

move XDATA to XDATA

Again, it is illustrative to see how one of these macros is defined.
Figure 9.9 documents one of these:

; move an XDATA source byte (X) to a DATA
; destination (D)

%*DEFINE(TMOV(D,X)) LOCAL LABEL
(

MOV DPTR,#%X
MOVX A,@DPTR
MOV %D,A

)

Figure 9.9 The TMOV macro definition



268

With these in place, the extended decision macros are defined. For each of
the six decision primatives, each with its corresponding (internal data)
decision macro, three analogous extended decision macros had to be
defined. This was so that the three cases of comparing constant with
variable, variable with variable, and variable with constant could be
implemented without the need to first force the constant by hand into a
reserved register (either RO or R1 as the case may be) before invoking the
macro. For example, the analogous macros for MXGTY are (note that "K"
stands for constant and "E" stands for external):

Table 9.8

The XGTY extended macros

Macro

MXGTY

EXGTY
EXGTK
EKGTY

Description

internal memory macro

external variable to variable
external variable to constant
external constant to variable

To illustrate these macros, Figure 9.10 documents the EXGTK macro
definition:

%*DEFINECEXGTKCX,K» LOCAL LABEL

C

%TMOVCRO,%X)
MOV Rl,%K
CALL XGTY

)

Figure 9.10 The EXGTKmacro definition



Along this same line, namely that we are working in the case of the
external data memory with an instruction set that is even crude compared
to the low standards of the 8051, it made sense to develope additional macros
that would make up for some of the most important missing operations.
The operations considered were the stack handling PUSH and POP, the
ability to increment or decrement an external data value, and the ability to
perform basic arithmetic and logic operations on an external data value
with what has already been moved into the accumulator. In other works,
these are extensions of internal data operations that are not even as
powerful as the minimal ABX model. Table 9.9 documents these macros:

Table 9.9

Minimal extension macros for handling external memory data

Macro

EPUSH
EPOP

EINC
EDEC

EADD
EADDC
ESUBB

EAND
EOR

Description

push value on XDATA stack
pop value offXDATA stack

increment an XDATA value
decrement an XDATA value

add XDATA value to <.A>
add XDATA value to <.A> + <C>
subtract XDATA value from <.A> - <C>

"and" XDATA value with <.A>
"or" XDATA value with <A>

Again, the remaining details of implementation are all to be found in

the file RUNMAC.INC. It should be obvious that this process could be
continued to develop a system on the 8051 that mostly used the much larger



270

external memory. This system could be modeled after the ABX mimimal
model. The internal data memory could be reserved for the frequently called
primatives while the application would entirely exist in the external
memory. Combining these ideas with structured programming would
make a more reasonable programming environment than the current
implementation of UHPS which is still more bound to the internal data
memory than the external data memory.



271

9.14 The (Library) Primatives ofUHPS

The subject of primatives has been mentioned before but not really
explained. In the context of UHPS, these are a collection of special
subroutines which form a sort of core to doing anything practical on the
8051. Structured programming hides data and this is done by passing by
values through the use of a stack. Since the primatives are omnipresent for
all applications and since many of them are directly dependent upon one
another, they do not make use of the stack. They were very carefully
debugged independent of any application.

Instead of the stack, each group of primatives, and there are four
distinct groups of primatives, has its own programming model by which
they interact with one another. Typically, they make use of the eight
registers in the register bank at the very beginning of the internal data
memory. Already, we have seen this in the case of the six decision
primatives found in the file RUNLffi.P51. It should be noted here, that the
file extension P51 was used to indicate primatives whereas A51 was used to
indicate a single 8051 subroutine and in a few rare cases, S51 was used to
indicate multiple 8051 subroutines in the single file (this was done for some
"middle level" subroutines that worked intimately with one another yet did
not warrant being made primatives nor were they specific enough to be
considered part of the application program). These collections of primatives
in a single file are called libraries in UHPS and are listed in Table 9.10:

------_.- - _._._---------



272

Table 9.10

The libraries (of primatives) in UHPS

Library
file name

COMLIB.P51
RUNTIM.P51

TIMER.P51
TABLE.P51

Number of
routines

11

6

5

3

Integrated function

serial communications
decision

software timing
table handling

The programming model for the decision primatives has already
been explained. What will be considered here for the rest of this section is
the programming models for the other three libraries and a very brief

description of the primatives found in those libraries.

The serial communications library COMLIB.P51 consists of 11

primatives. These primatives are listed in Table 9.11 (note that <CR> means
the ASCII carriage return and <LF> means the ASCII line feed
characters):



273

Table 9.11

The serial communications library primatives

Primative

ECHO

Function

output a character
PUT_CHAR with a data strobe

input a character
GET_CHAR with time out

output <CR> + <LF> characters
version of PUT_CHAR using

OUT_CHAR

outputs null terminated (CODE)
string

version of PUT_STRING using
OUT_CHAR

outputs a (DATA) string of known
length

inputs a four character numeric
string

inputs and outputs a character

Most of these primatives repeatedly call upon the fundamental
primatives GET_CHAR and PUT_CHAR (or their variations). The
programming model for the these primatives is documented in Figure 9.10:

-- .._.. - -_.- _.._-------



Re~ster

<A>
<RO>
<HI>
<DPrR>

Usa~ or contents

input/output character
data string address
length of data string
code string address

274

Figure 9.11 The programming model for the serial communications
primatives

The software timer library TIMER.P51 consists of five primatives.
These primatives are listed in Table 9.12:

Table 9.12

The software timer library primatives

Primatiye

DELAY
MDELAY
SDELAY
MINDEL
HDELAY

Function

busy wait 4 microseconds
busy wait 1 millisecond
busy wait 1 second
busy wait 1 minute
busy wait 1 hour



2:75

The programming model for the these primatives is actually an extension
of the one for the serial communications primatives. The extensions are
documented in Figure 9.12:

Re~ster

<R2>
<R3>

<R4>
<R5>
<R6>

<R7>

Usa@ or contents

microsecond clock
microsecond counter
millisecond clock
millisecond counter
second clock
second counter

Figure 9.12 The programming model for the software timer
primatives

It should be noted that this is not the most efficient use of the registers (see
comment in the file TIMER.P51) but it was adequate at the time of
development for the purposes intended.

The external data table handling library TABLE.P51 consists of three
primatives. These primatives control access to a table no longer than 256
bytes long in the external data memory and are listed in Table 9.13:

Table 9.13

The external data handling library primatives

Primatiye

POINT

STORE

FETCH

Function

point to a table entry
store the value in <./4..:> at the point

in the table
fetch the value at the point in the

able and transfer it to <A>



276

The programming model for the these primatives is documented in Figure
9.13:

Re~ster

<RO>
<R1>

<R2>

Usa~ or contents

lower address of byte
upper address of byte
offset from beginning of table

Figure 9.13
primatives

The programming model for the table handling

~--------- ----~~-



9.15The Subroutines ofUHPS

So far, the conventions, macros, and primatives of UHPS have been
discussed in detail. This leaves one last remaining topic, the intrinsic
subroutines of UHPS. Unlike the primatives, these routines make use of the
system stack for parameter passing. Basically, there are two ways by which
a subroutine can work its way directly into the language rather than
remain in an application library. One is that it does something intrinsic
with the extended hardware of just about every application that was
envisioned and the other is that its function is so common that it deserves to
be made part of the language. Admittedly these criteria are arbitrary and
all of this could be left in an application library. Basicly, they were not
because of the desire in bringing up an application to limit the total length
of code in the modules being handled on the single disk drive MCS-225A
system to as few as necessary at any given time. These are summarized in
the following table:



Z"/8

Table 9.14

The intinsic subroutines of UHPS

Subroutine

nwn.e

INITIAL

ISALNO

ISHEX

ASCBIN

HEXBIN

HEXNIB

BINHEX

NIBHEX

name

INITAL.A51

ISALNO.A51

ISHEX.A51

ASCBIN.A51

HEXBIN.S51

HEXBIN.S51

BINHEX.S51

BINHEX.S51

Description
of function

initialize 8051 stack
and 300 baud
communications

check if character is
alphanumeric

check if character is
hexidecimal

convert ASCII
character to binary

convert hexidecimal
character to binary

assists HEXBIN

convert binary to
hexidecimal character

assists BINHEX

All of these routines were originally brought up within the internal
data memory. Several of them (HEXBIN, HEXNIB, BINHEX, NIBHEX, and
ASCBIN) have been translated into the external data memory and the most
of the rest ought to be.



279

This completes the documentation of UHPS. The full code is found in
Appendix 6. It should be noted that UHPS (pronounced "ooops" as in
"ooops, we need a language") was written as a sort of desparation move. It
evolved as understanding of the many problems associated with
programming the 8051 family microcontroller evolved. There is much room
for improvement yet it did the job and is a good illustration of the
application of a number of software techniques that can be used to convert a
crude development system into something considerably more precise
somewhat equivalent of going from that hand file to the milling machine.



200

CHAPTER 10 - Instrument Building Part V - The Design
ofthe SHC Central Controller Cir~-uit

10.1 Introduction

This chapter is the fifth and last of the series on instrument building of the
Short Prototype String. The main concern of this chapter is to document the
hardware and software of the single board microcomputer based central
controller circuit for the String Bottom Controller. This circuit is
intrinsically part of the SBC circuitry which is housed inside the large
cylindrical pressure housing.

By the Fall of 1985, the DUMAND project had progressed to the point
where the basic SPS was ready for its first attempt at system integration in
the form of a cruise. The optical modules existed, the basic power transfer
system existed, the single mode optical fiber system existed, the ship board
command and control computer system existed and so it was decided to tie
these all together. A number of critical items did not exist, most
importantly the high speed electronics of the SBC. Nevertheless, a crude
"Ersatz" SBC for the purpose of doing simple minded coincidence work was
developed. Along with this, a command and control computer for the Ersatz
SBC was developed to control this.

As before, the INTEL 8051 family microcontroller was used simply
because a development system now existed in house. The microcontroller
board was brought up from scratch and again programmed in UHPS. It
was capable of intercepting messages intended for it and replying in a
definitive manner. Functionally, it controlled the latches on the Ersatz SBC
coincidence logic board and the interface to the sensor logic board. The
latter, consisted of an eight bit wide, eight channel, A to D sensor board
designed somewhat similar to what was used in the optical modules. This



281

acted 'as the interface to a series of sensors for such things as temperature
and voltage levels within the Ersatz SBC electronics.

That "cruise" was pretty futile. However, in the attempt at systems
integration, much was learned. Among the lessons was the realization that
controlling the full set of electronics involved in the SBC would easily
overtax the abilities of the 8051 microcontroller. Additionally, there would
be a real need to develop a lot of support hardware for all of the areas,
communications interface, system sensing, and latch control would be
considerably more involved in the real SBC than they were in the Ersatz
SBC exercise. One advantage however was that the space available inside
the instrument housing was not as limited as in the case of the optical
modules. With all of this in mind, the search was begun to identify an off
the shelf computer that could serve as the central brain for the SBC that
was a lot easier to program. Once found, then all of the effort could be spent
in designing and testing the required and expanded system interfaces to it
and in writing its executive control program rather than having to design
an adequate computer from scratch or to worry about having to write and
maintain the basic programming language.

10.2 The SBC Microprocessor System Overview

As was mentioned, a number of lessons were learned from the system
integration exercise of the Ersatz cruise of the Fall of 1985. Several of the
lessons need to be briefly pointed out since they formed the motivational core
for some of the design of the SBC computer control system.

First, it was found that the assumptions previously made in how the
fiber optics cable would behave for signal passing purposes were totally
wrong. It had been assumed that the cable was sufficiently like a coax cable
that a commercial modem system used in the earlier MUON String
experiment that uses a one megahertz carrier would handle the



282

requirement. Actual tests on the cable showed that frequency transmission
was relatively linear until around 8 to 10 KHz where it rapidly rolled off to
nothing. Thus, the carrier, let alone the signal, would never get through
the cable. A panic drive to produce an in house modem system increased
attention to communications throughput in the SPS.

Another lesson was the power supplies in the SBC housing. These
had to supply a lot of current (the fast electronics of the SBC are all ECL) in
a small space. Thus, the original linear supplies had to be changed to

switchers. The problem is that the way power is first applied to the SBC and
how it continues to be supplied when changes are made in the current
demand require careful consideration. Applied voltage is ramped up slowly
from on board ship since the actual voltage to be found in the SBC will vary
depending upon the load. With the switching supplies one has to have a
procedure for monitoring this.

Switching supplies are tricky. They must have a supply voltage that
is within a reasonably narrow range in order for them to start switching.
Thus, the approach taken was one of setting the ship board supply to an
approximate level, then snap on the power, and then hope to be able to
monitor the power from the SBC. Monitoring required that the system
started up within the acceptable range of the switchers so that they in turn
output voltages which allowed the SBC electronics to come on, particularly
the controlling computer. With the controlling computer then monitoring
the actual AC power supplied, the ship board controls could be adjusted to
nominal values. Every time a major change in the power requirements was
made, the ship board controls had to be adjusted again.

Concerning communications in the Ersatz cruise, the 8051
microcontroller controlling the Ersatz SBC sat in parallel just like the
optical modules on the string. Similarly, the power distribution
microcontroller was connected in parallel. The main reason for this is that
with the 8051 family of microcontrollers, one had no other choice. The 8051
has only the equivalent of a single duplex serial communications channel.



283

In this integration exercise, it was found that the environmental
module (built elsewhere) had no provisions for making any replies to order
wire commands. Additionally, there was no provision made to handle the
great flood problem. Thus, since the module never "talked", there was no
screamer problem but at the same time there was no reply information and
a real possibility of losing the entire communications channel due to an
implosion of the environmental module controller sphere. The connections
to the string were modified to include potted resistors to prevent the great
flood problem but getting the module to reply to commands turned out to be
impossible because among other things the source code to the ROM,
according to the author, was "no longer available", Thus, ultimately a
requirement of the SBC control computer was to fake replies from the
environmental module in order to satisfy the ship board computer and to at
least verify that the command got down through the system at least as far
as the SBC.

Figure 10.1 symbolically shows the interface specification for the SBC
control computer within the SPS as a whole and the rest of the SBC in
particular.

--- ---- - -- ----------------------



CABLE MODEM
FROM SHIP

,*232

ANALOG ADDRESS BUSS
(CAB)

ADDRESS BUSS SBC LATCHO I S
CARD MICROMINT LATCH :

SENSOR I :=j SIlIBO _I Il

DATA BUSS SINGLE BOARD DATA IlUSS LATCHB
INPUTS 1 COMPUTER C----l RS232C I (OPT)

I OATAST

MRST

·LASER.

·OMI~ POWER (IlP) 1 I STRING MODEM IOAA

·OM7
MODULE

,*232
·CM I ·CM2 ·IM ·S8C

STRING

Figure 10.1 The interface specification for the central control
computer in the SPS

~



285

As one can see, there are five specific interfaces required: (1) the string
modem, (2) the ship's cable modem, (3) the SBC high speed electronics, (4)
the analog sensors, and (5) the power control circuit. Each of these in turn
will be documented. However, it makes sense to document the control
computer itself first.

Before proceeding with that, it should be pointed out, that a major
decision was made as a result of the Ersatz cruise that the SBC control
computer would not just sit on the string in parallel with the other modules
but instead would sit in series between the fiber optic cable from the ship
and the string. Since this computer directly controls the latches to the SBC
fast electronics, if it were to ever go down the whole system would go down.
As such, placing the computer in series was not considered to be a real
change in system reliability. The advantage was that all those little
annoying

10.3 The ffitacbi HD64180 Microcomputer

A "single board" computer, only 4 by 7 1/2 inches in size was identified.
This computer, designated the SB180 by its manufacturer, Micromint
Corporation, required very little in the way of power, came loaded with
hardware and software features, and best of all easily performed double
duty by being its own development system. The software included a very
sophisticated ROM monitor (which was modified to jump into the SBC
control program upon receiving a start up command), a truly advanced
operating system, about 100 system utilities including an assembler and
linker, and was easily programmed using a commercially available
compiler. In this exercise, unlike before, the wheel did not have to be
reinvented!



286

Central to the SB180 computer board is its microcomputer chip, the
Hitachi HD64180. The SB180 was originally announced in September 1985, a
few months after the chip became available in any quantity. It is probably
even to date the most sophisticated eight bit microcomputer chip available
anywhere in terms of the amount of built in hardware. Immediate
comparisons to the INTEL 8051 are striking. For example, the system clock
is a 6.144 MHz derived from a 12.288 MHz crystal. Thus, the HD64180 runs
a good six times faster than the 8051 and with its "real" zao instruction set,
has computing power that is probably an order of magnitude better. As
such, to understand the SB180 it is really best to first look at the HD64180 in
some detail. Figure 10.2 is a block diagram of this chip.



e "::; u... !::; 0- Il< • 0 C'loJ • ~ Il< ... :c '" '" ... i: 0- 0- 0-• 0- 0 ... • :> :> ... z: z: z:0- x Ill: Ill: :::;
~

0 :>: ~ .. e Ill: 0- ~ ;;;: ;;;: ;;;:.. ... .... .... .... ;;;: .... .... .... .... '"

INTERRUPT

CPU

IlUSSSfATECONTROL
TIMING

GENERATOR

Alll,TOUT

ns

RXS,/CTSI

CKS

161llT
PROGRAtlMAIlLE

RELOAD
TIMERS

(2)

CLOCKED
SERIAL 1/0

PORT

0-
m
"''-----;

DMAC',
(2)

ASYNCIIRONOUS
SCI

(CIIANNEL 0)

IDREal

/TENDI

nAO

CKAO ,IDREao

RXAO

IRTSO

ICTSO

10CDO

ASYNCHRONOUS
SCI

(CHANNEL 1)

nAI

CKAI. ITENOO

RXAI

ADDRESS
IlUffER

DATA
IlUFFER

.0.0 - .0.17 DO-07

Figure 10.2 Block diagram of the Hitachi 0064180



288

The Hitachi HD64180 is implemented in CMOS technology which
means low-power operation (battery operation is possible). The instruction
set of the HD64180 is an enhanced version of the famous Zilog Z80 thus
immediately coupling it to a large existent software base. The Z80, like most
of the rest of the computer universe, is based upon the Von Neumann
architecture combining the instruction space and data space into a
common memory space. Thus, the problems of the Harvard architecture
mentioned before with the INTEL 8051 family designs are not a problem
here. Unlike the Z80 which has only 16 address lines limiting its memory
space to 216 or 64 kilobytes of memory, the HD64180 has 19 address lines
increasing the addressable memory size to 512 kilobytes. A built in memory
management unit (MMU) helps the system programmer to access this
memory in a variety of dynamic ways overcoming some of the limitations of
the Z80 instruction set which uses (as does the 8051) absolute rather than
relative code. In other words, with the MMU, code can actually reside in
one area of memory where it could not be executed because of its specific
address references yet the MMU will patch this up so that the central
processor unit (CPU) can run this anyway. Figure 10.2 shows that the
HD64180 is made up of nine functional blocks. These blocks fall into two
broad categories, those associated with processing and those associated
with the integrated I/O resources of the chip.

lO.3a The Processing Function Blocks

The first processing block is the central processing unit (CPU). As
mentioned, it contains the microcode for an extended version of the Z80
instruction set. The added 12 instructions are only those necessary for the
direct control of the on-chip hardware that makes the HD64180 such an
outstanding microcomputer. Many of the Z80 instructions actually require
fewer clock cycles than on a standard Z80 so that enhanced execution
results even at the same clock rate.



289

The second processing block is the timing generator. The internal
system clock is generated here from an external source such as either a
crystal or clock input. Slaved to this is some prescaling logic which derives
other clocks necessary for the support of on-chip I/O and system support
devices such as asynchronous communications. As such, since timing
standards are involved, the driving frequency must be some magic number
which would then result in standard clock frequencies for
communications. Standard data transmission rates are derivable from
internal clock rates (always half the rate of the external source) of 3.072,
4.608, 6.144 (the usual one), and 9.216 MHz.

The third processing block is the bus-state controller. This block
performs all status and control functions for bus activity. This includes the
external bus-cycle wait-state timing, RESET, refresh of any dynamic
random access memory, and master direct memory exchange. There are
two defacto standards for the control of peripheral devices, namely those of
Motorola and INTEL. Rather than take sides in an endless debate over
which approach is better, this block generates the control signals for both.

The fourth processing block is the interrupt controller. It is capable of
monitoring and assigning interrupts to up to four external and eight
internal devices. There exist a variety of programmable interrupt response
modes.

The fifth and last processing block is the memory management unit.
As indicated before, this device performs the miracle of coupling an
instruction set that only knows about a 64 kilobyte (logical) memory space to
a 512 kilobyte physical memory space.



200

lO.3b The Integrated I/OFunctional Blocks

The first integrated I/O block is the direct memory access controller
(DMAC). The function of direct memory access is often involved yet it is very
useful. In some way, the goal is to trick the CPU into allowing another
device direct access to the memory. The reason this can be advantageous is
that in the case of frequent or large memory transfers, this can be faster
than passing everything through the CPU. There are two classical
approaches.

This first one, cycle stealing, is used to handle the problem of short
but frequent memory transfers. Basically, the idea is that the CPU does not
get all of the cycles from the clock. There is a bit of logic which can, upon
receiving the proper request, redirect some memory cycles to some other
piece of hardware which then either reads or writes directly from or to
system memory.

The second one, burst DMA, is used to handle the problem of large
memory transfers. Here, instead of the CPU skipping a few cycles while it
executes on never knowing that the memory has been played with, the CPU
is actually halted. Then, control of the memory is given over to the other
device which needs access.

The DMAC of the HD64180 handles both kinds of DMA. It is a two
channel device capable of memory-to-memory, memory-to-I/O, and
memory-to-memory-mapped-I/O transfer. It is optionally edge or level
sensitive on the send-request input handling address increment, address
decrement, and address no change type transfers. It directly accesses the
full 512 kilobytes of physical memory and transfers up to 64 kilobytes at a
time in burst mode. Such transfers are accomplished at a rate of one
megabyte per second.

--- -------- ---



291

The second integrated I/O block is the asynchronous serial
communications interface (ASCI). The ASCI has two universal
asynchronous receiver transmitter channels for serial communications.
These are fully duplex so that the communications on both channels is
bidirectional (compare this to the 8051 which has two unidirectional
channels so that only one bidirectional channel is possible). Additionally,
the ASCI includes a programmable data transmission rate generator,
modem control signals, and a multiprocessor communication format.
Further, the ASCI can hook directly into the DMAC for high speed serial
data transfer unburdening the CPU.

The third integrated I/O block is the clocked serial I/O port (CSIO).
The CSIO provides a single synchronous simplex (half-duplex) serial
transmitter and receiver. This is most useful as a channel for high speed
communications with another computer.

The fourth and final integrated I/O block is the programmable reload
timer (PRT). Functionally it provides two programmable 16 bit timer
counters each consisting of an I/O line, a 16 bit timer data register, and a 16
bit timer reload register. The base clock for these timers is the system clock
divided by 20. One of the PRT channels can be optionally programmed as a
waveform generator. Unlike the 8051, it should be noted that the timer
counters are independent of the serial I/O function so it is no longer the
case of having to choose which function you want, both are always
available.



292

lOA SB180 Single Board Computer Description

The SB180 computer was designed to be just about the most versatile
computer possible at the time of its design (1985). To begin with, its
computer engine is the Hitachi HD64180 which, as has already been shown,
has an enormous amount of built in hardware yet couples directly into an
already existent software base in the form the Z80 instruction set. Aside
from the power supply, the rest of the SB 180 is the collection of interfaces
between the HD64180 and the peripheral functions of the board. These
functions include two RS-232C serial I/O interfaces, memory interface,
dynamic memory refresh, centronics (parallel) printer interface, floppy
disk interface, and an expansion bus. Figure 10.3 is a block diagram of the
functions found in the SB180 computer.



'I
I
!

CONSOLE SERIAL
PORT

RS-232C

AUXILIARY SERIAL
PORT'

RS-232C

12.266 MHz
CRYSTAL

nUl
6-32 K BYTE 256 K BYTE
ROM RAM

ADDRESS BUSS

HD641BO CONTROL BUSS

DATA BUSS

FLOPPY - PARALLEL
DISK PORT
CONTROLLER

31/2in+51/4in Bin
DRIVES DRIVES

Figure 10.3 Block diagram of the SB180 computer

CENTRONICS
PRINTER

~



294

The RS-232C serial I/O interface consists of two full duplex serial I/O
channels operating at R8-232 logic levels. The circuit is simply an extension
of the ASCI ports of the HD64180 directed through level shifters from TI'L to
RS-232. Channell is used for the system console and channel 0 is used as
an auxiliary port for serial printers, telecommunications modems, etc.
This channel has some additional handshake signals available with it so
that it can more readily interface with such devices if necessary. What is
very nice, is that with the two serial communications ports, the SB 180 can
be used as its own development system since a spare port is available for
debugging communications problems while the other port is used for
console control. These ports are all completely programmable so that they
can easily be adapted in terms of baud rate, parity, number of bits in a
character, etc. for a given operation.

The memory interface includes a 28 pin boot ROM socket which,
depending upon the settings of a series of jumpers, can accommodate eight
bit wide by eight kilobyte, by 16 kilobyte, or by 32 kilobyte memory devices.
The boot ROM which comes with the system is very sophisticated and
includes the disk boot code and a ROM monitor for stand alone operation.
This ROM occupies the lowest (256 kilobyte half) part of memory. Upon
RESET, the HD64180 begins execution at physical address 00000 (hex), the
start of the boot ROM.

-- -_.- ------- _._._--_._--



295

Table 10.1

The boot ROM monitor commands.

A ASCII table: Prints an ASCII table
B Bank select: Selects a 64k-byte memory bank
C Copy disk: Systems with 256k bytes of RAM can perform single

drive copies
D Display memory: Displays memory in hexadecimal and ASCII
E Emulate terminal: Console keyboard is echoed to the auxiliary

RS-232C output and the RS-232C input is echoedon the
console display

F Fill memory: ANy portion of memory is filled with a data byte
G Go to program: Starts program execution at specified address

and optionally includes a breakpoint
H Hexmath: Prints the 20 bit sum and difference and 32 bit

product of the two arguments
I Input port: Prints the 8 bit data input from specified port
K Klean disk: Formats a specified drive
M Move memory: Moves a block of memory
N New command: Enables new commands from extended ROM

space
o Output port: Byte is output to specified port address
P Printer select: Toggles printer selection between the

Centronics parallel port and the auxiliary RS-232C port
Q Query memory: Searches memory for pattern of 1 to 4 bytes
R Read disk: Reads specified sectors form drive into memory
S Set memory: Displays memory contents and allows new data to

be entered
T Test system: Tests various system devices



296

Table 10.1 (Continued)

The boot ROM monitor commands.

U Upload hexadecimal file: Uploads Intel hexidecimal file from
auxiliary or console serial port

V Verify memory: Compares two blocks of memory
W Write disk: Writes specified sectors to disk from memory
X eXamine CPU registers: Displays main and alternate CPU

registers and prompts for modification of main registers
Y Yank I/O registers: Displays the HD64180 on-chip I/O registers
Z Z-System boot: Boots the Z-System form disk

The dynamic RAM is located in the upper 256 kilobyte half of the
physical memory space. It requires refreshing at a rate of 256 refresh cycles
(eight bits so 28 =256) every 4 milliseconds. The refresh signals are directly
produced by the HD64180. Appropriate control strobes for refresh, memory
read, and memory write are all generated by the HD64180 and brought out
to the RAM along with the required 18 address lines and eight data lines. It
should be noted here, that unlike INTEL microprocessors and
microcontrollers like the 8051, the data and lower address lines are not
multiplexed so there is no need for a demultiplexing circuit. As designed,
the refresh overhead in the SB180 is only 2.5% or two out of 80 cycles.

The Centronics parallel printer interface is consists of an eight bit
latch and a flip-flop located at OCOH through OCIH. Printing is
accomplished by first writing data to the port at OCIH. This sets up the data
in the latch for the printer and then asserts the printer strobe signal.
Writing data to the port at OCOR deasserts the printer strobe signal. When
the printer has finished grabbing the data, it handshakes by returning an
acknowledgement strobe. In tum, this strobe, when received by the SB180 is
redirected to the CPU as an interrupt signal. The interrupts handler clears
the interrupt by writing a dummy output to the port at OCO. Since this

.. _-----------



interface is interrupt driven, operations such as background spooling
become relatively easy to implement.

The floppy disk interface is very versatile. Due to the choice of the
floppy disk controller chip. The one used is the SMC 9266. It includes such
functions as data separation and programmable write precompensation.
The net result of this interface is that it can directly control any softsectored
floppy disk drive single or double sided; single, double, or quad density; 3
1/4, 5 1/2, or 8 in diameter. Up to four disk drives are supported
simultaneously.

Specifically, two interface busses for floppy disk drives are provided.
The 50 pin buss interfaces to 8 disk drives. The 34 pin buss interfaces to
either the 5 1/2 or 3 1/4 disk drives. The accompanying software allows a
choice of a number of different soft sectored floppy disk formating
conventions to be used.

The external buss (XBUS) interface consists simply of all of the major
address, data, and control signals being routed to one 32 pin connector
along with a bus valid strobe line. As mentioned before, the HD64180
provides control signals for both Motorola and INTEL type peripherals and
these are found here.

Finally, some mention should be made of the power supply interface.
The SB180 requires only about 1 amp at +5 VDC and 10 milliamps or so at
+12 VDC. The +12 VDC is only used for the RS-232C interface which also
requires a negative logic voltage. This is generated on board through the
combination of a +9 VDC Zener diode and a small inverter.



10.5 Description ofthe SBCStringModem Card

The string modem card is the communications interface between the SB180
computer board and the string of optical, calibration, and environmental
modules. All commands sent down from the ship board computer are first
intercepted by the SB180. In turn, those commands that are not intended
directly for the SB180 are relayed to the string and the power distribution
module which logically all sit in a parallel communications mode awaiting
a command for one or more of the modules to execute. These commands
are all transfered at the order wire communications rate of 300 baud.

As shown in Figure 10.1, the interface between the string modem
card and the SB180 computer is an RS-232C connection. This greatly
simplified debugging and maintenance since ASCII terminals could be
hooked into the system to monitor activity directly. The auxilary (AUX)
channel of the SB 180 (named in the software STR for the string) was
dedicated to this task.

The string modem board was mounted parallel to the end caps of the
SBC housing, Le, perpendicular to length dimension of the cylinder. The
actual board that the string modem circuitry was built on was a modified
S100 prototype edge connector board shaped to roughly fit the circular
housing of the SBC with a 22/44 pin interface with 1/8 inch spacing. The
string modem circuit was similar to the modem circuits found in the
optical and calibration modules. It consisted of two parts, a modem circuit
that went from an RS-232C serial communications system to a 300 baud
FSK communications system. The FSK system selected was the mirror
image of all of the ones found on the string. In other words, where all of the
string modems were set to the "answer" mode, the SBC string modem was
set to the "originate" model.

1 See Table 6.1



Additionally, the data carrier detect (DCD) signal was brought out of
the modem chip through the RS-232C interconnection to the SB180 to
facilitate handshaking. Unlike the optical modules which can all listen to a
common carrier and signal from the single source of the SBC, the SBC
modem has a potential ten different sources to listen to. ITmore than one of
these transmit a carrier, the receive section of the SBC string modem
becomes confused since there is no guarantee that the different carrier
sources are going to be in phase. The result is a disaster for
communications. As such, the individual string modules only transmit a
carrier at the time they are going to transmit a reply. The DCD output of the
modem is a control signal letting the SB180 know that what is coming from
the modem during the time that DCD is active is real communications and
not just random noise.

The other circuit is the interface between the modem and the string
itself. This is the Data Access Arrangement (DAA), again, quite similar to

that found in the optical and calibration modules. Figure lOA documents
all of this.



R14

TXD
(MODEM PIN 10)

TO STRINC
R19

F'ROI1 STRINe

390

lOOK

RUO

DEF"AUL.T UNITS:

R IN OHMS
C IN MICROF"ARADS

U212B

/oCD ~SBIBO DCD C2SJ

74HC04

NODE 3

"'V

NODE 4

selBO TXD

lOOK

R17

RIB
200K

U2I0

C16
220 PF'

R13

lOOK

R1S
390

RXD
(MODEM PIN 4)

2

NODE 1

~C14
F'SI<OU I w I 21F'SKIN I
CINAT-ny-( 0.1

VH

.. "'1 "
VH

U214A

selBO RXD C3J~

T'" l-& 330 PF'

R12

11<

I ~~~~32 MHZ)

RXD
TXD
N/C

Rl
4.71<

HCll<

N/C
N/C

RU

10M

Cl
0.01

T C12-& 47 PF'

Figure 10.4 The SBC string modem with three wire based DAA
interface

§



301

The DAA circuit shown in Figure 10.4 consists of two LM324
operational amplifiers arranged in a sort of a bridge network so that the
receiver (node 4) does not see the transmitter (node 1) during transmission.
By itself, the first amplifier acts as a transmission amplifier arranged as a
unity gain buffer driving a 390 .Q load (as the string at node 3 will appear to

it). There are two pathways to the receiver. The first is from the string
through a unity gain buffer identical to that used in the transmitter. The
second comes straight from the transmitter through 100 .Q and 100 K series

resistors exactly matching the current (due to local transmission) directly
from the output of the transmitter amplifier to the input of the receiver
amplifier. Since the transmitter amplifier is an "inverter", the phase of
these two transmission signals theoretically should exactly cancel at the
input to the receiver amplifier. Of course, the phase inversion going
through all of the components is not exactly 180 degrees out but it is pretty
close, especially if the unity gain buffer of the transmission amplifier is
properly adjusted so the feedback signal can be smaller than any expected
receiver signal from the string and properly adjusting the receiver
amplifier gain can separate the two. Since the SBC modem is the origin of
all commands sent to the string, its transmit line is the common receive
line of the string modules. Likewise, the receive line of the SBC modem is
the common transmit line of the string modules.

The DCD scheme is dependent upon associated turn-on and turn-off
times. Internal to the TMS99532 modem chip is an Automatic Gain Control
(AGC) function which, among other things, compares the level of the
received signal to the threshold of the AGC2. Should the signal be above the
threshold, then carrier has been detected. However, occasional errors due
to poor signal quality do not warrant disconnecting the circuit. To prevent
this, a time out function is supplied which will keep the DCD line its
current level until the time out is over. This way, transitions between the
carrier detect and no carrier detect conditions are debounced in time. Two
external components, a resistor R20 and a capacitor C20, wired in parallel

2 TMS99532 Application Report

. ----- - . _.. ----- ------------------- --_..



302

from the TMG (TiMinG) input (pin 3) of the TMS99532 modem determine
the time-on and time-off times. For the values selected, with R20 being 4.7
M and C20 being 0.01 ~f, the time-on delay is about 32 ms and the time-off

delay is about 6 IDS.

The timing pulse MCLK (Modem CLocK) is a 4.032 MHz crystal
frequency needed by the modem chip in order to provide the right
frequencies to meet the Bell 103 300 baud specification. A high speed CMOS
gate, Ul12A (74HC04 inverter), with resistor R11 (10 M) in parallel to bias
the gate in its linear region, form the basis of a "high speed CMOS" self
oscillating circuit that starts up upon feeling a power on transient. Resistor
R12 (1 K) provides an impedance that adds some additional phase shift in
conjunction with capacitor C13 (330 pf). This has the effect of cutting out
spurious high frequency oscillations isolating the gate output from the
crystal network Y110 (4.032 MHz) so that a clean square wave results. The
value of R12 is chosen so that is will be roughly equal to the capacitive
reactance of C13 at the frequency involved. Capacitors C12 (47 pf) and C13
form the load resistance of the crystal. Most crystals are cut for either 20 or
32 pf load capacitance. Using values larger than this, C12 and C13 swamp
out the effects of temperature and supply voltage change on the input and
output impedances. Since C13 is so much greater than this, capacitor C11
(33 pf) is placed in series with the crystal to act as the load for the crystal
and thus assure an impedance match so that the crystal will not be loaded
down. The result is the 4.032 MHz square wave MCLK pulse train.

Finally, the digital levels between the modem and the SB180 are
changed from TTL to RS-232C through the use of 1487 and 1488 level
shifters. The three signals are the transmit data (TXD), receive data (RXD),
and DCD lines.



303

10.6 Description ofthe SBCControllingLatch

Unlike the string modem board, the SB180 computer board as well as the
remainder of the interface boards (analog sensing, power module serial
communications, and SBC controlling latch) were all mounted in parallel
with the length dimension of the SBC electronics cylindrical pressure
housing. The first of these interface boards that we will consider is the SBC
controlling latch. It is documented in Figure 10.5 below:

-~-~--~ -~-~~-~~-----



'I

BUFFERED ADDRESS / COHTROL BUSS
CAO - AS TO AHALOC CARD)

Yi
Y2
Y3
Y4
Y5
Y6
Y7
YB

~~ 117__1__ II NOTE: STROBE SICNALS
V3
V4 CONNE:CTOR I ADDRE:SS I USEVS
V6 BUFFERED CONTROL BUSSV? CI/O EXPANSION TO ANALOC CARD) A2S

I
F9 I DATASTVB

B2S FA

C2S FB I HASTST

Figure 10.5 The SBC controlling latch interface

~



CA~~ 74HCS74 ~ATCH INPUTS BUSSED ON 2B PIN RIBBON CAB~E)
EXJ>AIoISIOIC BUSS-

ULOITI'> U~AT3 ULATt;..--.-- Al - ~ 01 ~81 01 ... - 01 01

~
01 01A2 82

E02 02 t:: 02 02 02 02AJ 8J OJ OJ OJ OJ OJ OJ
JJ r-- A4 84 - 04 04 f- 04 04 f- D4 04
~ AS BS OS OS f- DS OS f- OS OSA6 B6 ~ 06 06 '- 06 06 f- D6 '16A7 B7 '-' 07 '17 t- 07 '17 t: D7 '17_____ AB BB - L.- DB 'IS l.-

.... DS OB <- DB '18
1'0 11 C~K I'~ 11 CLK 1''' 11 CLK

'-

~gIR ~OC ~oe ~oe
'''M,"'''''' 7'lHl;57 ,n~..

'''M''~
• £lCP 5£1 ECl

IJLAT I IILAT4 III OT.,

~ 01 '11 .....
t- 01 '11

~
01 '11 .....

02 02 § 02 02 02 02
I-; 03 Q3 OJ 03 03 QJ

S 04 04 04 04 ~ 04 04
OS Q5 05 QS

t= OS OS
06 06 E 06 06

b-
06 06

I-! D7 07 D7 07 07 Q7
I- DB OB DB OB L.- DS Q8

.. I C~K "4~ g~K .. ., "C~K
~oe ~OC

'''"''57' "n..",, '''"''57

COO - 07 TO ANA~OC CARD)

III OT~ U~ATI; ULATA
f- 01 Ql 01 Ql - ~ 01 '11
'- 02 02 ~ 02 02

E02 Q2
~

E OJ QJ I- OJ QJ OJ OJ ..¥.U.04 Q4 I- 04 04 04 04
OS QS t- OS QS OS QS

~ 06 Q6 i- ~
06 Q6

~ 06 Q6
~ 07 Q7 07 07 07 07 ~L.- 08 Q8 .... DB Q8 l-..lU!l L.- OB QB

~
.. ~ , e~K F"S 11 e~K "A " eLK
~oe ~OC ~oe

7"H<;57 7"Hl;574 7""<;57

Figure 10.5 (Continued) The SBC controlling latch interface

~



306

Ul (74HC245 tristate bidirectional buffer) buffers the data lines DO through
D7 from the expansion buss of the SB180. The parallel output of this chip
forms the source of the on board data buss. Additionally, the buffered buss
was in tum directed through a ribbon cable to the analog sensor board. A
total of nine identical eight bit wide latches (74HC574), ULATO through
ULAT8 inclusive, share this data buss for input. The latches differ only in
their individual data strobe (or selection) lines. The outputs of the latches
are grouped into collections of 24 lines each labeled Al through A24, Bl
through B24, and Cl through C24. These are the bits which directly toggle
the control lines of the SBC fast electronics.

U2 (74LS541 monodirectional buffer) buffers the address lines AO
through A7 from the expansion buss of the SB180. The parallel output of
this chip forms the source of the on board address buss. The last three
address lines, A5 through A7 are passed on by way of a ribbon cable to the
analog sensing card which is discussed later. AO through A3 are directed
to U4 (4515 4 to 16 decoder) which then breaks out sixteen possible unique
addresses. These addresses are found in the mapped memory I/O space of
the SB180 at locations OFOH through OF8H forming the nine required data
strobe lines for the nine latches. Additionally, the next three available
addresses, namely OF9H through OFBH were brought out and labeled A25,
B25, and C25 respectively. A25 was used as the DATAST (DATA STrobe)
control of the SBC and C25 was used as the MASTST (MASTer reSeT)
control of the SBC. B25 was a spare. As strobes, they directly reflected the
level that the software placed them at and were unlatched. The ribbon
cables interconnecting the latch (AI-A24, BI-B24, and CI-C24) and strobe
(A25, B25, and C25) lines were directed through three 25 pin DB-25
connectors (the A, B, and C connectors) and as such, the line numbers
directly reflected the intended signal (ex: pin 17 of the B connector is the
latch line B17 or bit 1 oflatch 5, etc.),



Table 10.2

Summary of the decoded addresses on the SBC latch control card

Address Name

Latch control:
FO AI-AB p

FI A9-A16 o A
F2 AI7-A24 r

t
F3 BI-BB p

F4 B9-BI6 o B
F5 BI7-B24 r

t
F6 CI-CB p

F7 C9-C16 o C
FB CI7-C24 r

t

Strobe lines:
F9 A25 or DATAST
FA B25
FB C250r~STST

Data strobe
spare strobe line
Master reset strobe

Finally, several control signals were also buffered off of the
expansion buss of the SBIBO. These were the lUl (ReaD), PHI (PHase I),:wR
(WRite) and EXP SEL (EXPansion SELect) signals. U3 (74LS54I
monodirectional buffer) buffers these control signals. They are all passed
on to the analog sensor board, again by way of a ribbon cable. The on board
RD, iY:R, and E:X-P BEL signals were the only ones used in the controllatch
logic. Address decoding was accomplished by directing the on board
address line A4 through U5A (4009 inverter). In turn, the inverted address



308

Ai, along with the on board~ and EXP SEL lines were all directed
through U6A (4076 three input OR) whose output is high active strobe
equivalent to addresses OFOH through OFFH in write time. This is the strobe
used to select the four to 16 decoder U4. The data buffer U1 is selected in Rll
and EXP SEL time (both signals taken as active low).

------ ---------------



300

10.7 Description ofthe Analog Card (Serial I/O and Sensors)

The analog card contains two different functional circuits. First, it contains
a 16 channel, eight bit D to A circuit for monitoring a collection of analog
sensors which continuously probe the environment of the SBC. Second, it
contains a fixed 300 baud serial I/O channel. This channel was used to
expand the capabilities of the SB-180 so that a third serial port was available
to communicate with the power distribution module.

Figure 10.6 documents the auxiliary serial port interface. U12
(74LS541 tristate buffer) buffers the output data from the Universal
Asynchronous (serial data) Transmiter / Receiver (UART) U6 (AY-1013)
onto the data lines DO through D7 directly from the (unchanged via the SBC
latch card) SB180 computer board. Its parallel input is directed from the
output (receive) data port (RR1 through RRB) of the UART. This is a very
dumb serial I/O chip. It is controlled by the sense of its input lines rather
than by writing anything into a latch. As such, it does not need a computer
to program it in an initialization sequence in order to make it run. This was
considered preferable in this design since one of the operational goals was
to have all serial communications directly open to test with a standard
ASCII serial terminal. The parallel data input (transmit lines TRI through
TRB) is wired directly into the raw data buss.



'I
I
I

Yl

"~ .., RECMO
' Y>IIMY2 A2 RR2 TRD A2 Y2

Y3 AJ RRJ AJ ~ RITY ERRORY4 A4 RR4 PE A4
YS AS RRS FE AS ys AHE ERROR
Y6 A6 RR6 DE A6 Y6 ~~R~~Y7 A7 RR7 XHRE A7
YB AB RRB DR AB ~ TA RECEIYED

/RRB
/UDATA

I WORD ~
~ .. ;< I

ENABLE 74[5541
~

LOAD
WR

TBUF

RRD p, ,~::O'OREAD
RBUF

R CLOCK
+S YDC I T CLOCK r I LTB = LOAD TRANSMIT BUFFER

~Q2 '& EOO -Ii; VDC
RRB = READ TRANSHIT BUFFER

QJ
Q4

~~ CI: I 16 X JDO BAUD = 4BOO HZ
Q7
QB

Q~~ I:IL ~DC CLOCK =J07.2 KHZ
QH
Q12

Figure 10.6 The auxiliary (power module) serial port interface

e:""
S



311

U3 is another tristate buffer (74LS541) which buffers the status lines
of the UART onto the data lines DO through D7. Table 10.3 documents these
status lines which are thus made available to the SB-180. For the status
word to be available, the input line *SWE (Status Word Enable) is tied low.

Table 10.3

UART status lines

Data Status line Stat.us indicator
line name

DO
D1
D3
D4

D5
D6

D7

REC

TRD
PE
FE
OR
TBMT
DR

Receive data bit (serial)
Transmit data bit
Parity error
Framing error
Overrun
Transmit buffer empty
Data received

A series of control strobes is available on this board. Their decoded
addresses are shown in Table 10.4:



312

Table 10.4

Control strobes for the analog board

Address

EX>
E1
E2
EF

Name

UDATA
USTAT
AVC1

LSTAT

UART data
UART status
A to D conversion
Latch card status

Data is read from the UART in RD (read) time at address OEOH and written
to the UART in WR (write) time at the same address. UART status is read
in RD time at address OE1H. Accordingly, U13 (74HC32 quad two input OR)
gates A and B are used to strobe the UART appropriately to either load the
transmit buffer during a data write or to read the receive buffer during a
data read. The serial communications lines, TRD and REC, which are at
TTL level, are level shifted to R8-232C levels through U10 (1488 TTL to RS
232) and U11 (1489 RS-232 to TTL). Note that the TTL level signals are
available to the computer at the status latch but that this is not the normal
means of conveying serial data information to the computer.

The UART is programmed for a particular serial communications
mode by fixing the levels of several special inputs. These inputs are listed in
Table 10.5:



313

Table 10.5

Serial mode control in the UART

Input name

NP
TSB
NB2
NBI

Function

No parity bit
Stop bit selection
Number of bits 2
Number of bits 1

Tying all of these high sets the UART into a mode where parity is inhibited,
there are two stop bits, and there are eight data bits. This was the default
chosen.



314

Finally, for the serial communications function, it is necessary to
establish the communications rate of 300 baud. This is derived from the
system clock of the SB 180 and is available as the signal PHI from the
expansion buss. PHI is the 6.144 Mhz system clock. It is directed to
(synchronous 4 bit) decade counter U8 (74HC160) which divides it by ten
down to 614.4 KHz. In turn, this is directed to binary counter U9 (4040)
whose divide by two output (Q1) is the 307.2 KHz clock (ADC_CLOCK) used
to drive the A to D conversion circuit to be described next. The divide by 128
output (Q7) results in a 4800 Hz clock which is 16 times the desired rate of
300 baud. This clock is thus directed to both the transmit and receive clock
inputs of the UART. As such, each communications bit time takes 16 clock
pulses to complete enabling clear distinction of all transitions in the UART.

Figure 10.7 documents the remaining function of A to D conversion of
analog sensor inputs. Central to this is a 16 channel, eight bit A to D
converter U7 (ADC0816) which we encountered before in the same capacity
in the Optical Module circuitry. In this case, with sensors running allover
the inside of the SBC pressure housing, the analog inputs INO through
IN15 were protected a bit by installing a small RC filter in the form of a 1 K
Q resistor in line with the input and a 0.05 J.1f capacitor from the line to

ground. This way voltage spikes induced in the lines because of their long
runs are shunted off to ground. The data lines DO through D7 are connected
to the buffered bus from the SBC latch card. The clock line is the 307.2 KHz
clock mentioned above.

. - ---- ._-------



315

Control of the A to D converter is through the use of an external port,
Ul (74HC541 tristate octal buffer). It is enabled during RI2 (read) time at the
bit mapped I/O location OEFH whose strobe is LASTAT Gatch status)
referred to in Table 10.4. Two status bits are provided on the data buss. A
momentary contact switch is wired to a logic high condition at bit DO. This
was installed as a simple means of testing the process of reading the A to D
status port. The EOC (end of conversion) signal is tied into Dl. Thus, a read
of the status port indicates whether or not the A to D conversion process is
complete. When it is, the microcomputer can then proceed to read the A to
D converter parallel data output.



'I

DEFAULT UNITS:

R IN OHI1S
C IN I1ICROFARADS

I'ADCl

1'R0

1+5 VoC

~

R17
101<

"I ~II
02 SPARE
03 L
04 A
OS T
06 C
07 H
OS LINES

STATUS PORT

~R

EXTRA
STROBES

J

I'UARTJ)ATA
I'UART..sTATUS
I'ADCl

lAD
I'll
A2
A3

Rl
IHO 00 4

I11<
~Cl "~ IHl

01
0.05 IH2 02

IN3 03
IN4 04
INS OS

PROTECTED ANAI.OQ ~ IN6 06
IN7 07

SENSOR INPUTS INS
IN9
IN10
INU
IN12

R16 IN13
IH14
IH1S

11< ~C16, OS AoC CLOCI< CLI<(307,2)
-- -- ADoA

AooB
AooC

I'ADCl~AooO
~R ~E

START

/EXPJ:NABLE
A4

Figure 10.7 The A to D analog sensor interface

c,.)

S



317

The A to D converter starts the conversion process when it receives a
START signal made up of the combination in U14B (74HC02 NOR)

START = WR AND ADC1 (10.1)

Similarly, the A to D converter data output is strobed by performing a
DREAD (data read) made up of the combination in U14A (74HC02 NOR)

DREAD = RD AND ADC1 (10.2)

The A to D converter includes a 16 channel multiplexer. The Internal
line COMP-IN (COMParison INput) is the input to the A to D section of the
chip. An analog signal in the referenced range of 0 to +5 VDC will be
converted to its eight bit digital equivalent. The internal line MUX-OUT
(MUltipeXer OUTput) is the output of the 16 channel multiplexer section of
the chip. A given channel is selected through the channel selection inputs
ADDA through ADDD which are tied directly into the buffered data buss as
DO through D3 inclusive strobed by the START signal. These two lines,
COMP-IN and MUX-OUT are tied together to connect the two sections of the
chip.



.:

318

U4 (AD584) is a precision voltage reference configured to provide a
reference voltage of +5.000 VDe called SVREF. This reference is connected
directly to the positive reference input +VREF and the +5 VDC power input
vce of the A to D converter. Again, a small 0.1 J.1f capacitor is connected

from the line to ground to shunt off any noise spikes. The A to D converter is
a CMOS circuit and as such requires a very small current for it to function.
In a similar vein, the negative voltage reference -VREF and ground GND
inputs of the A to D converter are tied directly to ground thus completing
the power source loop and fixing the A to D conversion reference to +5.000
VDC absolute.

Finally, U5 (74HC154, 4 to 16 line decoder) is the source for the
address strobes OEOH through OEFH documented in Table 10.2. Address
lines AO through A5 are used in conjunction with the control line
EXP ENABLE (EXPansion ENABLE) to produce these strobes.
Additionally, a spare data buss latch, U2 (74HC574 octal latch) was provided
in WR..(write) time at LASTATbut it was not used.



319

10.8 Description of the Hardware Changes in the SB180
Computer used in the SBC

To complete the discussion of the hardware associated with controlling the
SBC, mention must be made of the modifications that were made to a stock
SB180. These modifications are minor and as a consequence this section
will be brief.

Jumper JP3 is changed as follows: Normally the output pin 6 of UI9
which is a 1489 RS-232C to TTL level shifter is connected directly to the .c.TS.Q

input of the HD64180 microcontroller. This is cut and the CTSO tied
permanently to ground so that is is always selected rather than looking for
a handshake.

Jumper JP4 is changed as follows: Normally the output pin 8 ofU19
which is a 1489 RS-232C to TTL level shifter is connected directly to the
DCDO input of the HD64180 microcontroller. This is cut and the DCDO tied
permanently to ground so that is is always selected rather than looking for
a handshake.

To assure a controlled start up of the system, it was decided that it
was best to delay the SB180 a short while upon initial power up so that the
other electronics would be already powered up when the SB180 first tried to
do something with them. This is simply accomplished by replacing the 1
microfarad 100 V electrolytic capacitor C9 with a 220 J,Lf 16 V electrolytic

capacitor so that the reset RC time is much longer.

The J6 and J7 expansion buss connectors were used as the source of
the address lines A5 through A15 inclusive. A5, A6, and A7 were taken
directly from J6. Now, U20 is a socket for a 74LS156 dual 2 to 4 line decoder
whose output is connected directly into J7 for the purposes of being able to

toggle up to eight different I/O lines. Since control of the SBC required
much more than the ability to toggle only eight lines, this socket was left



empty but the expansion lines were used to bring out the additional address
lines A8 through A15 as defined in Table 10.6 below. These were all wired
over from the nearby 4.7 K pullup resistor pack SIP3.

Table 10.6

The J6 expansion line definitions

J6pin

number

1

2

3
4

5

6
7

8

SIP3 pin
number

3

4

6

8
2

5

7
9

Address line

A8

A9

AIO
All
Al2
Al3
Al4
Al5

Finally, the power supply connector J7 was modified to stick upright
from the board so that it could be easily connected and disconnected in the
very cramped housing area for the SB180 in the SBC. Dummy pins were
added so that the connection could be made only in one way preventing
accidental destruction of the computer through application of wrong
voltages.



321

10.9 Description ofthe SBC Controlling ProgramMERLIN

The second half of this chapter documents in some detail the SBC control
program called MERLIN. The program is the brains of the SBC. It
performs three basic functions. First, it acts as a traffic cop for all
command and control communications in the SPS. Second, it decodes and
executes commands directly intended for the SBC hardware. Third, it has a
lot of exception code written to get around inconsistencies found in
integrating major subsystems of the SPS. The SB 180 computer comes
equipped with a ROM based monitor that was documented above. This
monitor has many desirable features for the control and testing of the
hardware within the SBC. Further, the nature of the SBC environment
required that the control computer have a ROM based program. Since the
SB180 ROM monitor has provisions for jumping out of the ROM monitor
into a user defined routine, it was decided that the best way to maintain
control of the SB180 was to make SBC control program a routine under the
ROM monitor. Thus, operationally, when the system first starts up, the
ROM monitor gets control of the SB180. Later, after everything checks out,
the command within the ROM monitor for jumping to a user routine is
executed and then the SBC control program takes over.

10.10 The SB180 Development System

The operating system3,4 that is supplied with the SB180 is important to the
system developer for two reasons. One, it is the system within which all
software writing, compiling, linking, and archiving takes place. Two, it is
this one and the same system which plays the role of a ROM simulator in
the process of debugging the program. In this way, the program can be

3 see Conn, Richard, ZCPR3 The Manual

4 also Ciarcia, Steven, Build the SB180 Single-Board Computer, Part 2: The Software



322

dynamically changed and tested without having to go through the tedious
task of burning and erasing ROM's with each iteration.

The name of this operating system is the Z-System (a product of
Echelon, Inc.), It is considered to consist of two main machine independent
parts, ZCPR3 and ZRDOS. This system is a Z-80 based CP/M (Control
Program I Microprocessor, an early standard microcomputer operating
system put out by Digital Research Corporations) upward compatible
operating system. As such, since it can run CP/M programs, it runs a
large collection of existent software. This means that development with this
hardware was not held up in any way in having to wait for the software. As
you will see, the overall development system was thus readily enhanced
through the use of software tools developed elsewhere. Additionally, as part
of the development environment, close to 100 integrated utilities came with
the Z-System permitting flexible and intelligent extension of the operating
system.

Good software techniques require the separation of functions in the
form of layers surrounding a central execution core. The Z-system is no
exception. The outermost layer is ZCPR3 (Zilog CP/M Replacement number
3). This is the command processor. The next interior layer is ZRDOS (Zilog
Replacement Disk Operation System). This is the core of the operating
system. It creates the standard virtual machine to which applications
programs connect and run. The next layer is the BIOS (Basic 110 System).
This is the software glue that connects the actual hardware being used to
the standard calls of ZRDOS. Thus, ZCPR3, the utilities, and ZRDOS are
machine independent (except that the instruction set must be a Z-80 or
something upward compatible) while the BIOS is where all of the machine
dependencies are collected together and must be rewritten for each new
type of computer.

Let us first look at the outer most layer, namely the command
processor ZCPR3. This is the user interface to the rest of the operating

5 Digital Research, CP/M 2.0 User's Guide

- - - -------- ~- - - --------- ------------ -----------



323

system. As mentioned, associated with it is a collection of about 100 utilities
specifically written to take advantage of the special features of the ZCPR3
environment. One of the really nice things about this is that often, when one
wants to write a system program, the utilities already perform all or most
of the functions desired. From this point of view, they can be viewed as
filters in which part of the output of one may become the input of another,
etc. This approach to computer programming was first popularized by the
UNIX6 operating system. It views programs as a string of filters and
typically one's entire program is simply the command line of "piped"
filters. ZCPR3 has a somewhat similar philosophy allowing one to string
together utilities or other routines in meaningful ways treating the
combination as a new program.

Intrinsic to ZCPR3 are six system segments. Upon booting the
system, six separate memory areas are reserved and loaded. These six
segments form the basis that makes the Z-System so much more useful
than CP/M. Each segment either adds features or contains information
that properly written programs can make use of in an integrated way. To
understand how this works, it is best to look at each of these segments in
tum. In what follows, the bracketed [ ] hexadecimal number is the location
in SB180 memory of the segment.

ENV - ENVironmental descriptor [OFEOOH-OFEFFH]: There are
many ways to configure a system. As such, this segment contains the
description of how this particular ZCPR3 implementation is configured.

NDR - Named DiRectory [OFCOOH-OFCFFH]: This segment assigns
symbolic names to disk drives and user areas. For example, let us say that
disk drive B, user area 7, contained a collection of filters and files associated
with an accounting application. Instead of having to remember to refer to
B7 in order to access these files, one can assign the name ACCOUNT to this
area.

6 for example, see Kernighan and PIauger, Software Tools

- -------- ----- ----------_ .._--------------



324

RCP - Resident Command Package [OF200H-OF9FFH]: This is a
collection of subroutines extending the intrinsic commands of the operating
system. An intrinsic command is one which resides in memory but not in
the area set aside for application programs (called the Transient Program
Area or TPA). Examples of ZCPR3 intrinsic commands are GO, SAVE,
GET, and JUMP. These are all ZCPR3 command processor level functions.
Examples of extended commands found in the RCP are CP, ERA, TYPE,
LIST, PEEK, POKE, PROT, and REN. One has to make choices because the
RCP is limited to 2 kilobytes of memory. Thus, depending upon the
environment, different commands may be loaded into the RCP.

FCP - Flow Control Package [OFAOOH-OFBFFH]: This is unique to
ZCPR3. It adds structured conditional testing to the operating system level
commands. This is especially useful in batch operations. The keywords are
self explanatory being IF, ELSE, and FI (an "end if'). Nesting of conditional
tests is possible up to eight layers deep. Typical conditional tests are shown
in Table 10.7 below:



325

Table 10.7

Conditional tests for flow control

Name

Negation
True
False
EMpty

ERror
EXist
INput

NUll

n

WHeel

TCap

fcbl=fcb2

Test Function

Reverses sense of logical condition
Tests if logically true
Tests if logically false
Tests if file is empty
Tests program error code byte
Tests for existence of a file
Tests for user input of character 'T'
Tests if second argument is not specified
Tests if indicated register contains the
specified value n
Tests ifwheel byte is set or not
Tests if TCAP contains a terminal
definition or not
Tests two file control blocks to see if they
contain the same values

lOP - Input / Output Package [OECOOH-OFIFFH]: The code in this
segment acts as a traffic cop routing I/O to and from peripheral devices. An

example is the printer spooler supplied with the SBIBO.

TCAP - Terminal CAPabilities [OFEBOH-OFEFFHl: This segment is
actually part of the ENV segment although it can be loaded independently.
It describes the characteristics of the terminal connected to the computer,
especially the control strings for clearing the screen, cursor addressing,
highlight on/off, and the arrow keys.



Besides the six system segments, there are several other concepts
associated with the ZCPR3 command processor that are important to
consider. These are the path, the wheel, utilities, shells, and aliases.

The concept of the path is that there should be some means by which
ZCPR3 can search other directories (disk drives and user areas) for a file
should the file not reside in the current user area. Small computer
operating systems typically have not had this ability. ZCPR3 provides a
means by which to specify the path so that up to five levels deep may be
searched. Typically one directory may contain help files, another may
contain system utilities, another may contain commonly used programs,
etc. and the path is the means by which these can be systematically and
rapidly searched rather than forcing the operator to explicitly remember
where a file is.

The wheel (located at OFDFFH) is a single byte protection system for
ZCPR3. If it is zero (blank), the wheel is considered reset (oft). If it is non
zero, the wheel is considered set (on). All intrinsic ZCPR3 commands check
the wheel for user privilege to execute the requested command. Similarly,
utilities can be written to check the wheel. Programs that manipulate the
wheel require a password to operate.

The role of utilities has been mentioned before. Basically, utilities are
transient programs that do useful system level work. Typically they access
the ENV, TCAP, and NDR in working with the system. The ZCPR3 utilities
have all been written with a common approach in mind. They make great
use of the system segments, the path, and the wheel. One of the things that
they have in common is a built in help screen. This is a brief example of the
syntax of the utility and how it is used. The help screen is invoked by typing
on the command level the name of the utility followed immediately by "/1".

For example, to get the help screen of a utility called LDR, one types
"LDR/I".



Shells are another concept borrowed from UNIX. As mentioned
before, the software in a computer can often be viewed like the layers of an
onion with the outer layers passing calls to the inner layers and the inner
layers passing information concerning the calls back to the outer layers.
This way, machine dependencies can be kept to a minimum and
programmers normally need not worry about the particular hardware that
their application is running on. In the case of the Z-System one might stack
the layers as follows in Figure 10.8:

application program

shells...

ZCPR3 command processor

ZRDOS disk operating system

BIOS machine dependent I/O

HD64180 instruction set

Figure 10.8 The layers of the Z-System

Normally when one is running a program what is happening is that the
ability of the command processor to "run" an executable file is being

invoked. In other words the application program in some sense is under
the control of the command processor. At least the program should return
to the command processor in a non-destructive manner. Now, let us say,
for the sake of argument, that one had an application program which did
not abide by the syntax of the command processor. Perhaps it uses a
different convention for nanling disk files or the keyword order is different.
One could still run such a program should a piece of software exist that
translates between the two different sets of conventions. Another possibility

----------- ---------------------------



is the desire to use one key to generate a whole command string. Such
software sits in a layer between the command processor and the application
program and is called a shell. This can be very useful in turnkey
applications where one does not want to have to teach the operator a lot of
things about the system just to run an application. In fact, the concept is
extendable and shells can be nested.

Finally, there is the concept of an alias. This is the way in which
ZCPR3 is able to link up a series of existing routines and turn them into a
new program in its own right. This concept of not reinventing the wheel is
borrowed straight from UNIX.. An alias is created by invoking the alias
utility which basically takes as a command line a string of commands to be
placed in the multiple command line buffer and executed. Parameters may
be passed and aliases nested allowing creation of very powerful commands.

So far, the emphasis here in outlining the SB180 development system
has been on the ZCPR3 command processor and associated concepts such
as utilities. This is because this is the level the operator using the Z-System
for program development is normally going to be dealing with. For the sake
of completeness I will mention briefly some of the characteristics of ZRDOS
and the BIOS.

The next layer in is ZRDOS (Zilog Replacement Disk Operating
System). In the SB180 it resides in the segment bounded by OCCOOH
OD9FFH. As the disk operating system, it is the core of the Z-System
defining a standard virtual machine for the programmer. It is a
replacement for the analogous CP/M BDOS (Basic Disk Operating System)
and is upward compatible with the CP/M 2.2 standard. This includes all 39
functions found in BDOS plus four others unique to the Z-System. The
visible differences with CP/M is that there is no longer the need to type
<CTRL>C to log a new disk onto the system and there are improved error
messages. This is a great help in setting up turnkey applications.



Finally, the BIOS (Basic Input I Output System) resides in the
segment bounded by ODAOOH-OEBFFH. It is the interface between the
operating system (ZRDOS) and the specific hardware (the SB180 with its
Hitachi HD64180). Most importantly for the SB180 is that it knows about the
enlarged memory space of 256 kilobytes of RAM. 192 kilobytes are excess
beyond the range of CP/M and so are used by the BIOS as a RAM disk drive.
This is accomplished by dedicating one of the DMAC channels to this
function. A RAM disk greatly speeds up disk intensive operations by
making the "access" to and from the "disk" actually the speed of reading
and writing to RAM. No hard disk can ever operate that fast. Once the disk
intensive activity is complete, then the results can be saved on a real disk.

The second part of the development system are the language tools
used to write the program in. Primarily the program was written in a
CP/M implementation of "C". C is a language that is sometimes greatly
misunderstood. Although the textbooks do not seem to mention this, the
best way to look at C is to look at it as a universal assembly language. Ifyou
think about it that is a neat trick because assemblers, by their very nature of
working with different instruction sets have to be different from one
another. However, if one takes a careful look at extensive assembly
language code, one finds that only ten percent of what is actually written is
truly specific to the hardware involved. The rest only becomes specific
because the programmer wrote the program in the assembler associated
with that machine. It is often possible with different compilers to restrict
machine dependencies to the minimal assembly code needed and then to

call those assembly routines from some (hopefully) machine independent
compiler.

Fine, but C goes even further than that. C is designed to bang
information right down to the bit. As such, machine dependent assembly
code is even smaller than the usual compiler linked to assembler code

. . ~ ~.. r f: 1"· h . -"". 1approach. Additionally, tor app reations were execution speed IS critical,

C typically generates code close to being as tight as highly tuned assembly
code (and takes a lot less time to write and debug). C is a very stripped down



language so the overhead associated with it is quite minimal. There are not
many functions built into the language anymore than there are in the
typical assembly language. The exception to this is that on larger systems,
C often can be alternatively compiled to know about formula translation and
execution like FORTRAN.

Finally, C is very portable not only because of its intrinsic machine
independence but because it has been almost a religion with programmers
not to change or extend C. As a consequence it does not suffer from
"versionitis" as most other languages do.

With C's stripped down ability to manipulate the hardware, it was
the ideal choice for programming the SB180. Fortunately a number of C
compilers exist under CP/M7. The one that was used is a subset of the full
specificationf called C/80 (a product of The Software Toolworks''). Basically
it is limited to integer arithmetic which is more than enough for the task at
hand.

Fundamental to the approach of C (and of UNIX) is the idea of
breaking big projects down into smaller pieces or modules. The modules
are all then made to work by themselves and then combined to obtain a
working system. This was exactly what was done with the SBC controlling
program, MERLIN. The hardware dependencies were isolated into their
own modules as embedded assembly code which is a feature of this
compiler.

Another aspect of C which is worth mentioning is its preprocessor.
This is a device which, among other things, permits macros to be attached
to the body of code as well as to conveniently DEFINE constants much as

7 see Cain, Ron, A Smell C Compiler for the 8080'5 end Cain, Ron, A Runtime Library for

the Small c Compiler

8 see Kernighan and Ritchie, The C Programming Language. This is THE book.

9 Bilofsky, Walt, C/80 Small C Compiler.

-------



331

one makes equate (EQU) assignments in assembly language. Similarly,
global variables may be defined. In general, numbers should never be
written directly into a program but instead given a symbolic name in one
location so that if the value is to be changed it can be done so neatly and
cleanly in only one place. Typically, such collections are made in a series of
"header" files which through the preprocessor command INCLUDE are
drawn into the source code file during compilation. This is all very similar
to some of the pseudo opcodes found in assembly language.

The output of the C/80 compiler is raw assembly code. This is nice
because it gives one an additional handle in the form of tuning the code
should that be necessary. A number of switches exist permitting alternative
code generation for different assemblers.

The assembler used was M8010 ("macro" 80, a product of Microsoft).
It is a fairly standard macro assembler following a macro calling
convention quite similar to Macro 11 (on Digital Equipment Corporation
PDP-II's). Thus, it is quite different than that followed by INTEL, as
mentioned before, in terms of the ASM-51 cross assembler used to program
the 8051 microcontroller family which UHPS is entirely written in. The
output of M80 is a relocatable binary file which must be linked together with
other such files. Finally, the resultant linked file must be loaded into
memory at absolute addresses before the program can be executed.

Typically in the old CP/M environment and not necessarily different
in the Z-System environment, linking and loading have been basically
combined into one separate operation. The basic reason for this is that once
linked, the standard CP/M utility DDT (Dynamic Debugging Tool) is used to
either save the image to disk or to make a controlled run of it. The nature of
most eight bit microcomputer instruction sets is such that all executable
code is what is called absolute. This means that the program must reside in
one and only one specific place in memory. References within the code point

10 see Microsoft MACRO-80 ASSEMBLER Software Reference Manual



332

to absolute addresses. Larger machines, particularly those which are
multiuser have executable code which is relocatable. Their references are
relative.

Because of this, it means that at the time of linking, all relocatable
binary modules, plus the linker-loader, plus the symbol table for resolving
references, plus the resultant absolute executable code must all reside in
the TPA (Transient Program Area or heap memory available to executing
programs) at one time. During the course of writing MERLIN, I ran out of
room. The problem was eventually resolved by finding and using SLRNK+
(SuperLinker Plus - a product of SLR Systems11 ). This is a non-loading
linker for Z80 based CP/M systems. It is limited to execution on Z80
compatible systems (which in the case of the HD64180 is no limitation at all)
because it makes heavy use of the additional instructions and registers of
the Z80 over the original 8080. The result is that it is very fast. Instead of
using the TPA to hold all of the files, it makes heavy use of the disk drive.
Thus it is able to link very large systems. Better yet, since the SB180 has
such a large RAM disk, by feeding everything to the RAM disk, the
SLRNK+ linker becomes lightning fast.

This just about concludes the discussion on the SB180 development
system. There is one thing left that should be emphasized. IDtimate
debugging of the program requires testing the program with the actual
hardware that is going to be controlled. Even if the program should run as
designed, the actual manipulation of things results in insight into how
things ought to be changed and hopefully improved. Thus, by using a ROM
simulator in terms of the ZRDOS disk operating system, parallel
development of an improved version of MERLIN was possible while others
exercised an older version in tuning up the ship board control software.
One did not have to constantly disassemble the SBC electronics to get to the
imbedded SB180 to make a program change because it was connected by
way of a ribbon cable to an external floppy disk drive.

11 SLR Systems, SLRNK+ Superlinker Plus User's Guide

--~ -------- -------



10.11 Software Objectives

Before going on to describe MERLIN in detail, it is best to first outline the
objectives of the program. Roughly speaking, MERLIN was to be the central
control program for the SPS. Commands were to come down from the ship
(either directly from an operator on a terminal or indirectly from the ship
board computer). These were to be parsed by MERLIN and basically sorted
into one of three categories:

The first category is identifying a command specifically for a single
module on the string or for the power distribution module. In all such
cases, MERLIN passes the command on to the appropriate channel (either
the STR or PWR ports) in a transparent manner. The protocol demands
that such commands must make a reply which MERLIN should receive
and then relay back up along the cable both by way of the 300 baud electrical
connection (the CAB port) and the high speed fiber optics connection (the
OPT port). The ports involved are all summarized below in Table 10.8.

Table 10.8

SBC control computer ports

Port Name

CAB
STR
PWR
OPT

Description

Cable port (SB-180 CONsole port)
String port (SB-180 AUXiliary port)
Power module port (analog card)
Optical port Gatch card - 23 word, output
only)



Now, there is a danger that the system might hang waiting upon a reply
message that may never come. Thus, there must be a time out mechanism
that will generate a time out error reply should the expected reply not
occur.

The second category is identifying a command that is specifically for
the SBC. Typically this means that something is to be written into its latch.
The latch is a "write only" memory and as such, in order to be able to
conveniently keep track of the current settings MERLIN should maintain a
table which mirrors those settings.

The third and final category is sort of the catch all for everything else.
As system integration progressed it became more and more obvious that it
was good that such a dynamic environment as the SB180 (in contrast to the
8051) was being used to control the SBC. Because the system was
sufficiently dynamic, it was possible to write significant exception code to
integrate everything between the string on the one end and the ship board
multitasking real time operating system (Digital Equipment Corporation's
RT11) on the other end. To cleanly handle the task of controlling the SPS
and intercepting the replies under RT11 it was felt that it was not a good
idea to burden the ship board computer with too many exceptions.

One of the major exceptions to be handled was the case of an "all call"
to either all of the optical modules or to all of the calibration modules or to
both. Obviously, the optical modules and calibration modules could not send
replies under such a situation because more than one module would be
trying to communicate on the string at one time and this would shut down
communications. The ship board task demanded some kind of reply
message before it would send out another command. As such, the SB180
needed to generate a "fake" reply message for the all calls.

-~ -- ----- ----------------



335

Another, somewhat similar exception resulted because the
environmental module was not developed to communicate on the string in
accordance with the agreed upon protocol. It did not send reply messages so
again the SB180 was used to generate them.

Finally, there is the possibility that a command does not parse out
correctly either because what was sent was wrong (command error), a non
existent or inconsistent device was requested (device error), or the
command format was incorrect (format error). The exception handling
functions for such error conditions also belong to this catch all category.



336

10.12 MERLIN

This final section is devoted to documenting the SBC control program
MERLIN in some detail. The governing philosophy of the program and its
global data structures will be fully explained. Then a summary of all of its
component routines, broken down into categories, will be made. Next, their
interconnections will be briefly documented. Finally, some of the actual
routines will be flow charted as representative examples of the different
categories of routines.

The overriding philosophy of MERLIN is one of continuous polling of
all of the potential input ports. As Table 10.8 shows, there are three such
ports, namely CAB, STR, and PWR. Since all three ports communicate at
only 300 baud or about one byte every 333 ms or so, then in a worse case
situation of all three ports sending a byte at the same time, the system
needs to look at each port only once every 333 /3 =111 ms. With a 6 MHz
computer, that means that 666,000 clock cycles are available between polls.
Easily 100,000 instructions or more can be executed in that time and thus
there is no need for a more complicated system involving interrupts and
multitasking.

All character input is first trapped on a byte by byte basis and placed
in a single byte input buffer. There is one such buffer for each of the three
input ports (inbuf), Every time a new byte is moved into one of the buffers, a
flag bit is set (inflag), Later, during the polling, other routines which need
this input information check the appropriate input flag and if it is set, they
fetch the input byte from its buffer and clear its corresponding flag.

The input port that is given the most consideration is CAB. Here
commands coming down from the ship are received. A preliminary parse
is made of the command as it comes in to see if it is destined for the string,
the power module, or the SBC itself. If it is not for the SBC, then the
command is relayed transparently to the appropriate port. Commands



directed to either the power module or to individual optical or calibration
modules on the string require a reply message. MERLIN looks for such a
message and while polling it keeps track of some time out period on the
order of five seconds within which time a reply message from the addressed
module should be received. If none is available, then a time out error
message is sent.

Should the command be for the SBC, then it is parsed by the default
parser on a byte by byte basis and either a command is extracted or an error
message reply generated. Similarly, if the command fits one of a number of
exception conditions such as those mentioned above, then it is parsed by one
of the exception parsers. When there is a valid SBC command, then the
appropriate driver is invoked and the command is executed. In turn, the
SBC generates an appropriate reply and sends it back up the cable over both
the slow speed path (CAB) and the high speed path (OPT).

The first files of importance for MERLIN are the C compiler
headings. These are listed in Table 10.9 below:

Table 10.9

C compiler headings

File name

SBCDEF.H
SBCGLOB.H
SBCMON.H

Contents

Defines global constants
Defines global variables
Defines ROM monitor constants for
MERLIN program

---_.__ . __..~ ---------- - _. - ---- -- -----------



338

As one can see, they form convenient places for collecting all of the
common definitions found in three different categories. SBCDEF.H defines
the global constants. These include both the symbolic names of the ports
(like CAB or OPT), of the different instruments (like OM3 or POWER), of the
mask bit patterns, and of special characters or conditions. SBCGLOB.H
contains the definitions for all of the global variables and data structures.
These are listed in detail in Table 10.10 below. Finally, SBCMON contains
the definitions used in the ROM monitor that must be used in an identical
manner in the control program MERLIN.



:;

Name

inbuf

inflg

time

poll

talk

sbcrun

dev

339

Table 10.10

The global data structures

Description

Buffer - 3 integer bytes to contain the most recent input
characters from the three input ports CAB, STR,
and PWR respectively

Flag - 1 integer byte companion to inbuf. If
corresponding bit is set it means that there is a
byte in inbuf waiting to be read by the parsers.

Flag - 1 integer byte indicates ifTRUE that a time out is
underway on either the STR or PWR ports. This is
cleared when a character is received on either
port unless the time out period is up.

Flag - 1 integer byte indicates ifTRUE that parsing is to
be done by EVMPOL instead of the default
CMDPOLL.

Flag - 1 integer byte indicates ifTRUE that parsing is to
be done by ALLPOLL instead of the default
CMDPOLL.

Flag - 1 integer byte indicates if TRUE that the routine
MERLIN is to be still run. Otherwise, MERLIN

exits to the ROM monitor of the SB180.

Register - 1 integer byte holds the identity of the current
module the command is destined for.

~ -- -~~~ ~---~~---~~-----------



340

Table 10.10 (Continued)

The global data structures

Name Description

cmd Buffer - 8 integer bytes hold the current command string
from the CAB port.

bytnum Counter - 1 integer byte holds the current count of
command bytes received so far while a command
is being parsed. This acts as an index to bytes in
the command string.

count Counter - 1 integer byte holds the current count of
timeout periods. Used in the timeout routines for
message replies from the STR and PWR ports.

table Table - 9 character bytes holds the current latch settings
of the SBC fast electronics. This way, if desired,
the current settings can be read.

latch Latch - 9 character bytes of the SBC which are "write
only". Routines write bit patterns to set latch
through table so that there is a history of the
settings available to MERLIN.

command Register - 2 character bytes used in debugging to confirm
the action of the parsing routines to correctly
parse out the command.

Altogether, MERLIN is made up of 49 separate routines each
occupying a separate file A summary description of these routines divided
into eight basic classes follows directly in Table 10.11.

-- ------- ---~---_._---



Class Name

Main:

main
inpoll

timpoll

allpoll

evmpoll
handle
nextbyte
cmdserv

allserv

evmserv

Commands:

coinpat
rawsel
stkhgt

source
sorsel

xtrbit

readad

mreset

341

Table 10.11

Summary of MERLIN Routines

Description

Main program (MERLIN)

Parse the command string for a valid command 
also, handle exceptions

Parse for a STRING command, if found, initiate

time out for reply
Parse for an "all call" STRING command - handle

exception
Parse for an environmental module command 

exception
Place next byte in command buffer
Service a complete command, else call error

routine
Exception code for an "all call" command

Exception code for an environmental module

command

Coincidence pattern

Raw select
Stack height

Source on/off

Source select
Extra bit (drive spare lines)

Read a..11 analog (A to D) channel

Master reset



342

Table 10.11 (Continued)

Summary of MERLIN Routines

Class Name

I/O Routines:

datlat

tablat

outlatch
inport
outport

Error Routines:

deverr
forerr
emderr
timerr

Communications:

msgreply

allecho
upecho
downecho
evmmsg

allmsg

Description

Move SHC optical path data from internal table to
external latch

Move SHC latch control data from internal table to
external latch

Output a byte to a latch port
Read a byte from specified port
Write a byte to specified port

Device error reply
Format error reply
Command error reply
String timeout error reply

Output message on CAB and OPT
Output byte on CAB,8TR, PWR, & OPT
Output byte on CABand OPT
Output byte on PWR and STR
Output fake environmental module message on

CAB and OPT
Output fake "all call" replies on CAB and OPT

---_. - ._------_._----- - ----- ------------



343

Table 10.11 (Continued)

Summary of MERLIN Routines

Class Name Description

Type Checking and Conversion:

ascbin
binhex

nibhex

ishex

Convert ASCII character to binary
Convert byte sized binary numbers to two byte hex

equivalent
Convert four bit binary nibble into ASCII hex

character
Test character if it's an ASCII hex number

Initialization and Control:

init
deinit
delay

Device Drivers:

atod

incab
instr
mpwr

outcab
outstr
outpwr
outopt

Initialize CAB and STR at 300 baud
Return to SB-180 ROM monitor
Delay one millisecond

Convert specified channel analog input to digital
value

Input a character from CAB
Input a character from STR
Input a character from PWR

Output a character to CAB

Output a character to STR
Output a character to PWR

Output a character to OPT

- --------------- - --- -------- -- -------



344

To get some idea as to the complexity of the relationships between the
routines, a call tree for the program MERLIN follows in Table 10.12.
Modern structured languages like C pass parameters by value on a stack
rather than by location in memory. Every time a routine is called, the
return address and other context must be placed on the stack. Thus a call
tree is a document which shows who calls whom and to how deep the stack
may actually go. Typically, in a call tree, once a routine is documented all
the way in its calls to some terminal hardware driver or whatever which
can not or does not call any deeper, then when that routine is called yet
again, only it and none of its subsequent calls is documented because that
path has already been documented thoroughly.

Table 10.12

Call tree for program MERLIN

init
clear
inpoll

incab
allecho

upecho
outcab
outopt

datlat
downecho

outstr
outpwr

instr
inpwr
timerr

upecho



Table 10.12 (Continued)

Call tree for program MERLIN

cmdpoll
evmpoll

nextbyte
forerr

msgreply
upecho

upecho
downecho

outstr
outpwr

evmserv
evmmsg

upecho
cmderr

msgreply
upecho
downecho

ishex
allpoll

nextbyte
allserv

allmsg
upecho

cmderr
forerr



Table 10.12 (Continued)

Call tree for program MERLIN

timpoll
nextbyte

deverr
msgreply
upecho
downecho

cmdserv
coinpat

ishex
ascbin
tablat

outlatch
cmderr

cmderr
rawsel

ishex
ascbin
tablat
cmderr

stkhgt
ishex
ascbin
tablat
cmderr

source
ascbin
tablat
cmderr

- ------- --- --- -_._---------------------~

346



347

Table 10.12 (Continued)

Call tree for program MERLIN

sorsel
ascbin
tablat
cmderr

xtrbit
ascbin
tablat
cmderr

readad
ishex
ascbin
atod
binhex

nibhex
msgreply

upecho
cmderr

mreset
outlatch

forerr
upecho
deinit

Finally, let us consider example flow charts for some of the routines.
The top level of any C program is given the reserve name "main". Figure
10.9 documents the main routine of MERLIN:



348
MERLIN - SBC
CONTROL PROGRAM

INPOLL - POLL PORTS AND
INPUT CHARACTERS INTO INBU

CMDPOLL - POLL
fOR NEXT COMMAND
BYTE. If COMPLETE.
EXECUTE COMMAND

v

v

v

UPECHO - SEND ALL

~------~ CHARACTERS fROM
STRTO CAB AND OPT

UPECHO - SEND ALL
=>------~ CHARACTERS fROM

PWR TO CAB AND OPT

v

DEINIT - RETURN
EXECUTION TO THE

SB160 ROM MONITOR

Figure 10.9 The main routine of MERLIN



349

Inpoll is one of the major routines of MERLIN from the point of view
of MERLIN's direct mission, namely monitor the communications of three
serial input ports and then to act on the information extracted. Inpoll polls
all three ports for a character.



INCAB - LOOK FOR
A CHARACTER ON
CAB

N

INSTR - LOOK FOR
CHARACTER ON
STR

v

v

PLACE CHARACTER
IN INBUF

PLACE CHARACTER
IN INBUF

SET INFLG TO
INDICATE
CHARACTER
IN INBUF

SET INFLG TO
INDICATE
CHARACTER
IN INBUF

ALLECHO - SEND
CHARACTER TO ALL
PORTS (CAB, STR.
PWR. AND CPT)

ALLECHO - SEND
CHARACTER TO ALL
PORTS (CAB, STR,
PWR, AND OPT)

Figure 10.10 The main level routine inpoll

~



l'

INPWR - LOOK FOR
CHARACTER ON
PWR

COUNT =MAXCNT

TIME =FALSE

ALLECHO - SEND
CHARACTER TO ALL
PORTS (CAB, STR,
PWR, AND OPT)

SET INFLG TO
INDICATE
CHARACTER
IN INBUF

v TIMERR - SEND
TIME OUT ERROR

~ MESSAGE UP CABLE
(I.E.TO CAB s, OPT)

PLACE CHARACTER
IN INBUF

Figure 10.10 (Continued) The main level routine inpoll
~
1-£



352

Cmdpoll is another major routine. It is the default command parser
for serial communications from the CAB port. It parses the serial stream
on a byte by byte basis and either completes the job of parsing or else it
invokes some exception code depending upon what it finds.

------- ------- ---- ----------



GRAB CAB
CHARACTER FROM
inbuf - CLEAR

inflg

V

V

V

PRINCIPAL COMMAND
PARSER FOR COMMANDS
TO STRING OR POWER MODULE.
MODULES REPLV UNLESS AN
EXCEPTION IS FOUND. THEN
SBC REPLIES.

evmpoll - alternate
parser for environ
mental module

allpoll - alternate
parser for "011 colls"

tfmpoll -

353

Figure 10.11 The main level routine cmdpoll

~--_._--------------



'j
I

N

v

v

bytnum =0

bytnum =2

dey =CHARACTER

v

v

bytnum = 1

tclk =FALSE

bytnum = I

Figure 10.11 (Continued) The main level routine cmdpoll

~



j:

N

v

bylnum =0

deverr

v

v

bylnum = 1

bylnum = 3

Figure 10.11 (Continued) The main level routine cmdpoll

~



poll = NULL

v

v

v

v

v

poll = EVM

lolk =TRUE

lolk =TRUE

tetk =TRUE

v
lime = TRUE

356

Figure 10.11 (Continued) The main level routine cmdpoll



o

N

F

v

v

v

nexlbyle

nexlbyle

v cmdserv bylnum =0

Figure 10.11 (Continued) The main level routine cmdpoll

~



'I

bytnum = 0

forerr

v

v

nextbyte

bylnum =0

v cmdserv

forerr

bylnum = 0

Figure 10.11 (Continued) The main level routine cmdpoll
~



359

Cmdserv is the last of the main level routine examples to be given
here. It is called once the parsing logic decides that a complete command
has been received and is in the command buffer. Cmdserv then either
services the command or else calls an appropriate error routine before
returning.



N

N

A

v

cmcerr

cmderr

y

v

cmderr

cmderr

v

y colnpet

rewsel

CP

RS

Figure 10.12 The main level routine cmdserv

s



..

N

B

v

N

cmderr

v

cmderr

V I source

v I sorsel

v stkhgt

SH

Figure 10.12 (Continued) The main level routine cmdserv

~



"

N

N

v

v

cmderr

cmderr

v

v

xtrbtt

cmderr

v

XB

reeded

AD

Figure 10.12 (Continued) The main level routine cmdserv

~



<
N

v

cmderr

v mreset MR

N

v

cmderr

v sbcrun = FALSE zz

Figure 10.12 (Continued) The main level routine cmdserv

ffi



364

Readad is an example of a command level routine. Routines on this
level set in motion the logic to execute a valid command. In particular,
readad reads an analog (A to D) channel input returning the value read.

escbfn - CONVERT
CHANNEL NUMBER
TO BINARV

etod - READ ANALOG
CHANNEL VALUE

btnhex - CONVERT
BINARV VALUE TO
TWO ASCII HEX
NUMBERS

msgreply - SEND
HEADER O$CCADO
TO CAB

upecho - SEND BOTH
HEX NUMBERS AND
<CR> TO CAB

v

Figure 10.13 The command level routine readad



365

Outport is an example of an I/O level routine. These routines direct
information flow to or from the appropriate communications ports.
In particular, outport directs a byte to a specified output port.

-------- ----- - ----- --- - ---------- ------------



outopt - WRITE
BYTE TO OPT

v

v

v

outceb - WRITE
BVTE TO CAB

outstr - WRITE
BYTE TO STR

outpwr - WRITE
BVTE TO PWR

366

Figure 10.14 The I/O level routine outport

------------



Cmderr is an example of an error level routines. Routines on this
level generate error messages which are passed back up the cable through
the ports CAB and OPT. In the case of emderr, a message string

$??<DEV><DEV><CMDO><CMD1>...<CR>

where <DEV> is the one byte device identifier of either the SBC or the
environmental module and <CMDn> are the successive command string
bytes received.



msgreply - SEND
'S??' HEADER TO

CAB

upecho - SEND
DEVICE I.D. TWICE

N

upacho - SEND
crndlol end crndl11

to CAB

upecho - SEND
<CR> TO CAB

downecho - SEND
'S' DOWN TO STR AND

PWR

v SET COUNTER
i=O

upecho - SEND
BVTE crndltl to CAB

INCREMENT

v

368

Figure 10.15 The error level routine cmderr



Upecho is an example of a communications level routine. These
routines logically direct information flow to multiple ports or generate the
"fake" reply messages required in some of the exception coding. In
particular, upecho directs a reply byte to both of the cable ports CAB and
OPT for transmission back up to the ship board computer.

outceb - SEND
BVTE TO CAB

outopt - SEND
BVTE TO OPT

Figure 10.16 The communications level routine upecho



370

Ascbin is an example of a type checking and conversion level routine.
Such routines either check to see if information presented to them is
consistent with a particular representation or they convert information
from one representation to another. In the case of ascbin, an ASCII
hexadecimal byte is converted into its binary equivalent.

binery =CHARACTER
-41 HEX +OAH

(LETTER OFFSET)

v binery =CHARACTER
-30 HEX

(NUMBER OFFSET)

Figure 10.17 The conversion level routine ascbin



371

Init is an example of 'an initialization and control routine. Basically
the CAB and 8TR ports are set up for 300 baud communications.

-
Inll

T
READ STATUS BVTE

OF PORT 0

+
TURN OFF ONLV THE

RECEIVE INTERRUPT
BIT

+
WRITE MODIFIED

STATUS BACK TO
STATUS REGISTER

OF PORT 0

+
SET UP BAUD RATE

CONTROL BVTE

+
WRITE IT TO

CONTROL REGISTER
OF PORT 0

+
WRITE IT TO

CONTROL REGISTER
OF PORT I

!

Figure 10.18 The initialization level routine init



372

Device drivers are those assembly language routines which directly
drive the hardware. As such, most of the machine dependent code is to be
found in the device drivers. Incab is an example of such a device driver. In
particular, the function of incab is to fetch a byte from the port CAB.



SET UP STACK FOR
PARAMETER

PASSING

INITIALIZETIMER
COUNTEI~ FOR 5 ~S

OF TIME DELAY

READ DATA BVTE 
STRIP PARITY

v

v

FETCHES A BVTE FROM
THE CAB PORT. NOTE
THIS IS AN EXAMPLE OF
AN UNSTRUCTURED
ASSEMBLV LEVEL ROUTINE.

TOGGLE PRINTER
FLAG

v

Y

v

Figure 10.19 The device driver routine incab
e,.,
cj



REPLV WITH WARM
BOOT MESSAGE AND

EXECUTE WARM BOOT

SOFTWARE DELAV
1 ~S

CLEAR THE <A>
REGISTER

PLACE RECEIVED
BVTE IN RETU.RN

REGISTER

RESTORE THE
STACK

Figure 10.19 (Continued) The device driver routine incab
~

~



375

Chapter 11 - Analysis ofthe Short Prototype StringData

In this final chapter, some analysis of the data from the short prototype
string is described. In particular, the data taken during the Fall 1987 cruise
off the Kona coast of the island of Hawai'i is analyzed statistically to
determine the cosmic ray muon background rate at a depth of 4 Km.
Additionally, a determination of the power index of the cosine of the zenith

angle is made for that depth.

11.1 A Purely Statistical Procedure for the Determination of the
Cosmic Ray Muon BackgroundRate

A purely statistical procedure for determining the cosmic ray muon rate is
possible by reading the scalar counters of the individual photomultiplier
tube rates and then using them to compute what one would expect for an
aggregate random coincidence rate. In tum, this is compared to the actual
aggregate coincidence rate measured (and recorded in yet another scalar

counter) and difference or "excess" rate taken as the cosmic ray muon rate.
This contrasts with approaches to determining the cosmic ray muon rate

based upon the fitting of individual events. For this procedure to work,

several assumptions or conditions must be met. First, there can be no

calibration pulses in the data. Second, all noise must be random, in other
words there should be no bioluminescence forcing promotions, flashing

photomultiplier tubes, etc. Thus, all events are either random (statistically
determinable) or real muons (cosmic rays).

The aggregate probability P for m things each with a common finite

individual probability of occurrence p tried n times is given by the binomial

distribution

rn.io

.. - _---_.- --_._---------------



376

and

( n ) n'=' q = 1 - p
m m! (n -m)! '

(11.1b)

One could say that (~) is a count (or weight) of the number of identical

terms pm qll-m making up the aggregate probability of an m-fold occurrence
among n things.

Now, in the actual problem at hand, one is concerned with the
random number of interchanges possible for n =7 (or 6) optical modules
with a coincidence triggering of m =5 (or 4) and greater. The individual
optical modules record different numbers of "hits" h(s) in a given time
interval (t - 1 s) yielding an individual rate of

r(s) =h~) : s =1..7
(11.2)

where s is a running index identifying the optical modules. In turn, these

individual optical module rates result in individual probabilities

p(s) = r(s) 't (11.3)

where 't is the coincidence window used in the experiment (i.e, the time

interval within which two or more optical modules may be considered to be
causally connected in their recordings of a hit). Then, the task at hand is to
predict what would be the expected random coincidence rate for n optical
modules with a coincidence triggering of m or greater optical modules
recording a hit in time 'to

--- ----- ------------



371

Again, for a given n and m, one expects (~ ) number of terms only the

associated single probabilities p(s) (s = 1..7) are not necessarily identical.

Thus, the (~) number of terms is the same as the number of possible

interchanges in the term

p(1) p(2) p(3) ... p(m) q(m+1) ... q(n)

In other words,

P(m) = p(l) p(2) p(3) p(m) q(m+l) q(n)
+ p(n) p(1) p(2) p(m-l) q(m) q(n-l)

+ +
+ p(2) p(3) p(4) p(m+l) q(m+2) ... q(l)

(11.4)

(11.5)

For example, should one have n = 7 optical modules and be seeking the

aggregate probability for m ~ 5-fold coincidence then

P = P(7) + P(6) + P(5) (11.6)

and the associated random rate within the coincidence window time t is

(11.7)

The data was accumulated in a series of 24 bit wide (224 =16777216)
scalars. Of importance to this calculation are the seven independent optical
module scalars and the m-fold trigger scalars (most notably the 4-fold or
greater and 5-fold or greater triggers). Approximately once every second,
the data was read from the scalars and time stamped. Thus, the difference
between two successive reads or a given scalar divided by the difference in
elapsed time gives the associated rate. For this experiment, a coincidence is



378

defined between two or more tubes if they register a hit within 160 ns of each
other.

Two programs were developed to accomplish this data analysis. The
first one, RATECMP, had the function of unpacking and reading the raw
scalar data from the SPS data files. This data was read from the
approximately one second interval stored data blocks and, with the actual
computed elapsed time, the rates computed. Additional code for checking
such things as counter overflow, etc. was introduced. Completely
analogously, the counter recording aggregate 5-fold or greater trigger
coincidences was also read and converted into a rate. In tum, all of these
rates were written into a data file for future access. Figure 11.1 is a flow
chart of this program while Table 11.1 shows the average rate for each of
the photomultiplier tubes at four different depths.

Table 11.1 The individual average photomultiplier tube rates at different
depths. Note that only six tubes were operating at a depth of3.0 KIn and that
the only depth in which the rate sum did not saturate the instrument was

at 4.0 KIn.

Optical Average Rate (104 Hz)

Module
Number 2.5Km 3,OKm 3.5 KIn 4.0Km

1 15,78 18.10 15,25 15,00

2 17,09 19.96 14.96 15.19

3 17.70 22.60 16,21 9,11

4 7.03 7.73 6.00 3,04

5 19,30 19.70 15.68 10,90

6 17.55 25,08 19.62 16,61

7 20.51 0.00 16.33 9,04

Sum 114,96 113.17 104.05 78.89



379

RATECMP

REQUEST TRIGGER
LEVEL, EITHER
4 OR 5-FOLD

v

[individual tube
counts, n-fold
hits, elepsed
time)

(s = 1..7)
[JpmLcnt(s),
levents,ltimel

OPEN OUTPUT OATA
FILE RATECMP.DAT

POINT TOs, UNPACK
FIRST DATA BLOCK 
READ SCALARS

INITIALIZE "BASE"
REGISTERS WITH
THESE SCALAR

VALUES

Figure 11.1 The flow chart for the program RATECMP which
returns to a file the individual optical module event rates as well as
the measured aggregate 5-fold or greater event rate.



A

CLOSE FILES

FINO DIFFERENCES
"DIFF" =

"NEXT" ·"BASE"

(hits =events -Ievents
dume =time -Itimel

MAX_SCALE =2"
=16777216

N'>--..-1 OVERFLOW OCCURRED
'DII~'" ="DIR'"

+MAX_SCAU;

CALCULATE RATES

"RA11, =::D1f:E:.
dlimc

(s = 1..7)
(lpmt(s) =pmtts),
levents =events.
ltime = tlmel

MOVE VALUES IN
"NEXT" REGISTERS
TO "BASE" REGISTERS

FOR NEXT PASS

WRITE INDIVIDUAL
AND AGGREGATE

L..---------------i TUBE RATES TO DATA

FILE

Figure 11.1 (Continued) The flow chart for the program RATECMP

which returns to a file the individual optical module event rates as
well as the measured aggregate 5-fold or greater event rate.

-------------------------------------------



381

The second program, RATEHST, calculates the expected random 5
fold or greater aggregate coincidence rate r and compares it to the actual 5
fold or greater aggregate coincidence rate R. First, the data file containing
the rates of the optical modules and the 5-fold or greater coincidence hits is
read on a block by block basis. Second, the expected 5, 6, and 7-fold random
events summing on all possible interchanges of the tubes is calculated as
contributions to a particular m-fold event. Third, the aggregate probability
and thus a predicted rate for a given set of scalars is computed. Fourth, a
series of histograms is plotted. The first one plots the number of actual
events that are 5-fold or greater v.s. the predicted aggregate rate. The
second one keeps track of the integration time t v.s. the predicted aggregate
rate. Finally, the third one is formed by dividing the first (hits) histogram by
the second (time) histogram to produce a scatter plot that reflects the
aggregate observed rate v.s. predicted aggregate rate. These three plots are
represented symbolically in Figure 11.2:



H t

divided
by

382

r

R=Hlt

r

equals

"excess"

o

t =integration time [seconds]
H = number of bits (events)
r =predicted aggregate rate [Hz]
R = real aggregate rate [Hz]

r

Figure 11.2 A symbolic representation of the plots (two histograms
and one scatter plot) used in finding the cosmic ray muon rate. The
predicted aggregate rate r is the predicted aggregate probability P
within the coincidence window-e.

- --- -----------------------------------------



383

The y-intercept of the "(predicted) rates vs. (observed) rates"
histogram. represents any excess 5-fold or greater coincidence count above
and beyond what would be expected due to random coincidence of the optical
modules for the actual individual rates encountered. Should the
assumptions limiting contamination within the narrow 160 ns coincidence
time window be upheld (such as no calibration pulses and minimum
bioluminescence induced promotions), then the remaining excess counts
should be entirely due to cosmic ray muons (or occasional cosmic ray
neutrino induced muons). As such, the corresponding excess rate is the
cosmic ray muon rate.

Figure 11.3 is the flow chart for RATEHST.



384

SET FLAG
SKIP = I

v

COMPUTE BASE
PRODUCT FACTOR

FOR ALL PMTS
7

pC: np(s)
•• 1

DETERMINE NO. OF
ORDERS IN CALCU
LATION (S-FOLD OR

4-FOLD)

COMPUTE PROB
ABILITES &. COMPLI- ...__-<
MENTS FOR ALL PMTS

p(s): r{s)1:

q(s) =I - p(s)

A .-------':1.
READ NEXT INPUT

LINE s, STORE RATES
FORCALCULATION

RATEHST

[check eecn lube (5)

for seturet.ionl

Figure 11.3 The flow chart for the program RATEHST which reads

a data file of individual optical module event rates and then computes
the expected aggregate 5-fold or greater coincidence random event
rate r and compares it to the measured aggregate 5-fold or greater

event rate R to extract the true cosmic ray muon background rate.



r =0

CALL CALCULATION
ROUTINES rlc7, rk6,

AND rkS FOR
AGGREGATE RATES
OF 7. 6, 3. 5-FOLD

S-FOLD OR GREATER

r .. rlc7+ rk6+ rkS

v CALL CALCULATION
ROUTINE rk4 FOR
AGGREGATE RATE

OF 4-FOLD

4-FOLD OR GREATER

r =rt'7 + rk6+ rkS + rk4

385

COMPUTE AND
AnACHERRORS TO
HISTOGRAM OF HITS

(I = 1..100)
HERR(i) ..~

DIVIDE THE HITS
HISTOGRAM BVTHE
TIME HISTOGRAM

TO PLOT
OBSERVED RATES VS

PREDICTED RATES
R(") • HITS(i)

I TlME(i)

COMPUTE PROPAGA
TION OF ERRORS FOR
OBSERVED RATES

HISTOGRAM
(I = 1..100)

( ') R(") £1I(i)
l:lll = I +HITS(i)

HITS(i)"O

v

WRITE OUT HISTO
GRAMS TO FILE

HIST.DAT

Figure 11.3 (Continued) The flow chart for the program RATEHST
which reads a data file of individual optical module event rates and
then computes the expected aggregate 5-fold or greater coincidence
random event rate r and compares it to the measured aggregate 5

fold or greater event rate R to extract the true cosmic ray muon
background rate.



386

The errors associated with this data analysis are generated as
follows. To begin with, times are known to essentially arbitrary precision.
However, the errors associated with the count of hits for the individual
optical modules would be statistical. Now, since most of the time, an optical
module does not see a flash, one has a sparse number of events compared to
the total possible number of events. As such, this is the condition for a

Poisson distribution (the binomial distribution for the case of n~ 00, p ~ 0)
where the error £, is related to the count H, in a given bin i by

£(Hj) = fHi (11.8)

In the final plot, namely where the predicted rates are compared to the
actual rates, the propagation of errors is simply the scaling

R·£(Rj) =£(Hj) -'u, (11.9)

Finally, a least squares straight line fit is made to the scatter plot and the
reported fit error to the error bars on the data is taken as the error in
determining the cosmic ray muon background rate.

Recall that photomultiplier tubes are intrinsically good random noise

sources. As such, to detect something, one needs to add a threshold control

to cut back the rate of random discharges. This cuts back but does not
eliminate the random rate. The gain is then adjusted to allow detection of a
light flash that exceeds the gain setting. Thus, one has the picture of
relatively frequent random noise with occasional actual hits detected.
Finally, to distinguish between random photomultiplier shot noise and an
actual detection, photomultipliers are run in coincidence.

Now, the predicted aggregate rates of an m-fold coincidence among a
collection of photomultiplier tubes TllTas shown above +n 'ho do ....o ,.1o + " nnwv.a. ""''''..,......... ,,'"' u.&. '01 """"".'11 """ "" u'"' ""'.t""" " ,t'"...

the aggregate probability of the coincidence occurring. This aggregate
probability is the sum of the contributing probabilities of the m-fold or

-- ------------



greater coincidence. In tum, these contributing probabilities are dependent
upon the individual probabilities of the photomultiplier tubes which are
derived from the individual rates of the photomultiplier tubes. As such, if a
photomultiplier tube is exposed to an essentially time averaged constant
level of light at a fixed voltage (gain) and threshold setting, then p is taken
to be essentially constant for a given photomultiplier tube .

p = constant (11.10)

It follows dimensionally that if one were to sample the time t spent by a
photomultiplier tube at a rate r

(11.11)

With such a reciprocal relationship, one should obtain a plot similar to
figure 11.4:

t
p = rt = constant

r

Figure 11.4 The symbolic plot of the reciprocal function of the time
vs. rate of a single photomultiplier tube at a fixed gain and threshold

exposed to a time averaged constant light source.



388

It follows, that since any aggregate probability P is a sum of products of the
individual probabilities it is the product and sum of constants which in turn
must be a constant so that the above dimensional argument also holds for
the aggregate probability namely

P =rt = constant (11.12)

and the form of the plot ought to be identical to that of figure 11.4 above.

From the above argument, it is easiest to describe first the histogram

of the integration times t collected in bins of predicted aggregate (m ~ 5)

random coincidence rate r, Figure 11.5 compares the time plots at different
depths.



389

Predicted Rate vs. Integration Time at 2.5 km

150

,.....
u
Q)
Ul
'-'
':;' 100......

Q)

s
8
s::
0........

50CIS

~.ss::-
0.5 I 1.5

Predicted Rate [r] (Hz)

Predicted Rate vs. Integration Time at 3.0 km

600

,.....
CJ
Q) 600Ul
'-'

':;'......
Q)

s
8 400

s::
0........
CIS

~ 200.s
s::-

1.5

Predicted Rate [r] (Hz)

Figure 11.5a The (integration) time vs. predicted rates histograms

computed for the first two of the four depths, namely at 2.5 Km and

3.0 Km respectively.



300

Predicted Rate vs. Integration Time at 3.5 km

150

100

50

0.5

Predicted Rate [r] (Hz)

Predicted Rate vs. Integration Time at 4.0 km

I I I

1500 - -,.....
Co>
Q)
en.......

0:;;'.....
Q) -a 1000 -
8
c::
0
~
as
& 500 +- -
.8
c::-

""'"'" I I
0

0 0.5 1.5

Predicted Rate [r] (Hz)

Figure 11.5b The (integration) time vs. predicted rates histograms

computed for the last two of the four depths, namely at 3.5 Km and 4.0

Km respectively.



391

Comparing the four integration time plots, a pattern of sorts
emerges. Starting at the greatest depth, namely 4.0 Km, one finds a
histogram whose limiting distribution can approximated by an exponential
decay or reciprocal function, i.e. exactly the form predicted above. At 3.5
Km, the general decay distribution now has a peak of excess predicted rates
superimposed on it. This pattern continues through 3.0 Km to the 2.5 Km
case where the now excess peak completely dominates at shallower depths.
From this, one concludes that only the 4.0 Km depth is producing data that
is totally random. In some sense, the other depths are contaminated with
non-random sources.

Figure 11.6 compares the observed events (hits) plots at different
depths. The comparative pattern is similar to that observed in the time plots
with an excess peak of events already prominent in the 3.5 Km plot
compared to the 4.0 Km. plot and completely dominating in the 2.5 Km and
2.0 Km plots. The 4.0 Km plot is generally sensible in that it says that the
number of hits occurring occasionally (i.e, at a low predicted aggregate rate
r) is greater than the number of hits occurring more often (i.e. at a high
predicted aggregate rate r).



392
Predicted Rate vs. Events Observed at 2.5 km

200 IIIs......
-e

III
Q) 150e:
Q)
Ul
.0 I I I0

Ul 100....

I ~ I\ji Pc
Q)

>
~.....

50 I0 fA I l~ H l\¥ Ici
I ! \ II:z

Eiil lill.JI lEI
1m!\. ! :Ii !

0
0 0.5 I 1.5

Predicted Rate [r] (Hz)

Predicted Rate VB. Events Observed at 3.0 km

100

S eo
......
~

IM~
Q)

e eo
Q)
Ul

.0
0
Ul.... .0c

Wi#li I
Q)

>
~.....
0 20
ci -eli I I!\tz

0
0 0.5 1.5

Predicted Rate [r] (Hz)

Figure 1l.6a The events vs. predicted rates histograms computed for

the first two of ·the four depths namely 2.5 Km and 3.0 Km,

respectively.

.. _-_ _-----_._._------------



393

Predicted Rate vs. Events Observed at 3.5 km

125

IS........ 100

n I-e
CIl

~

1/1 ill, III
CIl 7500

.0
0

00....,
~, 50
>

r,il
'-

~ II I ! j I !
0

25d
Z

0
i J

0 0,5 1.5

Predicted Rate [r] (Hz)

Predicted Rate vs. Events Observed at 4.0 km
100

,...., eo
::t:
'-'
"'t:l
CIl

~ 60
CIl

·00
.0
0

00...., 40c:
CIl
>

r,il

'''S 20
d
Z

0
0 0,5 1,5

Predicted Rate [r] (Hz)

Figure 1l.6b The events vs. predicted rates histograms computed for

the last two of the four depths namely 3.5 Km and 4.0 Km,
respectively.



394

Finally, Figure 11.7 plots the observed rate R vs. the predicted rate r.
Now, if all the observed rates were due to random coincidence only within
the 160 ns window then the observed and random rates should be identical
and a straight line plot going through the origin would be expected. A non
random source, namely a "real" coincidence in the form of a cosmic ray
muon would manifest itself as an "observed" excess and thus shift the y
intercept above the ordinate. Roughly speaking, the 4.0 Km, 3.5 Km, and 3.0
Km plots exhibit this linear relationship while the 2.5 Km plot only in the
most crude fashion does. The straight lines superimposed upon the data
are least squares fits to the data. In the case of the 3.0 Km and 3.5 Km plots,
the X2 confirm good fits are not possible as is obvious from the error bars.
The X2 are summarized in Table 11.2:

Table 11.2 - the X2 per degree offreedom of the linear fits of the predicted

rates vs. actual rates as a function of depth

DEPrH

(Km.)

Degrees of X2 / DofF

Freedom

Confidence

Level ofFit

2.5
3.0
3.5
4.0

582.3
140.8

403.4

91.50

6.5
1.5

4.1
0.98

0.0000

0.0016
0.0000

0.5246

Thus, altogether, one is lead to the conclusion that the only depth at which
the premises of solely random noise sources is valid is at 4.0 Km. The best
fit to a straight line in the 4.0 Km occurs in the low rate domain (i.e, values
on the r axis approaching zero).



Predicted Rate vs. Events Observed at 2.5 km 395

2.5

2.0
ru of R. Hb.,

---=E......,.....,
1.5E5

.s

I~ 1.0
't'

Q)

t:
Q)
U1

..0 0.5
0

0.0
0 0.5 I 1.5

Predicted Rate Irl (Hz)

Predicted Rate vs. Events Observed at 3.0 km

2.0

F'i~ ot n ...... bor

---=E 1.5
......
g
.s
~

1.0

-e
Q)

t:
Q)
U1 0.5..0

0

0.5

Predicted Rate [r] (Hz)

1.5

Figure 11.7a The real rates vs. predicted rates plots computed for the

first two of the four depths of2.5 Km and 3.0 Km respectively.



396

Predicted Rate vs. Events Observed at 3.5 km

2.5

2.0

1.5

1.0

0.5

Fit 01 R • a +blr

0.5 1

Predicted Rate [r] (Hz)

I

1.5

Predicted Rate vs. Events Observed at 4.0 Ian

:3

,-,.
N::c.......
§:

~
'"C:l
cve
cv
en

..0o

2

Fit of R • a +blr

0.5

Predicted Rate [r] (Hz)

1.6

Figure 11.7b The real rates vs. predicted rates plots computed for the

last two of the four depths of3.5 Km and 4.0 Kin respectively.

-----~.~--- --- ~-------------



11.2 The Results of the Analysis

Table 11.3 lists all of the data files from the SPS experiment that are not
contaminated with calibration pulses. These files are the only possible
candidates for this kind of analysis:

Table 11.3
The SPS files that are free of contamination

from calibration module pulses.

File Total Trigger No. of Depth
Name Events Level Tubes (Km)

SPS4003 49 unknown 7 2.0
SPS4007 55142 5 7 2.5
SPS4008 934 5 7 2.5
SPS06001 5039 5 6 3.0
SPSOBOO4 1933 5 7 3.5
SPSllOO8 1153 5 7 4.0

Only four of these files lend themselves to some analysis. SPS4003 with only
49 total events and an unknown trigger level is useless. SPS4007 results in
a read error (inside the "Unpack" routine) when trying to extract the raw
scalar information but SPS4008 with the same depth and trigger level
analyzes just fine. All of these files have 7 active tubes except SPS06001
(the 3.0 km data). To analyze this, a modified program RATEHST6, using
the same algorithm detailed above, was written.

Since our premise of randomness of source has been demonstrated in
the actual data to be violated everywhere except at 4.0 Km, it is to the data
from that depth alone that we turn to for detailed analysis. Figure 11.8
shows the distribution of cosmic ray rates measured by the "excess" method
described above by the cut off at different upper bounds in the predicted rate.



The error bars reflect the error in the fit reported out by the least squares
fitting program. As the cut off is reduced, the observed cosmic ray rate
continuously drops off with essentially the same error until a minimum is
reached. Beyond this point the error bars become ridiculous. The result is a
rate of

R = (2.06 ± 0.68) x 10-2 Hz (11.13)

which compares to the rate determined! using a track fitting program of

R = 2.09 X 10-2 Hz (11.14)

so that internal self-consistency between the two approaches is
accomplished.

Iby Shigenobu Matsuno

---------- - ---------------------------------



399

Distribution of Cosmic Ray Rates with Cuts

0.05

0.04

0.03

0.02

0.01

Nominal Value: R = (2.06 ± 0.68) x 10-2 Hz
Matsuno Value: R =2.09 x 10-2 Hz

o 0.05 0.1 0.15
Cut. in Predicted Rate [C] (hz)

0.2

Figure 11.8 The distribution of Cosmic Ray rates at a depth of 4.0 Km

plotted as a variation in the cut made in the predicted rate. Note the

optimum cut (0.03 Hz) is taken at the point just before the error bars
generated by the plot fitting program start to become unreasonable.



400

The associated plots of integration time, event count, and observed
rate vs. the predicted rate all with the optimal upper cut of 0.03 Hz on the
predicted rate make up Figures 11.9, 11.10, and 11.11 respectively.

Predicted Rate vs. Integration Time at 4.0 km

80

.....
() 60Cl)
0':1-,....,...........
e

~ 40

s:::
0
:;3
aj
s..
~ 20Cl)....

oS

0.01 0.02
Predicted Rate [r] (hz) cut at 0.03 hz

0.03

Figure 11.9 The (integration) time vs. predicted rate histogram

computed for 4.0 Kin with an upper cut of 0.03 Hz in the predicted
rate.

---- ------------------------



401

Predicted Rate vs. Events Observed at 4.0 km

0.030.01 0.02
PredIcted Rate [r] (hz) cut at 0.03 hz

I I I -l- .

f-

I- -

- .. -

-
I- -.

-
f-

f- . .. " ..o
o

10

6

,.-,
::x:
l-I

"'d
6t

ell
111
.0
0

111 4....
s:l
ell

~....
0

0 2
Z

Figure 11.10 The hits (events) vs. predicted rate histogram computed

for 4.0 Km with an upper cut of 0.03 Hz in the predicted rate.



402

Predicted Rate vs. Observed Rate at 4.0 km

0.030.01 0.02
Predicted Rate [r] (hz) cut at 0.03 hz

I . I I
- -

Fit of R = a +b*r
~

X2/ DofF = 33.43/65
I- -
~

~ CL=0.9996 ·
f- -

·

- -
~

~

I. - ·-f- -
i- f-':

Hf[~
i-

o. J

0.4-

,..."
~

..cl....-
0.3,....,

~......
()....
aj

~ 0.2
'd
()

~
()
III
,0
0 0.1

0.5

(2.06 ±0.68)

x 10-2 Hz 0.0 0

Ftgure 11.11 The real rate vs. predicted rate histogram computed for

4.0 Km with an upper cut of 0.03 Hz in the predicted rate.

------ --------------------



403

Table 11.4 Comparison of Fitted2 and Statistical Rates

Depth No. ofData Time Efficiency Fitted Statistical
(Km) Points (sec) or fit rate (Hz) Cosmic Ray

[n] [t] [e] [rs] rate (Hz) [rj]

2.0 15 177 0.846 10.0 x 10-2

2.5 401 6870 0.846 6.90 x 10-2

3.0 53 1108 0.764 6.26 x 10-2

3.5 15 395 0.846 4.49 x 10.2

4.0 133 7508 0.846 2.09 x 10.2

4.0 125 7238 (2.06 ± 0.68) x 10.2

Finally, an estimate of the effective area, Aer, of the SPS may be made
by assuming an estimates at 4.0 Km depth for the vertical muon flux of
7 x 10-5 m-2 s·l srI

11.3 The Determination ofthe Power Index of the Cosine of the
Zenith Angle

The relative intensity with zenith angle can be expressed in the form of

la =/0 cos" e

2 again, the fitted rates are the work of Shigenobu Matsuno

3 Kobaykawa (1987)

(11.15)



404

where Ie represents the intensity at a zenith angle e and 10 is the vertical

intensity. It is assumed that the atmosphere is flat and as such this
representation is limited to zenith angles less than 750. The value assigned
to the exponent n depends on the data fit. Figure 11.12 shows a compilation
of the world's data for a variety of experimentss,

4 Crookes, J.N. and Rastin, B.C. (1973)



405

World Power Index vs, Depth

6 "T"""----------------..,.---.,
SPS n =5.3 ±0.1

5

......c......

..-.. n = 1.9013x 1Q(1.1172e -4d)= 4-~.c--CI)

0
U

3eo..
0
a..

!
2

!

1
1 C1 10 2 10 3 1C 4

Depth below top of atmosphere [d] (m)

Figure 11.12 The variation of exponent n with depth after the world
compilation of Crookes, J.N. and Rastin, B.C. Note that the

DUMAND data point of n = 5.3 ± 0.1, which is also plotted here, is

consistent with the world experience and greatly reduces the error at
4.0 Km depth. The equation is a best fit exponential.

The exponent n for the SPS experiment was determined by
comparing Monte Carlos "fake" events with real fitted events as shown in

5 written by Victor Stenger

----------------- ----------------------------



406

Figure 11.14. The Monte Carlo was used to generate events dependent upon
a chosen exponent n. In turn, these events were fed to a 5-fold trigger
simulator programf to generate "fake" 5-fold events. Then these were
filtered by the fitter? to select out causally connected "fake" events XF.

Likewise, "real" events were fed to the same fitter to select out causally
connected "real" events XR. Finally, a maximum likelihood procedure was
used to compare the "real" and "fake" cases. The SPS is a sparse data set
and thus characterized by a Poisson distribution which has a maximum
likelihood given by the extreama:

10

In(p ) = L [XR In(XF ) • XF ] + "constant"
i=1

(11.16)

Varying the exponent n resulted in a number of comparisons with the best
fit determining the value ofn as shown in Figure 11.13. A value of

n =5.3 ±O.l

results from the exercise.

6 written by John Clem

7 written by Shigenobu Matsuno

(11.17)



Search forMin LN(Prob) w.r.t. power n

110

108

106

104

102

100

\
\ / r-,
\.' i\ / i\

\ .......... ' \ V \ I
1-1

~ / \ /
\ .j \ I

\ )

\ v
'.V

98
4.5 5.5

PowerofCOS(theta) [oJ

Figure 11.13 The variation of the power exponent n of the cosine of
the zenith angle at a depth of 4.0 KIn, found by comparing in a
maximum likelihood procedure causually fitted "fake" Monte Carlo
generated events with "real" events, results in a steep minimum

located at n =5.3 ± 0.1. The curve is a simple interpolation, the error
in the y-axis simply reflects a 1% uncertainty.



408

real data at a given
depth

(trigger => 5-fold) -
fitter

~-,

I
I
I
I
I
I
I
I
I
I
I

compute maximum
likelihood difference

fitter

-
trigger processor

emulator
(trigger => 5-fold)

Monte Carlo generated
events with co!fl e ;d;,

distribution 14- - - - - - - - -
varyindexn

plot:

difference

n

Figure 11.14 Flow chart outlining the procedure used in determining
the power index n of the cos'' 9 distribution at a depth of 4 Km.



409

APPENDIX A

Decay-product Correlationof~ 't'" Production from e+e
Annihilation

-
PHYSICAL REVIEW 0 VOLUME 26, NUMBER 9 I NOVEMBER 1982

Decay-product correlation of T+T- from e+e- annihilation

J. Babson and Ernest Ma
Department of Physics and Astronomy. University ofHawaii at Manoa. Honolulu. Hawaii 9682]

(Received 6 July 1982)

We analyze the 1T+1T- angular correlation for the process e+e--T+T- with subsequent decays

T+ -1T+V.. and T- -1T-II r as a function of the ".. mass as well as the proportion of V +A to
V - A coupling strengths.



:..

The discovery of a third charged lepton, with its
accompanying neutrino V r has contributed to a re
vival of interest in the questions of why nature re
peats itself and whether or not neutrinos have mass.
The former has to do with the strength and structure
of the '-Vr coupling, and the question is whether or
not they are identical to those of e-v t and p.-v,... Ex
perimentally, pure V+A is certainly ruled out by the
observation of the electron momentum spectrum in
,- vrev t •

1 However, a small mixture of V + A into
the predominant V - A interaction is still possible.
As for the coupling strength. a recent measurement!
of the, lifetime is indeed consistent with the predic
tion of generation universality, but a better fit is ob
tained with a somewhat longer t lifetime, which is in
agreement with a recently proposed! gauge model of
generation nonuniversality. Assuming a pure V - A
interaction, an upper limit of 250 MeV on the v,

mass has also been obtained I from the electron
momentum spectrum.

Of all the decay modes of the " the 1TV, mode4.S is
the simplest in kinematics, and by measuring the 1T

momentum, the same upper limit of 250 MeV on the
v, mass is now also obtained.' In this paper, we con
sider yet another possible method of determining the
v, mass as well as the proportion of V +A to V - A
coupling strengths. The idea is to use the 1T+1T- an
gular correlation for the process ere: - ,+T- with
subsequent decays r" -1T+Vr and r" -1T-V,.

As the ,+,- pair is produced via a virtual photon,
the spin-dependent differential cross section is readily
calculated." Let the z axis be defined along the direc
tion of the r: momentum; then the e: momentum
can be chosen to lie in the x-z plane, making an an
gle of () with the z axis. Let £ be the energy of the
e" (e") beam. then the r" (,+) is produced with a
velocity f3 = (I - m.//£2) 1/2, and

410



du (5 5')==~n[(2-n2sin20)+ss'(2cos20+n2sin20)d n I 16£2 fJ fJ z r fJ

+ sxs;( 2 - 132) sin20 - SyS;f32 sin20 + (s:S; + Sxsz') (1 - f32) 1/2 sin20l (1)

(3)

(4)

where S (5') refers to the polarization of the 1- (r+) in its rest frame. and ex is the electromagnetic fine
structure constant.

In the decay r--1T-v f • let the interaction be a mixture of V-A and V+A, i.e, (1-')'s) +dI +')'s); then the
spin-dependent decay rate is given by

dr _[GF2f,,2coS20C]m3(1_a2)(1+a+n)t120+a_n)1/20_a+n)I/20_a_n)1/2(A+Bs'p") (2)
d n 641T2 f '/ '/ '/ '/ 1r ,

where a = mJm, 7)'" mJm, Pff is a unit vector along the direction of the 1T- momentum, and

If =(1-a2) - I [(I +£2)[(1-7)2)2-a 2(1 +7)2)] +4a 2£7)\ .

B=(1-a2)-10- e2)(1_7)2)(1 +a +7) 1120 +a -7)I/2(1-a +7)1/2(I-a _7)1/2

The analogous expression for r " -1T+ii, is obtained by replacing B with -8.
Combining Eqs. (l ) and (2), and integrating out the dependence on the production angle 0, we find

l..ddu =_1_2 Jdxdyd1J1deb2S(U+IJCOS(1JI-1J2)-Z)
a z 167r

xli - 3~ /3' [~ 'I,y (I +/3')+(I - x') 111(1 - y'l 1111 (I - /3') cost¢, - <t.,) +cos(¢, +¢,) III '
(5)

where x - coss., Y .... COS02, Z ... cosO~urr, with Oeorr the angle between the 1T+ and tr" detected in coincidence, Let

f3'-f3[l +4a 2(1 +a +7)-1(1 +a -7)-10-0 +7)-1(1-0 _7)-1j1/2 •

WI - [(x + f3')2 + (1- f32) 0 - x 2) ]1/2 I W2'" [(y - f3')2 + (1 - f32) (1 - y2) ]1/2 •

,::............



then the functions u and v in Eq. (5) are given by

(x +/3') (y - /3')
u - --=----......;,.--=---

WI W2 '

Fixing x and y, we then use the 8 function to in
tegrate out q,1 and q,2, resulting in

1 d a 1 fl i Y2
----- dx dy[v2_(U-z)2j-l/2
a dz 41T -I YI

(6)

(7)

412

XII __1 [.!i]2F] (8)
3 - {32 A •

where

F - WI W2Z +/3'2 +/3'(x - y) + f32xy • (9)

and Y .. Y2 (with YI < Y2 by convention) are the roots
of v2 - (u - Z)2 ... 0 as functions of z and x.

In the limit of /3= 0, we can do the integration in
Eq. (8) exactly, and obtain

_1 dcr _ 1.11 _ 1.1J!..]\] . (0)
udz 2 3 A

which shows indeed the expected correlation with
Ocorr - 1800 (z .. -I) as the most likely angle between
the 1T+ and 1T-. Obviously. the largest effect occurs
at the largest value of (B/AP, which is. in fact, unity
and holds for E""", co 0, i.e., a pure V - A interaction
with m.,-O. For E-=O and n «; 1, we have

B 2a4

"A- 1- (I _a2)2.,,2 • (II)

which is almost certainly undetectable since a = 0.08
and." is known to be less than 0.14. Hence this
method is very insensitive for determining the value
of m; On the other hand. it may be useful for limit
ing E. For n-c 1 and E small. (B/AP = 1 -4E2•

As {3 increases from zero to one, the correlation
becomes even greater at z .. -1 because of the



I

Lorentz boosts given to the T+ and T- along the z
axis in opposite directions. The double integral in
Eq, (8) must now be computed numerically. On the
other hand, if we define

z' .. xy + (I - x 2)1/2(l - y2) 1/2COS( cf>1 - cf>2)' (12)

then we can again do the integration exactly and ob
tain

413

_1.£E:.=lll_J...[l!-j2Z ' ]
a dz' 2 3 A '

(13)

which is identical in form to Eq. (10), as expected.
The remaining question is whether z' can be mea

sured in the laboratory. Since 01•2 and cf>1,2 are all de
fined with respect to the T+T- axis, we must find this
axis. This can be done as follows. Let the measured
7T+7T- momenta be PI = (Pix, O,PIz) and P2
=(O,O,P2:). Let the T+T-axis be the new zaxis ob
tained by two rotations, first an angle cf> about z, then
an angle 0 about the new x axis. (The third Euler ro
tation is not necessary because it will not change the
direction of the new z axls.) In terms of this new set
of axis,

PI = (PlxCOScf>, -PlxcosOsin<p +PI: sinO,

PlxsinOsincf> +PI:COSO)

and

P2 = (O,P2:sinO,P2:cosO) •

Now we boost PI and P2 back to the T+ and T- rest
frames, respectively. Since T -7TV is a two-body de
cay. the absolute value of the 7T momentum in the T
rest frame is fixed, hence there will be two equations,
one for each 7T momentum, expressed in terms of 0
and cf>. We solve for 0 and <p, thus finding the T+T

axis.

This work was supported in part by the U.S.
Department of Energy under Contract No. DE
AM03-76SF00235.



v«. Bacino et al.• Phys. Rev. Lett. 42,749 (1979).
2G. J. Feldman et al., Phys, Rev. Lett. 48, 66 (1982).
3X. Li and E. Ma, Phys. Rev. Lett. 47, 1788 (1981).
4G. Alexander et al., Phys. Lett. 78B, 162 (1978)~ W. Baci-

no et al., Phys. Rev. Lett. 42, 6 (1979),
-c. A. Blocker et al., Phys. LW. 109B, 119 (1982),
6y. S. Tsai, Phys. Rev. 0 1,2821 (1971).

414



415

APPENDIXB

Angular Correlations and the Tau-Neutrino Mass

Z. Phys. C - Particles and Fields 20, 5-7 (19SJ)

Angular Correlations and the Tau-Neutrino Mass

J. Babson and Ernest Ma
Department of Physics and Astronomy. University of Hawaii at Manoa, Honolulu, HI 96822, USA

Received 25 March 1983

Abstract. Effects of a nonzero mass for the tau neut
rino vr as well as a right-handed charged-current
contribution to the 1" - vr coupling are discussed.
Angular correlations of the decay products of r +r- in
c ' c - annihilation arc calculated as functions of In

v.
and the relative amount of right-handed r - v,
coupling.



(I)

All fundamental fermions, i.e. quarks and leptons,
appear to fall into groups which behave exactly like
one another except for their different masses. The
similarity between the first two generations, i.e. the u
and d quarks and the electron and its neutrino, and
the c and s quarks and the muon and its neutrino,
are now well established. The third generation is pre
sumably comprised of the I and b quarks and the tau
and its neutrino. However. the I quark is yet to be
discovered, and there are still things about the third
charged lepton r and its neutrino "t' which are not
known with certainty. Obviously, more information
is needed if one is to be reasonably sure of the validity
of generation universality. One directly accessible
measurement which is relevant to this question is
the r lifetime. First-round results from the Mark II
detector [I J, the MAC detector [2J, both at the PEP
e + e: collider at SLAC, and the CELLO detector [3J
at the PETRA e" e: collider at DESY are 4.6 + 1.9.
4.9 ± 2.0, and 4.7: ~:~ respectively in uni~ of
10- 1J S. A new measurement [41 by the Mark II group.
using a new high-precision drift chamber as a vertex
detector, has now obtained the value 3.31 ± 0.57 ±
0.60 x 10- 1 J s, where the first error is the statistical
error and the second is the systematic.

To compare with the theoretical expectation, we
first assume that all decay products are negligible in
mass compared with the decaying particle. Then the
r lifetime is given by

(
m )5Ir=C --..E. Bit. ...... evevt )= 2.8 ± 0.2 x 1O- 13s,

II /1)t

where the branching fraction for r decaying into
electron is taken to be 17.6 ± 1.I%, from the most
recent and precise measurement [5]. If we use instead
the branching fraction for r decaying into J.L, then we
must take into account the nonzero mass of the muon,
even if we still assume Vr to be massless. The decay
rate is now suppressed by a factor

~~~; = I - 8~ - 12e In ~ + 8~J _~.t = 0.973, (2)

416

where ~ = m;/m;, which corresponds exactly to
the measured [5] branching fraction of 17.1 ± 1.1%.
Hence e - Ji universality is established to within an
accuracy of a few % in r decay, and the r lifetime of
2.S ± 0.2 x 1O-13 s is an unambiguous prediction of
the standard model as long as vt is assumed massless.

The measured values [1-4] of the r lifetime quoted
previously are certainly consistent with the above
theoretical prediction, but they are even more con
sistent with a somewhat higher value. We can take
this as a hint that generation universality may only
be an approximate symmetry, in which case there are
important implications for B-meson physics as well as
for Wand Z physics [6]. We can also attribute the
difference to a nonzero vt mass [7]. For r -. eVeVt' since
me is still negligible, the decay rate is suppressed by
the analog of (2), i.e.

r(l])_ = I _ 811_ 121]2 In 1] + 81]3 -1]4, (3)
1'(0)

where '1 = m~jm;. Note that (2) and (3) are identical
in form, thanks to the invariance of the V - A inter
action under a Ficrz transformation. For r -. JlvlJ Vr ,

we must keep both m and m nonzero. The sup-
IJ v.

pression factor is now

r(~,1]) = f(~,1])[1 - 7(~ + 1]) + 12~11
r(o,0)

- 7(e + 1]2) - 7~11(~ + 1]) + ~3 + l]J}

417

418

+ 12e 10[<1 - q)' - 2~'1 + ~~; (I + ~ -q)f(~.q)]

+ 12'1' In pI -~)' -2i;q + q~+ (I - ~ + q)f(~.q)]

_ 12el12In[I-2(~ +'l)+e+'12+(I-~-'l)f(~"l)],
~Il

(4)
where

f«(,I1)=[1-2(~+II)-2~Il+~2+'l2]1/2 (5)

It is clear that (4) is symmetric in ~ and II as required,
and a little algebra will show that it reduces to (2) and
(3) for 'I = 0 and l; = 0 respectively. If nI,. is as large
as 250 MeV [8, 9], then (3) is numerically equal to
0.861, which gives a 16% enhancement in the theoreti
cal predicted r lifetime, i.e. 3.27 x 1O- 1 3s, and (4) is
numerically equal to 0.836, which in conjunction with
(2) again gives the same result. In fact, the ratio of (4)
to (3) is more or less numerically given by (2). In other
words, the ratio of the J.l to e branching fractions is
rather insensitive to the \It mass and remains very ncar
0.97 from m; = 0 to 250 MeV. Therefore, measuring
the \It mass is not only very important on its own
right, but also very necessary for understanding the r
lifetime.

The most direct way of determining m.. is by
measuring the electron momentum distribution [8] in
1'-eve vt or the pion momentum [9] in 1'--l-1tVtO

Recently [10], we have also discussed using the 1t + n"
angular correlation in e" e: -+'l'+'l'- with subsequent
decays r " -+ 1t+vt and 'l'- -1t-Vro Unfortunately, the
dependence of m turns out to be insignificant, so
although the ang~lar correlation itself is probably
observable, it offers no real hope ofseeing the effectof a
nonzero my,. In this report, we complete our analysis
with details on other possible angular correlations,
which will turn out to depend more sensitively on Illv"

but since the total effect is small, the possible indication
of a nonzero m will still be very difficult to extract.

'"

-~-- ---- _._---------------------------------_.

(6)

In e" e" -+r+r-, let the z-axis be defined along the
direction of the r - momentum, then the e - momentum
can be chosen to lie in the x - z plane, making an
angle of 0 with the a-axis, Let E be the energy of the
e" (e") beam, then the r-(r+) is produced with a
velocity P= (l - m;/E2

) 1/ 2 , and the spin-dependent
differential cross section via a virtual photon is given
by [II]

da 0:
2

dQ (s.s') = 16E2 P[(2 - p
2sin 2

0)

+ s.s, (Zcos ' 0 + p 2sin20) + sxs~(2 - p2)sin 20

- S).S;P2 sin? 0 + (s:s: + s.~s~)(1 - p2)1/2sin 20],

where 5(S') refers to the polarization of the r-(r+) in
its rest frame, and 0: is the electromagnetic fine-

structure constant. In the decay r -+ x + anything,
where the particle x is singled out for detection,
the spin-dependent decay rate is necessarily of the
form [IIJ

r(r -+x) = A + Bg· Px' (7)

where fix is a unit vector along the direction of the x
momentum. Consider now only the two-body decays
of the r, i.e. tt Vr, K Vr, Pvr ' and «r-; Because of
the two-body kinematics, it is possible [IOJ to use
measurements of the momenta (magnitudes and di
rections) of the observable decay products to re
construct the original r-r+ axis, thereby enabling us
10 define the correlation angle in terms of quantities
expressed in the r - and r + rest frames. Let r - -+ x I

and r T -+x:!, then the angular correlation between XI

and X.2 is given by [10]

419

~:; =~[I + ~' (~)1 (~)2J
where

(8)

and 0 I 2 and c/J I 2 are the polar and azimuthal angles
of the xI 2 momenta in the r:+ rest frames respectively.
By usingonly two-body decays, we gain the advantage
of being able to combine data at different energies in
comparing with (8).

It is also clear from (8) that if a certain angular
correlation is to be observable, the corresponding
(BIAl's have to be reasonably large. Let us assume that
the r - Vr coupling is a mixture of V - A and V + A, i.e.
(I -Y5)+e(1 +Y5)' then for r " -+on-vr or K-vr,

., [2(I+a)11-'12Jl/2
B (I-c-)(I-II) 1- (I-af

= (10)
A 2 [(2 + a)II-11 2

] 4aell1/2'
(I +e) I - (I _ a) + 1 _ a

where 'I = m~jm; as before, and a= m;lm; or
mUm; as appropriate. For r+-+on+vr or K+vr, BIA
simply reverses its sign. In the limit e = 0 and 11 = 0,
BjA = I in (10); hence the n" tt" angular correlation
peaks in the backward direction as expected, with
a-'daldz' equal to f at z'= -1 and tat z'= + I.
This backward-forward ratio of 2 to 1 should not be
too difficult to see experimentally. Unfortunately, the
dependence on Inv is very weak [10], so that for
small '1, e

[
4aelll/2 2a 2 '1 I6a2e2'1]

. I - (I -a)(1 +e2) - (I _a)2 + (l-a)2(1 +e2)2 '

(II)

which is almost indistinguishable from (I - e2)/ {I + e2
)

because a is numerically small.

For r " -+ P- "'r or K* VV the situation is quite dif
ferent. Since a vector boson is now in the final state,
the usual helicity argument that a massless Vr must be
produced opposite in direction to the.- polarization
is no longer valid, Hence the angular correlation is
expected to be less. A straight forward calculation
shows that in this case,

B= (I -2a)
A I +2a

(12)

(1-£2)(1- '1)[1_ 2(1+0)1/-;,/ 2JI/2
I - 2a (I - a)-

2[(2-0)'1- 1/
2 J 12al:I/

I
/
2

(I +e) 1- ------
(l-a)(1 +2a) (1-0)(1 +2a)

In the limit s = 0 and 1/ = 0, B/A = (I - 2(1)/(1 + 2(1),
which for 0= 111;/111; is eq ual to 0.46; hence (J - I tI(J / d z'
for p - P+ is given by t(l - 0.07z'), which has a
backward-forward ratio of only 1.15. On the other
hand, the dependence on m v< is much more significant
than in the 7t - 7t + case.

For small n,

B (I - 2a)(1 -e2
) [12aelll/2

A"= 1+2a l+e2 1+(I-a)(I+2a)(J+e2)

2(1(4 - 7a)11 144a2e2,/ J
-(I-a)2(1-4a2) +(I-a)2(J +2a)2(1 +e2)2 ,(13)

which amounts to a 7% effect in the p - p + angular
correlation for m" = 250 Me V. The same analysis is
also applicable to <. decaying into the AI'

We now come to the three-body leptonic decays
t:" -+e- "rve and r " -+j.l- VrV'" Since the r-.+ axis
cannot be determined precisely from kinematics, the
angular correlation must be defined at each specific
energy. The e- or j.l- momentum is also not fixed in
magnitude as in the two-body case, hence an extra
integration is required as we!!. For r--+j.l-vrV

Il
and

normalizing to e = '1 = ~ = 0, the spin-independent
part of the decay rate is given by

421

A=!(C;,Il){(1 +e2)[1-7(~+Il)+12~Il

_7(~2+ 11 2)-7~I1R + '1) + e + 11 3J

-4elll:2[1 - 5~ + 1011- 2e - 5C;Il + 11 2]}

+ 12~2(1+ f,2 - 2elll/2)

oln[(1 -ilY -2~Il+~;;(1+~ -11)1(~"l)J

+ 1211[(1 +e2)Il+2elll/2(1-2~+IJ}]

[
(I - ~) 2 - 2 ~ Il + II 2 + (I - ~ + II)I (~ " l) J

-In
211

- 12~2 'I [(I + e2)Il - 2elll/2J

[1 - 2 (~ + Il) + ~ 2 + 11 2 + (I - ~ - 'l) I (~ " l) J (14)
-In 2~Il '

where !(~,Il) is defined in (5). The spin-dependent part

-~._._-------- -------- ----

422

is even more complicated, i.e.

B = - t[(I - ~1/2)2 - 1]]

.{(I_~1/2)3[1 +5~1/2+ 15~+3~3/2]

- '1(1 - ~1/2)[11 + 31 ~1/2 + 57/; + 21 ~J/2]

_ '1
2

[47-5i=1/2_15.z:+2ICJ/2]_311J}(I _ ~1/2) ., ., -

[
(I - ~1/2)2J

- 4'12[3(1 - ~2) + 2,/] In '1

+4eI11/2{[(l_~1/2)2_'l](I-~1/2f(1 +4~112+~)

+ 1011(1 + ~1/2 + ~) + 1/2]

f(l ~1/2\2J}
-611[(I-~f+11(1 +()]ln

L
-'I)

- £2 {[(I - ~1/2)2 _ '1] [(I _ ~1/2)4(1 + 6~1/2 +~)

-ll(I-~1/2)2(7+26~1/2+7~)

_'12(7+2~1/2+7~)+113]+ 121]2(1-~)2

(15)

424

In the above, we have integrated out the magnitude
of the p- momentum in the T - rest frame. Hence (14)
and (15) only apply at the production threshold energy,
i.e. E = mr • In the limit s ='1 = 0, BjA = - -} for e"
and -0.341 for P-, hence the Jl-e+ angular cor
reia tion, for example, is rather small, with a backward
forward ratio of only 1.08. For Ill,. = 250 MeV,
(BjA)e+ (BjA),,- decreases by about 12%:

In conclusion, effects of a nonzero vr mass can be
significant in many processes: .16% in the total r
lifetime, 7% in the p - p + angular correlation, and 12:~/;)

in the p- e", More precise experimental information
on m; is clearly desirable.

e

Acknowledqements. One of us (E.M.) thanks M. Delfino. S. Pakvasa.
and S.F. Tuan for discussions. This work was supported in part by
the U.S. Department of Energy Under Contract No. DE-AMD)
76SF00235.

References

I. G.J. Feldman et al.: Phys. Rev. Leu. 48. 66 (1982)
2. W.T. Ford et al.: Phys. Rev. Lett. 49, 106 (1982)
3. H.J. Behrend et al.: DESY Report No. 82-056 (August 1982)
4. J.A. Jaros: SLAC Report No. 2992 (October 1982)
5. C.A. Blocker et al.: Phys. Rev. Leu. 49, 1369 (1982)
6. X. Li, E. Ma: Phys. Rev. Leu. 47, 1788 (1981)
7. L. Maiani: in Proc. of the XXIst International Conference on

High Energy Physics (1982), to be published
8. W. Bacino et al.: Phys. Rev. Leu. 42, 749 (1979)
9. CA. Blocker et al.: Phys. Leu. 109B, 119 (1982)

10. J. Babson, E. Ma: Phys. Rev. D26, 2497 (1982)
II. Y.S. Tsai: Phys. Rev. D4, 2821 (1971)

------ -_. -----

425

APPENDIXC

The Feynman Rules for Q.E.D.

e.l Notation-

Diagrams are labeled as follows:

Pi - external momenta (lines)
Si - external spins
qi - internal momenta (lines)

Arrows are placed on the external fermion lines (see Figure C.l below)
indicating whether the fermion is a particle or an antiparticle. Arrows on
internal fermion lines meerly indicate that the direction of flow in the
diagram is retained (i.e, every vertex must have one arrow entering and
one arrow exiting). Arrows on external photon lines point "forward" while
arrows on internal photon lines are arbitrary.

1 for example, see Griffiths

C.2 LabelingofExternal Lines

Each external line contributes factors as follows:

particles:

incoming

outgoing

u

-u

antiparticles:

incoming / -v

outgoing / v

photons:

incoming

outgoing

-tie
/

/

-------- ---------------------------------

/
Figure C.l A typical Q.E.D. diagram with the external lines shown
and labeled.

--- ------- ---

428

C.3 Representation ofVertices

Each vertex contributes a factor of igl'f where the dimensionless
coupling constant B« is related to the charge of the lepton by

Often, the Heaviside-Lorentz units with

h=e=1

are used in which case the charge of the positron is written as

(C.l)

(C.2)

(C.3)

Instead, the Guassian unit system is used so that all factors of Ii and e are
retained with the dimensionless coupling constant being

a=e2 :::::_1_
he 137

Generalizing, the Q.E.D. coupling constant is

gQED =-q V41t! he

where q is the charge of the particle (not the antiparticle) so that for

(CA)

(C.5a)

leptons (e, m, t)

and for

"up" quarks (u, c, t)

q=-e (C.5b)

(C.5c)

429

C.4 Propagators and Calculation Rules

Each internal line supplies a factor of

leptons
i ('f qJ1 + mi c)

P(q) = ----=--
q2_ m2/ c2

photons
-i gJ1vPJ1V(q)= __

q2

where mi is the mass of the lepton.

The calculation rules are as follows:

RULE 1- Conservation ofEnergy andMomentum

Each vertex supplies a factor in the form of a delta function

(C.6a)

(C.6b)

(C.7)

where the k's are the four-momenta coming into the vertex. If the arrow is
outgoing, then k is minus the four-momenta of that line (with the
convention completely reversed for antiparticles). This factor forces the
conservation of momentum-energy at the corresponding vertex.

RULE 2· Integrate over InternalMomenta

Each internal line contributes a factor of

(C.B)

and integrate over all internal momenta.

RULE 3· Cancel the Residual Delta Function

The final result of the integration will include a delta function of the
form

45:4(21t) U (PI +P2 +···-Pn) (C.9)

forcing an overall conservation of momentum-energy. Erase this factor and
what is left is iM where M is the amplitude of the diagram. In practice, one
writes down all the diagrams contributing to the process up to the desired
order of calculation and finds the amplitude for each one. A total amplitude
of all contributing diagrams is then found which is then used to calculate
the appropriate cross section or lifetime by way of the Golden Rules.

RULE 4· Antisymmetrization

With fermions, one has both particles and antiparticles. If two
diagrams differ only in the interchange of two incoming (or outgoing)

leptons (anti-leptons) or one incoming lepton and one outgoing anti-lepton,
then the corresponding amplitudes are combined with a minus sign.
Otherwise, they are combined with a plus sign.

431

C.5 Golden Rule for Decays

Should a particle 1 decay into a series of other particles 2, 3, 4, ..., n

1 --> 2 + 3 + 4 + + n

then the dcay rate is given by

(C.IO)

(C.II)

where Pi = (Ei/c. Pi) is the four-momenum of the ith particle carrying mass

mi so that E? -PTc2 = mlc4 • The delta functions enforce the conservation of

energy and momentum and is zero unless

(C.12)

and the decaying particle is assumed to be at rest so that

(C.13)

Finally, S is the product of statistical factors Vj! for each group ofj identical
particles in the final state. Typically, one is not interested in the outgoing
momenta of the decay products and thus one integrates over all outgoing
momenta to obtain the total decay rate r. For the special case of only two

final decay products, the Golden Rule for Decay reduces to

(C.14)

Here one has the advantage that the amplitude

432

(Co15)

can be explicitely integrated to yield the expression

(Co16a)

where IR is the magnitude of either outgoing momentum which in terms of
the masses is

IR = ~,jmt +m1 +m1- 2mrmf -2mfmf -2mimf
(Co16b)

433

cs Golden Rule ofScatterings

For scattering, say of particles 1 anbd 2 yielding particles 3, 4, ... , n

1 + 2 --> 3 + 4 + ... + n

then the cross section is given by

(C.l7)

(C.lS)

where Pi = (Edc, Pi) is the four-momenum of the ith particle carrying mass

m i so that El- PfC2 = mlc4 as before. The delta functions enforce the

conservation of energy and momentum and is zero unless

PI +P2 = P3 +P4+ ... +Pn (C.l9)

and S is the product of statistical factors 1/j! for each group ofj identical
particles in the final state. Equation (C.lS) yields the cross section for an

interaction whete the three-momentum of particle 3 lies in the range dPJ

about the value P3 , 4 in the range dill about P4, etc. Typically, one seeks to
study only the angle 3 emerges integrating over all the remaining final
state momenta (P4, Ps, •••., Pn) and the magnitude of PJ . This yields da I dO as
the "differential" cross section for scattering 3 into solid angle O.

For the special case of only two decay products, the Golden Rule for

Scattering reduces to

434

which in the eM frame where

(C.2!)

reduces to

(C.22)

where IpJ is the magnitude of either incoming momentum and IPA is the
magnitude of either outgoing momentum.

-~------------_._~-------

APPENDIXD

Source Code Listing ofthe Executive Program for Controlling
the String Optical and CalibrationModules (80M)

The source code for program. SOM consists of 23 modules which are listed
below roughly in a top down fashion with the highest level routines being
listed first and the lowest level or direct hardware driving modules listed
last. This pattern approximates the order in which modules are called in
the program. and is listed according to the order shown in Table D.l below:

Table D.l Listing Order ofSOM Routines

Class

Main:

Name

SOM
INITIAL

Description

Main program
Initialize stack and 300 baud serial port

Communications control:
CREPLY Echo back valid command
RREPLY Send back single's rate value
SYNCH Synchronize on first byte of command

string

Parser:

CMDPOLL Parse the command string for a valid
command

Table handler:
ANAPOLL
ANLKUP

UPDATE

Poll all (16) analog channels
Look up (read) analog value from table
for specified channel
Update (write) analog value to table for

specified channel

Command executive:
CMDSERV Service the command request
RRATE Read the PMT single's rate value

Device drivers:
ATOD

DTOA

MODID

SETDSCR
SETHV

Error handling:
CMDERR
DEVERR
FORERR

Glue:
ISALNO
ISHEX
RAMPDN
RAMPUP

Drives AtoD converter for specified
channel
Drives DtoA converter for specified
channel
Look up this module's identification
number
Set the threshold of the discriminator
Set the PMT's high voltage

Report a command error
Report a device error
Report a format error

Check if byte is alphanumeric
Check if byte is a hexidecimal number
Ramp down the PM~'s high voltage
Ramp up the PMT's high voltage

The listing of the individual modules now follows:

-- -------------------

437

$DEBLG

NAME STRING_OPTICAL_MODULE

; program SOM

; program is first attempt to control the DUMAND optical module
; with 15 analog input telemetry channels and two output channels,
; namely the PMT high voltage level and the discriminator threshold
; level as well as a singles rate counter. this is a very elementry
; program taking all control directly from a 300 baud
; terminal sending only printable ASCII characters.

; author - John F. Babson, University of Hawaii Physics
; revision date - Apr. 30, 1986

link references

EXTRN CODE (INITIAL, DTOA, MDELAY, ANAPOLL, SYNCH,
CMDPOLL, CMDSERV) .

EXTRN CODE (XEQY, XGTY, XNEY)

$INCLUDE(UHPS.lNC)
$INCLUDE(TELMTY.lNC)

; global definitions and variables

; const

DADELAY EQU
DAMLCLK EQU
DAPWRTIM EQU

OFFH
R5
015H

; -1/4 second delay (255 • 1 ms)
; ms clock
; (15H = 200) 20 x -1/4 sec = 5 sec
; time out

- -------- - ----~--_._--- - ._----

438

; var

GLOBAL_DATA SEGMENTDATA
RSEG GLOBAL_DATA

DEV:
CMD:
DATUM:
ANALOG:
OUTCF:

ERRR.G:
SYNCFLG:

os 1 ; device register (hex)
OS 2 ; command buffer (hex)
OS 2 ; data buffer (hex)
OS MAXCHAN; analog look up table (binary)
OS 1 ; output communications flag

TRUE ==> output enabled
FALSE ==> output suppressed

OS 1 ; communications error flag
OS 1 ; communications

synchronization flag

PUBLIC DEV,CMD, DATUM, ANALOG, OUTCF, ERRFLG, SYNCFLG

local definitions and variables

; const

; var

SOM_DATA SEGMENTDATA
RSEG SOM_DATA

LOOP:
CHAN:
VOLT:
QSCOUNT:

OS 1
OS 1
OS 1
OS 1

; infinite loop condition (binary)
; channel for 0 to A initialization

; running voltage value for D to A
; 1/4 sec counter

439

; begin program

;SOM_coDE SEGMENTCODE
; RSEG SOM_CODE

CSEG

ORG

80\1:

o ; system start up location

CALL INITIAL ; initialize system

; hardware restart assures that microcontroller takes control
: of the BUSS before D to A chips are powered up thus assuring
: that no unwanted voltages are written out. now, enter a
: 5 second loop writing out initial 0 to A voltages to assure
: D to A state before proceeding.

: initialize 1/4 sec counter - save it on the stack

MOV QSCOUNT, #DAPWRTIM

: loop for 5 sec's at 1/4 sec intervals

%MWHILE(QSCOUNT,MXGlY,#OOH,ILOOP1,ILOOP2)

: initialize output of PMT high voltage channel to ground

Wl:N CHAN, #HIVOLT ; directly access PMT high voltage
; channel

PUSH CHAN

WOV VOLT, #OOH

PUSH VOLT

CALL DTOA

; select zero voltaqe (ground) as
initial state

; (latched) state

-- ---- ---- - ----- -------- - ----- ------

440

; initialize output of discriminator threshold level to
; highest value. thus cutting off all video output

tIO-J CHAN. #DISCR ; directly access threshold channel

PUSH CHAN

tIO-J VOLT. #OFFH

PUSH VOLT

CALL DTOA

; select for no video output as
; initial state

; (latched) state

; now. delay for about 1/4 sec before using
; D to A channels again

MOV DAMLCLK, #DADELAY ; OFFH -1/4 sec

CALL MDELAY

DEC OSCOUNT ; decrement 1/4 sec counter value
to continue the count

; end while

%MWEND(ILOOP1.ILOOP2)

; loop := true

MOV LOOP.#TRUE

; while (loop = true)

%MWHILE(LOOP,MXEOY,#TRUE,PMT1,PMT2)

; loop := true

MOV LOOP.#TRUE

MCS:

441

; read command line and parse it for command

O/oMREPEAT (ERROR1)

; loop for first synch byte

CALL SYl'O-I

%MREPEAT (ERROR3)

; loop for the remaining bytes

CALL CMDPOI.l.

%MUNTIL (SYNCFLG,MXNEY,#TRUE,ERROR3,ERROR4)

%MUNTIL (ERRFLG,MXNEY,#TRUE,ERROR1,ERR0R2)

; poll all analog devices

CALL ANAPOLL

; service the command

CALL CMDSERV

; end while

%MWEND(PMT1,PMT2)

------------------- . --------

NAME INITIAL

; subroutine INITIAL - used to initialize the system hardware
; including the serial 110 port, the system stack, and any
; AtoD and OtoA hardware.
; UNIVERSAL 300 baud version

; author - John F. Babson, University of Hawaii Physics
; revision date - Oct. 20, 1985

link references

PUBLIC INITIAL

global definitions and variables

; const

$INCLUDE (CONSNT.lNC)

; local definitions and variables

; const

; control of serial port

BAU300 EQU 99H ; 300 baud timer (self determined)
SERPORT EQU 1101101 DB ; Serial Port

442

443

; var

OOEGat 8

STACK: os 13 ; at power-up, the stack pointer is
; initialized
; to point here. 24 byte space reserved.

-----> 16 byte is an experiment to permit
; linking without using XDATA memory

; begin subroutine

INITIAL_CODE SEGMENT CODE
RSEG INITIAL_CODE

INITIAL:

; This is the initializing section. Execution always
; starts at address 0 on power-up.

EN)

MOV TMOD,#MOD21
WOV TH1,#BAU300
MOV SCON,#SERPORT
SETB TR1

RET

LAITINI:

; set timer1 mode to auto-reload
; set timer for 300 BAUD
; prepare the Serial Port
; start clock

444

;$DEBUG

NAME COMMAND_REPLY

; subroutine CREPlY - returns a command string with value
; requested of the given channel - STRING version, looks for multiple
; device calls and returns nothing

; author - John F. Babson, University of Hawaii Physics
; revision date - Oct. 23, 1985

link references

EXTRN CODE (HEXBIN, ANALKUP, BINHEX, PUT_CHAR)
EXTRN CODE (XEQy)

PUBLIC CREPlY

global variables

EXTRN DATA (CMD, OUTCF)

$INCLUDE(UHPS.lNC)

; local definitions and variables

; const

; note: null used as empty value for upper byte
; in hex to binary conversion

; var

CREPLY_DATA SEGMENT DATA
RSEG CREPLY_DATA

HVALUE: OS 2
OFFSET: OS 1
AVALUE: OS 1
C_OUT: DS 1
DUMMY: OS 1 ; dummy ASCII hex cell

; begin subroutine

CREPLY_CODE SEGMENTCOOE
RSEG CREPLY_CODE

CREPLY:

; if (multiple devices called) {

%MIF (OUTCF,MXEQY,#FALSE,CREPLY1)

RET ; l.e. send back no messages

; }

CREPLY1:

; fetch second character of command word

MOV DUMMY,#NUMO

PUSH a..M\t1Y

PUSH CMD+1

CALL HEXBIN

POP OFFSET

445

; use it to look up (read) corresponding value in analog
;table

PUSH OFFSET

CALL ANALKUP

POP AVALUE

; convert binary value to hex for reply transmission

PUSH AVALUE

CALL BINHEX

POP HVALUE

POP HVALUE+1

; begin reply in the following order

MOV A,#DOLLAR ; synchronization byte

CALL PUT_CHAR

MOV A,CMD ; first command byte

CALL PUT_CHAR

MOV A,CMD+1 ;second command byte

CALL PUT_CHAR

MOV A,HVALUE first data byte

CALL PUT_CHAR

MOV A,HVALUE+1 ; second data byte

CALL PUT_CHAR

-------- -------------

446

MOV A,#CR

CALL PUT_CHAR ;<CFt>

RET

YLPERC:

8\D

447

$DEBlX3

; subroutine rreply - calls rrate which measures the PMT
; pulse repetition rate for 100 ms and then return
; the result in a formated message (reply).

; author - John F. Babson, University of Hawaii Physics
; revision date - Oct. 23, 1985

link references

PUBLIC RREPLY

EXTRN CODE (PUT_CHAR, BINHEX, RRATE)
EXTRN CODE (XEQY)

; global constants and variables

$INCLUDE (UHPS.lNC)

EXTRN DATA (OUTCF, CMD)

local definitions and variables

; const

448

; var

RREPLY_DATA SEGMENT DATA
RSEG RREPLY_DATA

449

HVALUE:DS

; begin subroutine

2 ; hex value buffer

RREPLY_CODESEGMENTCODE
RSEG RREPLY_CODE

RREPLY:

; if (multiple devices called) {

%MIF (OUTCF,MXEQY,#FALSE,RREPLY1)

RET ; i.e, send back no messages

RREPLY1:

; measure PMT pulse repetition rate for 100 ms
; leaving result in COUNTERO bytes TLO and THO

; with overflow condition in bit TFO.

CALL RRATE

; begin reply in the following order

MOV A,#DOLLAR
CALL PUT_CHAR

MOV A,CMD
CALL PUT_CHAR

MOV A,CMD+1
CALL PUT_CHAR

; synchronization byte

; first command byte

; second command byte

; check for overflow condition and if TRUE
; then return error message ("OVER") else

; return value

; overflow condition of COUNTERO is indicated
; by bit TFO being set (l.e, high).

MOV C,TFO

JNC NOOVER ; Le. jump if no overflow

; output error condition

MOV A,#BIGO ; "0"
CALL PUT_CHAR

MOV A,#BIGV ; "V"
CALL PUT_CHAR

MOV A,#BIGE ; "E"
CALL PUT_CHAR

MOV A,#BIGR ; "R"
CALL PUT_CHAR

JMP OVER

NOOVER:

; output the rate count in THO and TLO
; first converting from binary to hex

; convert and transmit THO

PUSH THO
CALL BINHEX
POP HVALUE
POP HVALUE+1

MOV A,HVALUE
CALL PUT_CHAR

450

MOV A,HVALUE+1
CALL PUT_CHAR

; convert and transmit TLO

PUSH TLO
CALL BINHEX
POP HVALUE
POP HVALUE+1

MOV A,HVALUE
CALL PUT_CHAR

MOV A,HVALUE+1
CALL PUT_CHAR

OVER:

; finish up the messge

451

YLPERR:

MOV A,#CR
CALL PUT_CHAR

RET

; <CR>

;$DEBUG

NAME SYNCHRONIZE

; subroutine SYNCH - parses for initial synchronization byte <$>
; in input data stream - any additional synchronization bytes
; are handled in CMDPOL
; STRING I POWER module version

; author - John F. Babson, University of Hawaii Physics
; revision date - Apr. 30, 1986

link references

PUBLIC SYNCH

EXTRN CODE (GET_CHAR, XEQY)

$INCLUDE(UHPS.lNC)

; local definitions and variables

; const

452

; var

SYNCH_DATA SEGMENT DATA
RSEG SYNCH_DATA

453

SYNBYTE: DS

; begin subroutine

1 ; synchronization byte

SYNCH_CODE SEGMENT CODE
RSEG SYNCH_CODE

SYNCH:

; loop until synch byte <$> found

%MREPEAT (SYNCH1)

CALL GET_CHAR

MOV SYNBYTE,A

%MUNTIL (SYNBYTE,MXEQY, #DOLLAR, SYNCH1, SYNCH2)

RET

HCNYS:

454

$DEE3lX3

; routine used to poll for a valid command
; STRING module version

; author - John F. Babson, University of Hawaii Physics
; revision date - Aug 26, 1986

; note: unbuffered communications! each character fetched by "CALL
'GET CHAR"I _

; rather than read out of a string buffer.

link references

PUBLIC CMDPOLL

EXTRN CODE (GET_CHAR, PUT_CHAR, PUT_STRING, PUT_CRLF,
XEOY,XNEY)

EXTRNCODE (ASCBIN, MODID, ISHEX, FORERR, XLTV, XGlY)

; global variables

EXTRN DATA (DEV, CMD, DATUM, OUTCF, ERRFLG, SYNCFLG)

$INCLUDE(UHPS.lNC)

; local definitions and variables

; const

; var

CMDPOL_DATA SEGMENTDATA
RSEG CMDPOL_OATA

CHAR:
IOENT:
DEVIO:
HFLAG:

LOGFLG:

OS
OS
OS
OS

OS

1
1
1
1

1

; character buffer
; module identity
; binary form of DEV
; hex condition flag (TRUE means
; value is valid hex character)

; control flag for multiconditional
; logic

macro definitions

%*OEFINE (MSYNCH(LAB)) LOCAL LABEL

(

CALL GET_CHAR

MOV CHAR,A

%MIF (CHAR,MXEQY,#OOLLAR,SYN%LAB)

- MOV SYNCFLG,#TRUE

RET

SYN%LAB:

)

456

; begin subroutine

CMDPOL_CODE SEGMENT CODE
RSEG CMDPOL_CODE

CMDPOLl..:

; initialize control flags

; enable communications output

MOV OUTCF,#TRUE

; disable error flag

MOV ERRFLG,#FALSE

; disable message synch flag

MOV SYNCFLG,#FALSE

; first check for consistent device destination

%MSYNCH(1)

MOV DEV,CHAR

; first device byte in DEV

%MSYNCH(2) ; second device byte in CHAR

%MIF (DEV,MXNEY,CHAR,CMDPOL1)

MOV ERRFLG,#TRUE ; inconsistent device
; so look for next message

RET

------- -~----- - --------

CMDPOL1:

; second check if message is for this module

457

CALL MODID

POP IDENT

PUSH DEV

CALL ASCBIN

POP DEVID

read module identity hardware

returning its identity

; convert DEV info to binary

: form in order to compare

: it to the device identity

; if (devid != ident) {

; MIF (DEVID,MXNEY,IDENT,CMDPOL1A)

; either the device is not unique or it is not this
; device so shut off all message replies

MOV RO,DEVID; hand expansion of MIF
MOV R1,IDENT : to overcome out of range
CALL XNEY problem

JC INTERM
JMP CMDPOL1 A

INTERM: : the "ir code

MOV OUTCF,#FALSE

; to the "if" code
; to the "else" code

: switch (devid) {

: case A or B 1* power or instrumentation modules *'
%MIF (DEVID,MXEQY,#OAH,CPCASE1) : power module

MOV ERRFLG,#TRUE

RET ; return early

CPCASE1:

%MIF (DEVID,MXEQY,#OBH,CPCASE2) ; instrumentation
; module

MOV ERRFLG,#TRUE

RET ; return early

CPCASE2:

: case E 1* calibration module "all call" *'
%MIF (DEVID,MXEQY,#OEH,CPCASE3)

: if (ident == 8 or 9) { break

%MIF (IDENT,MXEQY,#08H,CPCASE4A)

JMP CPCASE4C: break

CPCASE4A:

%MIF (IDENT,MXEQY,#09H,CPCASE4B)

JMP CPCASE4C: break

458

; } else {

%MELSE (CPCASE4B,CPCASE4C)

MOV ERRFLG,#TRUE

RET ; return early

; }

CPCASE4C:

JMP CMDPOL9 ; break to execute command

CPCASE3:

; case F 1* optical module "all call" */

%MIF (DEVID,MXEQY,#OFH,CPCASE5)

; if (ident == 1..7) { break

MOV LOGFLG,#TRUE; initialize logic flag

%MIF (IDENT,MXLTY,#01 H,CPCASE6A) ; lower bound

MOV LOGFLG.#FALSE

JMP CPCASE68; break on false

CPCASE6A:

%MIF (IDENT,MXGTY.#07H,CPCASE68) ; upper bound

MOV LOGFLG,#FALSE

JMP CPCASE68; break on false

~--~----- ------ - -------_._~~-

459

CPCASE6S:

; test for composite logic condition

%MIF (LOGFLG,MXEQY,#TRUE,CPCASE6C)

JMP CPCASE6F; okay so break out

CPCASE6C:

; if(ident == C or D) {break 1* SSC or spare channel */

%MIF (IDENT,MXEQY,#OCH,CPCASE6D)

JMP CPCASE6F: break 1* SSC */

CPCASE6D:

O/oMIF (IDENT,MXEQY,#ODH,CPCASE6E)

JMP CPCASE6F: break r spare */

; } else {

%MELSE (CPCASE6E,CPCASE6F)

MOV ERRFLG,#TRUE

RET ; return early

; }

CPCASE6F:

JMP CMDPOL9; break to execute command

461

CPCASE5:

; case 0 r combined optical and calibration
modules "all call" */

%MIF (DEVID,MXEQY,#OOH,CPCASE7A)

; if (ident == 1..9) { break

MOV LOGFLG,#TRUE; initialize logic flag

%MIF (IDENT,MXLTY,#01 H,CPCASE8A) ; lower bound

MOV LOGFLG,#FALSE

JMP CPCASE8B; break on false

CPCASE8A:

%MIF (IDENT,MXGTY,#09H,CPCASE8B) ; upper bound

MOV LOGFLG,#FALSE

JMP CPCASE8B; break on false

CPCASE8B:

; test for composite logic condition

%MIF (LOGFLG,MXEQY,#TRUE,CPCASE8C)

JMP CPCASE7; okay so break out

CPCASE8C:

-------- -------- -_._ .. - ----

462

; if (ident == C or D) { break r SBC spare channel */

%MIF (IDENT,MXEQY,#OCH,CPCASE8D)

JMP CPCASE7; break 1* SBC */

CPCASE8D:

%MIF (IDENT,MXEQY,#ODH,CPCASE8E)

JMP CPCASE7; break 1* spare */

; } else {

%MELSE (CPCASE8E,CPCASE8F)

MOV ERRFLG,#TRUE

RET ; return early

; }

CPCASE8F:

JMP CMDPOL9; break to execute command

CPCASE7:

; } default

%MELSE (CPCASE7A,CPCASE7B)

MOV ERRFLG,#TRUE

RET ; return early

CPCASE7B:

; } else {

%MELSE (CMDPOL1A,CMDPOL9)

; pute (OXFF) 1* output hex FF *1

; output a hex FF in order to start up and
; synchronize the string modem receiver circuit

MOV A,#OFFH

CALL PUT_CHAR

; }

CMDPOL9:

; third parse message for a command

%MSYNCH(3) ; first command byte

MOV CMD,CHAR

%MSYNCH(4) ; second command byte

MOV CMD+1,CHAR

%MSYNCH(5) ; termination or first data byte

MOV DATUM,CHAR

463

; if (datum == <CR» {

%MIF (DATUM,MXEQY,#CR,CMDP0L10)

; check if command is an incomplete
; write command, if it is return an error

%MIF (CMD,MXEQY,#BIGW,CMDPOL10A)

CALL FORERR

MOV ERRFLG,#TRUE

RET ; early return

%MELSE (CMDP0L10A,CMDPOL10B)

RET ; message completed

CMDPOL10B:

CMDP0L10:

; verify valid hex character

PUSH DATUM

CALL ISHEX

POP HFLAG

%MIF (HFLAG,MXNEY,#TRUE,CMDPOL11)

CALL FORERR

MOV ERRFLG,#TRUE

RET

464

CMDPOL11:

%MSYNCH(6) ; second data byte

MOV DATUM+1,CHAR

; verify valid hex character

PUSH DATUM+1

CALL ISHEX

POP HFLAG

%MIF (HFLAG,MXNEY,#TRUE,CMDPOL12)

CALL FORERR

MOV ERRFLG,#TRUE

RET

CMDPOL12:

; check for command termination

%MSYNCH(7) ; command terminator in CHAR

; if (char == <CR» {

%MIF (CHAR,MXEQY,#CR,CMDPOL13)

RET ; message completed

465

CMDPOL13:

; message not properly terminated

CALL FORERR

MOV ERRFLG,#TRUE

RET

LLOPDMC:

a-D

466

;$DEBUG

NAME ANALOO_POLL

; subroutine ANAPOL - used to poll all analog input channels and
; place their values in the analog telemetry table ANALOG
; SOM version

; author - John F. Babson, University of Hawaii Physics
; revision date - Oct. 15, 1985

link references

PUBLIC ANAPOLL

EXTRN CODE (UPDATE, XGlY)

$INCLUDE{UHPS.lNC)
$INCLUDE{TELMTY.INC)

; local definitions and variables

; canst

; var

ANAPOL_DATA SEGMENT DATA
RSEG ANAPOL_DATA

468

CHANNEL:

; begin subroutine

OS 1 ; a to d channel

ANAPOL_CODE SEGMENTCODE
RSEG ANAPOL_CODE

ANAPOLL:

; point to first channel

MOV CHANNEL,#FIRST_CHAN

; repeat

%MREPEAT(APOLL1)

; read atod channel and update table

PUSH CHANNEL

CALL UPDATE

; point to next channel

INC CHANNEL

; until (channel > last_chan)

%MUNTIL(CHANNEL,MXGTY,#LAST_CHAN,APOLL1,APOLL2)

RET

LLOPANA:

EN)

;$OEBUG

NAMEANALOG_TABlE_lOOKUP

; subroutine ANAlKUP - reads values from telemetry table ANALOG
; SOM verison

; author - John F. Babson, University of Hawaii Physics
; revision date - Oct. 15, 1985

link references

global variables

PUBLIC ANAlKUP

EXTRN OATA(ANAlOG)

local definitions and variables

; const

; var

; telemetry table

AN_TABLE_DATA SEGMENT DATA
RSEG AN_TABLE_DATA

CHAN: OS 1 ; pointer offset from table
; beginning - a to d channel

AENTRY: OS 1 ; entry found in table
POSITION: OS 1 ; analog table pointer
CAlK1 : OS 1 ; save address upper byte
CAlK2: OS 1 " " lower "

470

; begin subroutine

AN_TABLE_CODE SEGMENT CODE
RSEG AN_TABLE_CODE

ANALKUP:

POP CALK1 ; save the
POP CALK2: return address

POP CHAN ; input channel identity

: point to appropriate position in analog table and fetch
: entry i.e. location := analog + taboff
: entry ---> @Iocation

MOV A,#ANALOG

ADD A,CHAN

MOV POSITION,A

MOV RO,POSITION

MOV A,@RO

MOV AENTRY,A

; return the value

PUSH AENTRY

PUSH CALK2
PUSH CALK1

RET

: point to table entry

: add offset

: point to position in table

: load pointer

: fetch value in table

: write value

PUKLANA:
EN)

471

;$DEBUG

NAME UP_DATE

; subroutine UPDATE - puts values into telemetry table ANALOG
; SOM version

; author - John F. Babson, University of Hawaii Physics
; revision date - Oct. 15, 1985

link references

PUBLIC UPDATE

EXTRN CODE (ATOD)

global variables

EXTRN DATA (ANALOG)

local definitions and variables

; const

; telemetry table

--------- -_._~-----

; var

AN_TABLE_DATA SEGMENTDATA
RSEG AN_TABLE_DATA

CHAN: DS 1 ; a to d channel
AENTRY: DS 1 ; value returned on channel
POSITION: DS 1 ; analog table pointer
CUPD1: DS 1 ; save address upper byte
CUPD2: DS 1 " " lower "

; begin subroutine

AN_TABLE_CODE SEGMENTCODE
RSEG AN_TABLE_CODE

UPDATE:

; start and read atod

POP CUPD1 ; save the

POP CUPD2 ; return address

POP CHAN ; input channel identity

PUSH CHAN ; pass it on to a to d

CALL ATOD

POP AENTRY

; point to appropriate position in analog table and enter
; aentry. Le. position := analog + chan
; @position --> aentry

472

MOV A,#ANALOG

ADD A,CHAN

MOV POSITION,A

; point to table entry

; add offset

; point to position in table

MOV RO,POSITION

MOV A,AENTRY

MOV @RO,A

PUSH CUPD2

PUSH CUPD1

RET

ETADPU:

I3\D

; load pointer

; fetch value

; write value in table

; load the

return address

473

:; ---- - -- ._. _. -

474

$DEBl.X3

NAME COMMAND_SERVICE

; routine services the command or returns an error message for
; invalid commands. it is here that the various output channels are
; defined.

string optical module version

; author - John F. Babson, University of Hawaii Physics
; revision date - May 21, 1986

link references

EXTRN CODE (XEQY, ISHEX, RREPLY, CREPLY, SETHV, SETDSCR,
CMDERR)

PUBLIC CMDSERV

$INCLUDE(UHPS.lNC)

; global constants and variables

EXTRN DATA (CMD)

local definitions and variables

; const

; var

CMD_SERV_DATA SEGMENT DATA
RSEG CMD_SERV_DATA

HEXFLG: OS 1; condition flag for hex value

-- _._---- -_.- ------------- ----

475

; begin subroutine

CMD_SERV_CODE SEGMENTCODE
RSEG CMD_SERV_CODE

CMDSERV:

; first, check for a read command

; if (cmd(O) = 'R') then

%MIF(CMD,MXEQY,#BIGR,CSERV1)

: command for repetition rate?

O/oMIF (CMD+1,MXEQY,#BIGR,CSERV2)

CALL RREPLY

RET

CSERV2:

; reply with rate value

; command to read a telemetry channel?

PUSH CMD+1

CALL ISHEX ; channel must be hex

POP HEXFLG

%MIF (HEXFLG,MXEQY,#TRUE,CSERV3)

CALL CREPLY

RET

------~~--~~_.~------------~---

476

CSERV3:

; otherwise, command is invalid

CALL CMDERR; echo back bad command

RET

CSERV1:

; second, check for a write command

; if (cmd(O) = 'W') then

%MIF(CMD,MXEQY,#BIGW,CSERV4)

; if (crnd-1 = 'E') then

%MIF(CMD+1,MXEQY,#BIGE,CSERV5)

CALL SETHV

RET

CSERV5:

%MIF(CMD+1,MXEQY,#BIGF,CSERV6)

CALL SETDSCR

RET

CSERV6:

CALL CMDERR; echo back bad command

RET

CSERV4:

; default, invalid command

CALL CMDERR ; echo back bad command

RET

VRESDMC:

EN)

471

$DEBt..G

NAME REPETITION_RATE

; subroutine rrate - drives COUNTERO for 100 ms as a PMT
; pulse repetition rate counter leaving count in bytes
; THO and TLO and overflow condition in bit TFO

; author - John F. Babson, University of Hawaii Physics
; revision date - Oct. 21, 1985

link references

PUBLIC RRATE

EXTRNCODE (MDELAY)

; global constants and variables

$INCLUDE (UHPS.lNC)

; local definitions and variables

; const

MLCLK EQU R4

; var

; begin subroutine

RRATE_CODESEGMENTCODE
RSEG RRAlE_CODE

RRATE:

; clear TIMERO and overflow FLAGO

478

MOV
MOV
CLR

TLO,#OOH
THO,#OOH
TFO

; lower timer byte
; upper " "
; TCON.5 overflow flag

; set TIMERO to 16 bit counter (MODE 1 counter)
; with interrupt gating disabled while retaining

; serial 1/0 port in auto reload (MODE 3 TIMER1)

MOV TMOD,#MOD10+COUNTO+GTOFFO+MOD21

; start COUNTERO

SETS TRO

; start 100ms software count down

479

MOV MLCLK,#100

RRATE1:

; 100 millisec

CALL MDELAY
DJNZ MLCLK,RRATE1

; stop COUNTERO

CLR TRO

; return

RET

ETARR:

480

;$DEBUG

NAMEANALOG_TO_DIGITAL

; subroutine ATOD - drives ADC0816/17 16 channel 8 bit AtoD
; conversion chip including the clearing and setting of the module
; identification strobe to control external memory access preventing
; accidental access to the ATOD peripheral chip. This version is for
; one ADC0816 whose four channel select lines (ADDA .. ADDD)
; are connected to Port 2 (P2.0 .. P2.3). The chip select line is
; P2.7 (ADC).
; SOM version

; author - John F. Babson, University of Hawaii Physics
; revision date - Oct. 23, 1985

link references

PUBLIC ATOD

EXTRN CODE (DELAY)

local definitions and variables

; const

ADC
IOEN

BIT P2.7
BIT P3.5

; atod chip select
; input/output enable used
; here to assert valid PORT2
; control signals and not
; upper (external) data memory

- ---------------- -- ----------- - ------ _.- --------

481

; var

ATOD_DATA SEGMENT DATA
RSEG ATOD_DATA

CA2D1:
CA2D2:
ICHAN:
IVOLT:

; begin subroutine

OS 1
OS 1
OS 1
OS 1

; call addr upper byte
; " "lower "
; analog input channel
; input voltage

ATOO_CODE SEGMENT CODE
RSEG ATOD_CODE

ATOO:

POP
POP

POP

CA2D2
CA2D1

ICHAN

; save the
; return address

; input channel

; disable external data memory protection by asserting
; IOEN. no, absolutely no, external memory references
; may be made until this protection is enabled.

CLR IOEN ; disable external data memory
protection

START: ; start atod conversion process

MOV A,ICHAN; select channel address

ORL A,#111100008; mask dtoa strobes

MOV P2,A; and output channel address

CLR AOC; select atod chip

CLR WR ; latch the address starting conversion

482

CALL DELAY 12 microsecond delay to allow
CALL DELAY channel address to settle

SETS WR turn off write strobe

SETS ADC ; deselect atod chip

WAIT: ; wait for interrupt from chip

JS IEO,WAIT ; busy wait

READ: ; read the byte from the atod chip

MOV P1,#OFFH ; set up P1 for all input

;MOV A,ICHAN ; select channel address

CLR ADC ; select atod chip

CLR RD ; turn on read strobe

CALL DELAY ; 12 microsecond delay to allow
CALL DELAY chip output to settle

MOV IVOLT,P1 ; read data from input port

SETS RD ; turn off read strobe

SETS ADC ; deselect atod chip

DAER:

; enable the external memory access protection

SETB IOEN

483

PUSH IVOLT

PUSH CA2D1
PUSH CA2D2

RET

DaTA:

; return read voltage

; load the
return address

484

;$DEBUG

NAME DIGITAL_TO_ANALOG

; subroutine DTOA - drives AD7528 2 channel 8 bit DtoA conversion
; chip including the clearing and setting of the module identification
; strobe to control external memory access preventing accidental
; access to the ATOD and DTOA peripheral chips.
; SOM version

; author - John F. Babson, University of Hawaii Physics

; revision date - Oct. 20, 1985

link references

PUBLIC DTOA

local definitions and variables

; const

; the following definitions were changed from the original
; values to reflect the "as is" U. of Tokyo hardware
; original values: DAC P2.4, DAEO P2.5, DAE1 P2.6.

DAC
DAEO
DAE1
IOEN

BIT
BIT
BIT
BIT

P2.6
P2.4
P2.5
P3.5

; dtoa !dacaldacb selector
; AD7528 atod chip #0
; AD7528 atod chip #1
; input/output enable used here

; to assert valid PORT2
; control signals and not
; upper (external) data memory

~ ----~---- - ---------------- - -~---~--

485

; var

DTOA_DATA SEGMENT DATA
RSEG DTOA_DATA

OCHAN:
OVOlT:
CD2A1:
CD2A2:

DS
DS
DS
DS

1
1
1
1

; analog output channel
; output voltage
; call address upper byte
;" " lower "

; ochan contains two bits of significance. bit 0 selects which of two
; separate dtoa chips is selected. bit 1 determines whether channel
; A or B of an AD7528 dtoa chip is selected. thus, the system
; contains four dtoa channels. the information is extracted using

rotate right with carry then testing the carry bit.

begin subroutine

DTOA_CODE SEGMENTOODE
RSEG DTOA_CODE

DTOA:

POP CD2A2 ; save the

POP CD2A1 return address

POP OVOlT ; input the desired output voltage

POP OCHAN ; input the channel identity

MOV A,OCHAN ; place chan info in accumulator

; disable the protection from accidental access to PORT2
; based control signals on using external data memory
; by enabling IDEN strobe here. ali code following this
; must make no, repeat no, accesses to external data

; memory (t.e. MOVX) until IOEN is disabled.

CLR IOEN

; determine AD7528 atod chip to be used

RRC A ; shift bit 0 into (c) flag

JNC DTOA1 ; if (c) clr, jump to if seg

CLR DAE1 ; else seg - select chip #1

JMP DTOA2 ; finish else

DTOA1:

CLR DAEO ; if seg - select chip #0

DTOA2:

; determine if a or b channel of chip is to be used

RRC A ; shift bit 1 into (c) flag

JNC DTOA3 ; if (c) clr, jump to if seq

CLR DAC ; else seq - select channel a

JMP DTOA4 ; finish else

DTOA3:

SETB DAC ; if seq - select channel b

DTOA4:

------ ----

486

; having selected the output analog channel, write out
; the voltage

MOV P1,OVOLT ; latch analog info.

CLR WR ; start write pulse

SETB WR ; end write pulse

; deselect chip

SETB DAEO

SETB DAE1

; deselect channel - simply guarantee state on exciting
; this subroutine

SETB DAC

; finally, disable IOEN to reassert accidental external
; data memory access protection.

SETB IDEN

PUSH CD2A1

PUSH CD2A2

RET

AOTD:

; load the

return address

- -- -- -- ------ ------------------------------

$DEBLG

NAME MODULE_INDENTIFICATION
; subroutine MODID - reads the module identification
; hardware indicating the binary identification of a STRING
; module (instrument)

; author - John F. Babson, University of Hawaii Physics

; revision date - Oct. 20, 1985

link references

PUBLIC MODID

local definitions and variables

; const

10EN BIT P3.5 ; I/O enable
MIDS BIT P3.3 ; identity circuit chip select

; var

MODID_DATA SEGMENT DATA
RSEG MODID_DATA

488

CA2D1:
CA2D2:
MID:

OS
OS
OS

1
1
1

; call addr upper byte
; " "lower "
; module identity

; begin subroutine

MODID_CODE SEGMENTCODE
RSEG MODID_CODE

MODID:

489

POP CA2D2
POP CA2D1

; save the
; return address

MODID1: ; read the byte from the identity circuit

MOV P1,#OFFH ; set up P1 for all input

CLR 10EN ; enable 1/0 operation
CLR MIDS select ident circuit

MOV A,P1 ; read data from input

SETB MIDS ; deselect ident circuit
SETB IOEN ; disable 1/0 operation

ANL A,#00001111 B ; mask out unused 4 msb's

MOV MID,A

MODID2:

PUSH MID

PUSH CA2D1
PUSH CA2D2

RET

DIDOM:

; and save binary identity
for return

; return module identity

; load the
return address

.----_._-----_...

400

;$DEBUG

NAME SET_DESCRIMINATOR_THRESHOLD_LEVEL

; subroutine SETDSCR - used to set the discriminator threshold level
; of the PMT
; SOM version

; author - John F. Babson, University of Hawaii Physics
; revision date - Oct. 15, 1985

link references

PUBLIC SETDSCR

EXTRN CODE (HEXBIN, DTOA, UPDATE, CREPLY)

; global variables

EXTRN DATA (CMD, DATUM)

$INCLUDE(CONSNT.lNC)

; local definitions and variables

; const

; var

DISCR_DATA SEGMENT DATA
RSEG DISCR_DATA

DSCMD:
THRESH:
DUMMY:

OS
OS
OS

1
1

1

; discriminator command
; binary value of threshold level

; dummy cell

; begin subroutine

DISCR_CODE SEGMENT CODE
RSEG DISCR_CODE

SETDSCR:

; fetch the descriminator channel

MOV DUMMY,#NUMO

PUSH a..ttv1Y

PUSH CMD+1

CALL HEXBIN

POP DSCMD

; fetch the desired value of threshold level

PUSH DATUM

PUSH DATUM+1

CALL HEXBIN

POP 1HRESH

; write it to the pmt discriminator

491

PUSH DSCMD

PUSH 1HRESH

CALL DTOA

; discriminator channel

: update the analog table reading actual level

PUSH DSCMD

CALL UPDATE

; finish reply to command returning actual
; threshold level

CALL CREPLY

RET

RCSDTES:

492

;$DEBUG

NAMESET_HIGH_VOLTAGE

; subroutine SETHV - used to set the high voltage level of the PMT
; SOM version

; author - John F. Babson, University of Hawaii Physics
; revision date - Oct. 15, 1985

link references

PUBLIC SETHV

EXTRN CODE (HEXBIN, ANALKUP, RAMPUP, RAMPDN, UPDATE,
CREPLy)

EXTRNCODE (XGTY)

global variables

EXTRN DATA (CMD, DATUM)

$INCLUDE(UHPS.lNC)

; local definitions and variables

; const

; var

SETHV_DATA SEGMENT DATA
RSEG SETHV_DATA

493

HVCMD:
OLDY:
NEWV:
DUMMY:

DS
OS
DS
OS

1
1
1
1

; hi volt command
; old volt value
; new volt value
; dummy cell

; begin subroutine

SETHV_CODE SEGMENT CODE
RSEG SETHV_CODE

SETHV:

; lookup the current PMT high voltage setting

MOV DUMMY,#NUMO ; call hexbin(zero,cmd2,hvcmd)

PUSH IJJvtv1Y

PUSH CMD+1

CALL HEXBIN

POP HVCMD

PUSH HVCMD : call analkup(hvcmd,oldv)

CALL ANALKUP

POP OLDV

: fetch the desired PMT high voltage value from the
: command buffer

494

PUSH DATUM

PUSH DATUM+1

CALL HEXBIN

POP NEWV

: call hexbin(datum1,datum2,newv)

495

; ramp up or down the PMT high voltage from the current
; setting accordingly

; if (newv > oldv) then

%MIF(NEWV.MXGTY.OLDV.SETHV1)

PUSH NEWV ; call rampup(newv, volt)

PUSH OLDY

CALL RAMPUP

%MELSE(SETHV1,SETHV2)

PUSH NEWV ; call rampdn(newv, volt)

PUSH OLDY

CALL RAMPDN

SETHV2:

; update the analog table reading actual voltage setting

PUSH HVCMD

CALL UPDATE

; finish reply to command returning actual threshold level

CALL CREPLY

RET

VHTES:
EN)

496

$D133l.X3

; subroutine CMDERR - used to respond to command error condition by
; echoing back improper command with a question mark
; STRING module version

; message string:
<$><DEV><DEV><CMD(0»<CMD(1)><?><?><CR>

; author - John F. Babson, University of Hawaii Physics
; revision date - May 20, 1986

link references

PUBLIC CMDERR
EXTRN CODE (PUT_CHAR, XEQY)

global variables

EXTRN DATA (DEV, CMD, OUTCF)

$INCLUDE(UHPS.lNC)

; local definitions and variables

; const

; var

; begin subroutine

CMDERR CODE SEGMENT CODE- .
RSBG CMDERR_CODE

CMDERR:

; if (multiple devices called) {

%MIF (OUTCF,MXEQY,#FALSE,CMDERR1)

RET ; Le. send back no messages

; }

CMDERR1:

; echo the erroroneous command

MOV A,#DOLLAR
CALL PUT_CHAR

MOV A,DEV
CALL PUT_CHAR
CALL PUT_CHAR

MOV A,CMD
CALL PUT_CHAR

MOV A,CMD+1
CALL PUT_CHAR

MOV A,#QUESTION
CALL PUT_CHAR
CALL PUT_CHAR

MOV A,#CR
CALL PUT_CHAR

; synchronization byte

; device byte
; echoed

twice

; first command byte echoed

; second command byte echoed

; question mark twice

;<CR>

EN)

RET

RREDMC:

498

;$DEBUG

NAME DEVICE_ERROR

; subroutine DEVICE -used to respond to device error condition by
; sending back error message with a question mark
; STRING optical module

; message string:

<$>DEVICE?<CR>

; author - John F. Babson, University of Hawaii Physics
; revision date - Oct. 13, 1985

link references

PUBLIC DEVERR

EXTRN CODE (PUT_STRING, PUT_CHAR)

; global variables

$INCLUDE(CONSNT.INC)

; local definitions and variables

; canst

DEVERR_MSG SEGMENT CODE
RSEG DEVERR_MSG

; var

DEVMSG_l: DB '$DEVICE?',DOH ; device error message

----------~- -- ---- --

; begin subroutine

DEVERR_CODE SEGMENT CODE
RSEG DEVERR_CODE

DEVERR:

; send the device error message

MOV DPTR,#DEVMSG_1
CALL PUT_STRING

MOV A,#CR
CALL PUT_CHAR

RET

RREVED:

499

;$DEBUG

NAME FORMAT_ERROR

; subroutine FORERR -used to respond to message format
; error condition by sending back error message "WHAT"
; indicating format error caught by addressed device. Usually
; this message will be ignored by the SBC microcomputer since
; most likely the format error will be caught by that computer.
; If this message gets through, it is an indication of communi
; cations problems between the SBC microcomputer and the

remote device. This error condition serves the additional
purpose of testing individual devices in the laboratory.

STRING optical module / POWER module version

message string:

<$><DEVxDEV>WHAT<CR>

; author - John F. Babson, University of Hawaii Physics
revision date - June 30, 1986

link references

PUBLIC FORERR

EXTRN CODE (PUT_STRING, PUT_CHAR, XEQY)

global variables

EXTRN DATA (DEV, OUTCF)

500

$INCLUDE(UHPS.lNC)

; local definitions and variables

; const

FORERR_MSG SEGMENTCODE
RSEG FORERR_MSG

501

FORMSG_1:

; var

; begin subroutine

DB 'WHAT',DOH ; format error message

FORERR_CODE SEGMENT CODE
RSEG FORERR_CODE

FORERR:

; if (multiple devices called) {

%MIF (OUTCF,MXEQY,#FALSE,FORERR1)

RET ; l.e. send back no messages

; }

FORERR1:

MOV A,#DOLLAR
CALL PUT_CHAR

MOV A,DEV
CALL PUT_CHAR
CALL PUT_CHAR

; synchronization byte

; device byte
echoed

twice

; send the format error message

MOV DPTR,#FORMSG_1
CALL PUT_STRING

MOV A,#eR
CALL PUT_CHAR

RET

RREROF:

502

$DE8lX3

NAME IS_IT_ALPHA_NUMERIC

; SUBROUTINE ISALNO

; routine to check whether or not a candidate character
; is a valid ASCII alphanumeric value or not

link references

PUBLIC ISALNO
EXTRN CODE (XGEY, XLEY)

; global constants and variables

$INCLUDE (UHPS.lNC)

; local definitions and variables

; const

; var

ISALNO_DATA SEGMENT DATA
RSEG ISALNO_DATA

503

CISAN01:
CISAN02:
CHAR:
EFLAG:

os 1
DS 1
OS 1
OS 1

; return
; address

; character buffer
; condition flag

- -- -----_. ----- ------

504

; begin subroutine

ISALNO_CODE SEGMENT CODE
RSEG ISALNO_CODE

ISALNO:

POP CISAN01 ; save return
POP CISAN02 ; address

POP CHAR ; the candidate alphanumeric character

; set error flag EFLAG = #FALSE
; this is the default condition for

; the following comparison

MOV EFLAG,#FALSE

; now, successively compare CHAR to
; see if it is a valid ASCII alphanumeric character

; setting EFLAG = #TRUE iff it is

; case - is it a number, then set eflag TRUE

%MIF (CHAR,MXGEY,#NUMO,ISALN01)

%MIF (CHAR,MXLEY,#NUM9,COMPEND)

MOV EFLAG,#TRUE

ISALN01 :

; case - is it a capital letter, then set eflag TRUE

%MIF (CHAR,MXGEY,#BIGA,ISALN02)

%MIF (CHAR,MXLEY,#BIGZ,COMPEND)

MOV EFLAG,#TRUE

ISALN02:

; case - is it a small letter, then set eflag TRUE

%MIF(CHAR,MXGEY,#LETA,ISALN03)

%MIF (CHAR,MXLEY,#LETZ,COMPEND)

MOV EFLAG,#TRUE

COMPEND: ; end comparisons

; now, return

505

PUSH EFLAG

PUSH CISAN02
PUSH CISAN01

RET

ONLASI:

return condition

restore return
address

return

$DEBLG

NAME IS_IT_HEX

; SUBROUTINE ISHEX

; routine to check whether or not a candidate character
; is a valid ASCII hex value or not

link references

PUBLIC ISHEX
EXTRN CODE(XGEY, XLEY)

; global constants and variables

$INCLUDE (UHPS.lNC)

; local definitions and variables

; const

; var

ISHEX_DATA SEGMENT DATA
RSEGISHEX_DATA

506

CISHEX1: OS
CISHEX2: OS
CHAR: OS
EFLAG: OS

1
1
1
1

; return
; address

; character buffer
; condition flag

; begin subroutine

ISH8CCODE SEGMENTCODE
RSEG ISHE>CCODE

ISHEX:

POP CISHEX1 ; save return
POP CISHEX2 ; address

POP CHAR ; the candidate hex character

; set error flag EFLAG =#FALSE
; this is the default condition for

; the following comparison

MOV EFLAG,#FALSE

; now, successively compare CHAR to
; see if it is a valid ASCII hex character

; setting EFLAG = #TRUE iff it is

%MIF (CHAR,MXGEY,#NUMO,COMPEND)

°.loMIF (CHAR,MXLEY,#BIGF,COMPEND)

%MIF (CHAR,MXLEY,#NUM9,ISHEX1)

MOV EFLAG,#TRUE

%MELSE (ISHEX1,COMPEND)

%MIF(CHAR,MXGEY,#BIGA,COMPEND)

MOV EFLAG,#TRUE

COMPEND: ; end comparisons

; now, return

PUSH EFLAG

PUSH CISHEX2
PUSH CISHEX1

RET

XEHSI:

return condition

restore return
address

return

508

;$DEBUG

NAME RAMP_DOWN_PMT_VOLTAGE

; subroutine RAMPDN - ramps down PMT voltage - set HIVOLT channel
; ta reflect actual hardware
; SOM version

; author - John F. Babson, University of Hawaii Physics
; revision date - Oct. 22, 1985

link references

PUBLIC RAMPDN

EXTRN CODE (DTOA, HEXBIN, MDELAY)
EXTRN CODE (XGTY)

; global variables

EXTRN DATA (CMD)

$INCLUDE(UHPS.lNC)

; local definitions and variables

; canst

DELTIME
MLCLK

EQU 19H
EQU R5

25 millisec delay
millisecond clock

: var

RAMPON_OATA SEGMENT DATA
RSEG RAMPDN_OATA

RANGDN: OS 1 : new voltage (target)
VOLTDN: DS 1 : running voltage, initially old
DTOACH: DS 1 ; d to a channel parameter
CRMDN1: DS 1 : save address upper byte
CRMON2: DS 1 " " lower "•
DUMMY: OS 1 : dummy cell

: begin subroutine

RAMPDN_CODE SEGMENT CODE
RSEG RAMPON_CODE

RAMPDN:

POP CRMDN2: save the
POP CRMDN1: return address

POP VOLTON : input current voltage
POP RANGDN: input target voltage

: load the high voltage channel identity into the d to a
: channel

MOV DUMMY,#NUMO

PUSH lLM\t1Y

PUSH CMD+1

CALL HEXBIN

POP DTOACH

510

: while (voltdn > rangdn)

%MWHILE(VOLTDN,MXGTY,RANGDN,RDN1 ,RDN2)

: voltdn := voltdn -1

511

DEC VOLTDN : binary subtraction

: place voltage change on pmt

PUSH DTOACH

PUSH VOLTDN

CALL DTOA

: delay one step time

MOV MLCLK,#DELTIME

CALL MDELAY

%MWEND(RDN1,RDN2)

PUSH CRMDN1: load the
PUSH CRMDN2: return address

RET

NDPMAR:

;$DEBUG

NAMERAMP_UP_PMT_VOLTAGE

; subroutine RAMPUP - ramps up the PMT voltage - set
; HIVOLT channel to reflect actual hardware
; SOM version

; author - John F. Babson, University of Hawaii Physics
; revision date - Oct. 22, 1985

link references

PUBLIC RAMPUP

EXTRN CODE (DTOA, HEXBIN, MDELAY)
EXTRN CODE (XGTY)

global variables

EXTRN DATA (CMD)

$INCLUDE(UHPS.lNC)

; local definitions and variables

; const

512

DELTIME
MLCLK

EQU 19H
EQU R5

; 25 millisec delay
; milliseconf clock

; var

RAMPUP_DATA SEGMENT DATA
RSEG RAMPUP_DATA

RANGUP: DS 1 ; new voltage (target)
VOLTUP: DS 1 ; running voltage, initially old
DTOACH: DS 1 ; d to a channel parameter
CRMUP1: DS 1 ; save address upper byte
CRMUP2: DS 1 . " " lower ",
DUMMY: DS 1 ; dummy cell

; begin subroutine

RAMPUP_CODE SEGMENT CODE
RSEG RAMPUP_CODE

RAMPUP:

POP CRMUP2; save the
POP CRMUP1; return address

POP VOLTUP ; input current voltage
POP RANGUP; input target voltage

: load the high voltage channel identity into the d to a
; channel

MOV DUMMY,#NUMO

PUSH Il.JIMY

PUSH CMD+1

CALL HEXBIN

POP DTOACH

- --------- -------- ---------------

513

; while (rangup > voltup)

%MWHILE(RANGUP,MXGTY,VOLTUP,RUP1,RUP2}

; voltup := voltup +1

514

INC VOLTUP ; binary addition

; place voltage change on pmt

PUSH DTOACH

PUSH VOLTUP

CALL DTOA

; delay one step time

MOV MLCLK,#DELTIME

CALL MDELAY

%MWEND(RUP1,RUP2}

PUSH CRMUP1; load the
PUSH CRMUP2; return address

RET

PUPMAR:

515

APPENDIXE

Source Code Listingofthe Executive Program for Controlling
the PowerModule (PWR)

The source code for program PWR consists of 10 modules which are listed
below roughly in a top down fashion with the highest level routines being
listed first and the lowest level or direct hardware driving modules listed
last. This pattern approximates the order in which modules are called in

the program and is listed according to the order shown in Table E.l below:

Table E.l Listing Order ofPWR Routines

Class

Main:

Name

PWR
INITIAL

Description

Main program

Initialize stack and 300 baud serial port

Communications control:

ECHOM Echo back valid command
SYNCH Synchronize on first byte of command string

Parser:

CMDPOLL Parse the command string for a valid

command
Command executive:

CMDSERV Service the command request

Device drivers:
PWRON
PWROFF

Error handling:
CMDERR
FORERR

Power on specified device
Power off specified device

Report a command error
Report a format error

516

The listing of the individual modules now follows:

$DEBUG

; program POWER

; program is first attempt to control the DUMAND POWER
; module. this is a very elementry program taking all control
; directly from a 300 baud terminal sending only printable
; ASCII characters.

; author - John F. Babson, University of Hawaii Physics
; revision date - May 12, 1986

link references

EXTRN CODE (INITIAL, SYNCH, CMDPOLL, CMDSERV)
EXTRN CODE (XEQY, XNEV, XGEY. XGTY)
EXTRN CODE (PWRON. PWROFF)

$INCLUDE(UHPS.lNC)

; global definitions and variables

; const

MSCOUNT EQU RS ; ms counter

517

518

; var

GLOBAL_DATA SEGMENTDATA
RSEG GLOBAL_DATA

DEV: DS
CMD: DS
DATUM: DS
; ANALOG: DS
ON: DS
ERRFLG: DS
SYNCFLG: DS

1 ; device register (hex)
2 ; command buffer (hex)
2 ; data buffer (hex)
MAXCHAN ; analog look up table (binary)
2 ; power module switch status buffer
1 ; communications error flag
1 ; communications

synchronization flag

PUBLIC DEV, CMD, DATUM, ON, ERRFLG, SYNCFLG
; PUBLIC ANALOG

local definitions and variables

; const

DEVICE

LATCHO
LATCH1

; var

BJJ CMD+1 ; identity of device to be turned on or
; off

BIT P3.3
BIT P3.4

POWER_DATA SEGMENT DATA
RSEG POWER_DATA

LOOP: DS 1 ; infinite loop condition (binary)

; begin program

; POWER_CODE SEGMENT CODE
; RSEG POWER_CODE

CSEG

519

ORG

POVVER:

o ; system start up location

CALL INITIAL ; initialize system

; note: in the following some non-existent devices may be
; "turned on or off" but that is OKAY

; turn off all of the devices

; point to first hex numbered device

MOV DEVICE,#NUMO

; repeat {

%MREPEAT (POWER1)

CALL PWROFF

INC DEVICE

; turn off device

; } until (device(O) == #NUM9+1) 1* last numbered device */

%MUNTIL (DEVICE,MXGTY,#NUM9,POWER1 ,POWER2)

; point to first hex lettered device

MOV DEVICE,#BIGA

; repeat {

O/OMREPEAT (POWER3)

CALL PVVROFF

INC DEVICE

; } until (device(O) > #BIGB) 1* last lettered device used */

O/OMUNTIL (DEVICE,MXGTY,#BIGB,POWER3,POWER4)

; doubly ensure that all devices are turned off

MOV ON,#OFFH
MOV P1,ON

SETB LATCHO
NOP
NOP
CLR LATCHO

MOV ON+1,#OFFH
MOV P1,ON+1

SETB LATCH1
NOP
NOP
CLR LATCH1

; loop := true

MOV LOOP,#TRUE

- -------- -~----

5W

; while (loop = true)

%MWHILE(LOOP,MXEQY,#TRUE,POWER9,POWER10)

; loop := true

MOV LOOP,#TRUE

; read command line and parse it for command

%MREPEAT (ERROR1)

; loop for first synch byte

CALL SYNCH

%MREPEAT (ERROR3)

; loop for the remaining bytes

CALL CMDPOLL

%MUNTIL (SYNCFLG,MXNEY,#TRUE,ERROR3,ERROR4)

%MUNTIL (ERRFLG,MXNEY,#TRUE,ERROR1 ,ERROR2)

; poll all analog devices

; CALL ANAPOLL

; service the command

CALL CMDSERV

; end while

%MWEND(POWER9,POWER10)

RE\tVOP:

EN>

~.~-_. - -~----- -~-------

521

NAME INITIAL

; subroutine INITIAL - used· to initialize the system hardware
; including the serial 110 port, the system stack, and any
; AtoD and OtoA hardware.
; UNIVERSAL 300 baud version

; author - John F. Babson, University of Hawaii Physics
; revision date - Oct. 15, 1985

link references

PUBLIC INITIAL

global definitions and variables

; const

$INCLUDE (CONSNT.lNC)

; local definitions and variables

; const

; control of serial port

BAU300 EQU 99H ; 300 baud timer (self determined)
SERPORT EQU 1101101 OB ; Serial Port

522

523

; var

C6EG at 8

STACK: os 24 ; at power-up, the stack pointer is
; initialized to point here.
; 24 byte space reserved.

; begin subroutine

INITIAL_CODE SEGMENT CODE
RSEG INITIAL_CODE

INITIAL:

; This is the initializing section. Execution always
; starts at address 0 on power-up.

MOV TMOD,#MOD21
MOV TH1,#BAU300

MOV SCON,#SERPORT
SETB TR1

RET

LAITINI:

; set timer1 mode to auto-reload
; set timer for 300 BAUD

; prepare the Serial Port
; start clock

; subroutine ECHOM - used to echo back write only commands
; POWER version - uses OUT CHAR

; message string:
<CMD(O}><CMD(1 }><CR>

; author - John F. Babson, University of Hawaii Physics
; revision date - May 12, 1986

link references

PUBLIC ECHOM

EXTRN CODE (OUT_CHAR)

global variables

EXTRN DATA (CMD)

$INCLUDE(CONSNT.lNC}

; local definitions and variables

; const

; var

.-----_ ... _----------- ---

524

525

; begin subroutine

ECHOM_CODE SEGMENT CODE
RSEG ECHOM_CODE

ECHOM:

; echo the command

MOV A,CMD ; first command byte echoed
CALL OUT_CHAR

MOV A,CMD+1 ; second command byte echoed
CALL OUT_CHAR

MOV A,#CR ; <CR>
CALL OUT_CHAR

RET

MOHCE:

;$DEBUG

NAME SYNCHRONIZE

; subroutine SYNCH - parses for initial synchronization byte <$>
; in input data stream - any additional synchronization bytes
; are handled in CMDPOL
; STRING I POWER module version

; author - John F. Babson, University of Hawaii Physics
; revision date - Apr. 3D, 1986

link references

PUBLIC SYNCH

EXTRN CODE (GET_CHAR, XEQY)

$INCLUDE(UHPS.lNC)

; local definitions and variables

; const

; var

SYNCH_DATA SEGMENT DATA
RSEG SYNCH_DATA

526

SYNBYTE: OS 1 ; synchronization byte

; begin subroutine

SYNCH_CODE SEGMENTCODE
RSEG SYNCH_CODE

SYNCH:

; loop until synch byte <$> found

%MREPEAT (SYNCH1)

CALL GET_CHAR

MOV SYNBYTE,A

%MUNTIL (SYNBYTE,MXEQY, #DOLLAR, SYNCH1, SYNCH2)

RET

HCNYS:

5'Zl

; routine used to poll for a valid command
; POWER module version

; author - John F. Babson, University of Hawaii Physics
; revision date - May 13. 1986

; note: unbuffered communications! each character fetched by
; "CALL GET_CHAR" rather than read out of a string buffer.

link references

PUBLICCMDPOLL

EXTRN CODE (GET_CHAR. OUT_CHAR. PUT_STRING. PUT_CRLF,
XEQY,XNEY)

EXTRN CODE (ASCBIN)

global variables

EXTRN DATA(DEV, CMD, DATUM, ERRFLG, SYNCFLG)

$INCLUDE(UHPS.lNC)

; local definitions and variables

; const

528

529

; var

CMDPOL_DATA SEGMENT DATA
RSEG CMDPOL_DATA

CHAR:
DEVID:

OS 1
OS 1

; character buffer
; binary form of DEV

macro definitions

%*DEFINE (MSYNCH(LAB» LOCAL LABEL

(

CALL GET_CHAR

MOV CHAR,A

%MIF (CHAR,MXEQY,#DOLLAR,SYN%LAB)

MOV SYNCFLG,#TRUE

RET

SYN%LAB:

)

; begin subroutine

CMDPOL_CODE SEGMENT CODE
RSEG CMDPOL_CODE

CMDPOLL:

; initialize control flags

; disable error flag

MOV ERRFLG,#FALSE

._-------------------- . -- - ---- -. -

; disable message synch flag

MOV SYNCFLG,#FALSE

; first check for consistent device destination

%MSYNCH(1)

MOV DEV,CHAR

; first device byte in DEV

%MSYNCH(2) ; second device byte in CHAR

%MIF (DEV,MXNEY,CHAR,CMDPOL1)

MOV ERRFLG,#TRUE ; inconsistent device
; so look for next message

RET

CMDPOL1:

; second check if message is for this module

PUSH DEV ; convert DEV info to binary

CALL ASCBIN; form in order to compare

POP DEVID; it to the device identity

; if (devid != OXA) {

%MIF (DEVID,MXNEY,#OAH,CMDPOL9)

MOV ERRFLG,#TRUE ; not for POWER
module so return

RET

%MElSE(CMDPOl9,CMDPOl9A)

; message unique for this module so echo back the
; header for this command

MOV A,#DOlLAR
CAllOUT_CHAR

MOV A,#BIGA
CAllOUT_CHAR
CAllOUT_CHAR

CMDPOl9A:

; third parse message for a command

%MSYNCH(3) ; first command byte

MOV CMD,CHAR

%MSYNCH(4) ; second command byte

MOV CMD+1,CHAR

%MSYNCH(5) ; termination or first data byte

MOV DATUM,CHAR

; if (datum == <CR» {

%MIF (DATUM,MXEQY,#CR,CMDPOl1 0)

RET ; message completed

CMDPOl10:

%MSYNCH(6) ; second data byte

MOV DATUM+1,CHAR

-------- - --- ---

531

; check for command termination

%MSYNCH(7) ; command terminator in CHAR

; if (char == <CR» {

%MIF (CHAR,MXEQY,#CR,CMDPOL11)

RET ; message completed

CMDP0L11:

; message not properly terminated

MOV ERRFLG,#TRUE

RET

LLOPDMC:

IN)

-------_.

532

$DEBLG

NAME COMMAND_SERVICE

; routine services the command or returns an error message
; for invalid commands. it is here that the various output
; channels are defined.
; POWER module version.

; author - John F. Babson, University of Hawaii Physics
; revision date - Oct. 14, 1985

link references

PUBLIC CMDSERV

EXTRN CODE(XEQY, CMDERR, PWROFF, PWRON, ECHOM)

$INCLUDE(UHPS.lNC)

; global constants and variables

EXTRN DATA (CMD)

local definitions and variables

; const

; var

533

; begin subroutine

CMD_SERV_CODE SEGMENT CODE
RSEG CMD_SERV_CODE

CMDSERV:

; if (cmd(O) = 'S') then

%MIF(CMD,MXEQY,#BIGS,CSERV1)

CALL PWROFF
CALL ECHOM ; echo command message

%MELSE(CSERV1,CSERV2)

; if (cmd(O) = 'a') then

%MIF(CMD,MXEOY,#BIGO,CSERV5)

CALL PWRON
CALL ECHOM ; echo command message

%M ELSE(CSERV5,CSERV6)

CALL CMDERR; echo back bad command

CSERV6:

CSERV2:

RET

VRESDMC:

- -_.. . _.. - .- --- -._-

534

$DEBUG

; subroutine pwron - turns on the requested device. Only one
; device maybe turned on at a time. The global data structure
; ON(2) is used with "ones" indicating the associated device is
; on and "zeros" indicating off. cmd(1) is used to contain the
; device identification.

; author - John F. Babson, University of Hawaii Physics
; revision date - Nov. 7, 1985

; calling sequence:
EX: CALL PWRON ; device information is hex number stored

in global byte cmd(1)

link references

PUBLIC PWRON
EXTRN CODE (CMDERR, ISHEX, XEQY, XLEY)

; global constants and variables

; const

$INCLUDE (UHPS.lNC)

; var

EXTRN DATA (CMD, ON)

local definitions and variables

; const

LATCHO BIT P3.3
LATCH1 BIT P3.4

535

536

; var

PWRON_DATA SEGMENTDATA
RSEG PWRON_DATA

RESULT:

; begin subroutine

os 1 ; result of hex test

PWROf'LCODE SEGMENTCODE
RSEG PWRor'LCODE

PWRON:

; check if device identifier is valid hex identifier

PUSH CMD+1 ; pass the device identity

CALL ISHEX

POP RESULT

%MIF (RESULT,MXEQY,#FALSE,PWRON1)

; erroneous device, exit with error message

CALL CMDERR

RET

PWRON1:

-~--~- -~------~~-~-----------~. ----

: next, check if device controlled by LATCHO [0..07H]
: or LATCH1 [08H..OBH] and set appropriate bit by

: picking if off and ORing it with the existing bits.

%MIF (CMD+1,MXLEY,#NUM7,PWRON2)

: LATCHO cases - compare cmd(1) to 0..7H

: switch (cmd(1))

MOV A,CMD+1

: case (OOH)

CJNE A,#NUMO,PWRON20

ANL ON,#11111110B
JMP PWRON27

PWRON20:

: case (01 H)

CJNE A,#NUM1,PWRON21

ANL ON,#111111 01 B
JMP PWRON27

PWRON21:

: case (02H)

CJNE A,#NUM2,PWRON22

ANL ON,#11111011B
JMP PVvRON27

PWRON22:

: case (03H)

CJNE A,#NUM3,PWRON23

ANL ON,#1111 0111 B
JMP PWRON27

PWRON23:

; case (04H)

CJNE A,#NUM4,PWRON24

ANL ON,#111011118
JMP PWRON27

PWRON24:

; case (05H)

CJNE A,#NUM5,PWRON25

ANL ON,#110111118
JMP PWRON27

PWRON25:

; case (06H)

CJNE A,#NUM6,PWRON26

ANL ON,#101111118
JMP PWRON27

---------- ------------

538

PWRON26:

; default

ANL ON,#01111111B

PWRON27: ; end case

; move result to LATCHO and write it out

MOV P1,ON; place it on port

SETB LATCHO; write
NOP
NOP
CLR LATCHO ; it out

O/OMELSE(PWRON2,PWRON3)

; latch1 cases - compare cmd(1) to 8H..OBH

; switch (cmd(1))

MOV A,CMD+1

; case (08H)

CJNE A,#NUM8,PWRON28

ANL ON+1,#1111111 OB
JMP PWRON2C

PWRON28:

; case (09H)

CJNE A,#NUM9,PWRON29

ANL ON+1,#11111101B
JMP PWRON2C

539

540

PWRON29:

; case (OAH)

CJNE A,#BIGA,PWRON2A

ANL ON+1,#11111011 B
JMP PWRON2C

PWRON2A:

; case (OBH)

CJNE A,#BIGB,PWRON2B

ANL ON+1,#11110111B
JMP PWRON2C

PWRON2B:

; default case
; if it falls through, to have non-existent

; device selected

CALL CMDERR; "devices" C thru F

PWRON2C:

; move result to LATCH1 and write it out

MOV P1,ON+1 ; place it on port

SETB LATCH1 ; write
NOP
NOP
CLR LATCH1 , it out

.. _-__.. _---_._._--_._--._-- ----- ---------

PWRON3:

; return

RET

NORWP:

8'D

541

$DEBUG

; subroutine pwroff - turns on the requested device. Only one
; device maybe turned on at a time. The global data structure
; ON(2) is used with "ones" indicating the associated device is
; on and "zeros" indicating off. cmd(1) is used to contain the
; device identification.

; author - John F. Babson, University of Hawaii Physics
; revision date - Nov. 7, 1985

; calling sequence:
EX: CALL PWROFF ; device information is hex number stored

in global byte cmd(1)

link references

PUBLIC PWROFF
EXTRN CODE(CMDERR, ISHEX, XEQY, XLEY)

; global constants and variables

; const

$INCLUDE (UHPS.lNC)

; var

EXTRN DATA (CMD, ON)

local definitions and variables

; const

LATCHO BIT P3.3
LATCHi BIT P3.4

542

; var

PWROFF_DATA SEGMENT DATA
RSEGPWROFF_DATA

543

RESULT:

; begin subroutine

OS 1 ; result of hex test

PWROFF_CODE SEGMENTCODE
RSEG PWROFF_CODE

PWROFF:

; check if device identifier is valid hex identifier

PUSH CM0+1 ; pass the device identity

CALL ISHEX

POP RESULT

%MIF (RESULT,MXEQY,#FALSE,PWROFF1)

; erroneous device, exit with error message

CALL CMDERR

RET

PWROFF1:

; next, check if device controlled by LATCHO [O..07H]
; or LATCH1 [OSH..08H] and set appropriate bit by

; picking if off and ANDing it's compliment with
; the existing bits.

%MIF (CMD+1,MXLEY,#NUM7,PWROFF2)

; LATCHO cases - compare cmd(1) to O..7H

; switch (cmd(1))

MOV A,CMD+1

; case (OOH)

CJNE A,#NUMO,PWROFF20

ORL ON,#000000018
JMP PWROFF27

PWROFF20:

; case (01H)

CJNE A,#NUM1,PWROFF21

ORL ON,#000000108
JMP PWROFF27

PWROFF21:

; case (02H)

CJNE A,#NUM2,PWROFF22

ORL ON,#000001008
JMP PWROFF27

PWROFF22:

544

; case (03H)

CJNE A,#NUM3,PWROFF23

ORL ON,#00001000B
JMP PWROFF27

PWROFF23:

; case (04H)

CJNE A,#NUM4,PWROFF24

ORL ON,#00010000B
JMP PWROFF27

PWROFF24:

; case (OSH)

CJNE A,#NUMS,PWROFF2S

ORL ON,#00100000B
JMP PWROFF27

PWROFF2S:

; case (06H)

CJNE A,#NUM6,PWROFF26

ORL ON,#01000000B
JMP PWROFF27

PWROFF26:

; default

ORL ON,#10000000B

PWROFF27: ; end case

545

546

: move result to LATCHO and write it out

MOV P1,ON: place it on port

SETB LATCHO: write
NOP
NOP
CLR LATCHO: it out

%MELSE(PWROFF2,PWROFF3)

: switch (cmd(1))

MOV A,CMD+1

: case (08H)

CJNE A,#NUM8,PWROFF28

ORL ON+1,#000000018
JMP PWROFF2C

PWROFF28:

: case (09H)

CJNE A,#NUM9,PWROFF29

ORL ON+1,#0000001 OB
JMP PWROFF2C

PWROFF29:

----- -------------------------

; case (OAH)

CJNE A,#BIGA,PWROFF2A

ORL ON+1,#000001OOB
JMP PWROFF2C

PWROFF2A:

; case (OBH)

CJNE A,#BIGB,PWROFF28

ORL ON+1,#000010008
JMP PWROFF2C

PWROFF2B: ; default case
; if it falls through, non-existent

; device selected

CALL CMDERR; "devices" C thru F

PWROFF2C:

; move result to LATCH1 and write it out

547

MOV P1,ON+1

SETB LATCH1
NOP
NOP
CLR LATCH1

PWROFF3:

; return
RET

FFORWP:

; place it on port

; write

; it out

---_._--- ---- -- --- --- ---- - - - -------- ------------ ---

$DEBUG

548

; subroutine CMDERR - used to respond to command error condition
; by echoing back improper command with a question mark
; POWER module version ~

; message string:
<?><?><CR>

; author - John F. Babson, University of Hawaii Physics
; revision date - May 12, 1986

link references

PUBLIC CMDERR

EXTRN CODE (OUT_CHAR)

global variables

EXTRN DATA (CMD)

$INCLUDE(CONSNT.lNC)

; local definitions and variables

; const

- -------- - ---- -----

; var

; begin subroutine

CMDERR_OODE SBGMENTOODE
RSBG CMDERR_CODE

CMDERR:

; echo the erroroneous command

549

;MOV A,CMD
; CALL OUT_CHAR

;MOV A,CMD+1
; CALL OUT_CHAR

MOV A,#QUESTION
CALL OUT_CHAR
CALL OUT_CHAR

MOV A,#CR
CALL OUT_CHAR

; first command byte echoed

; second command byte echoed

; question mark

;<CR>

RET

RREDMC:

- ---------

550

$DE13U3

; subroutine FORERR -used to respond to message format
; error condition by sending back error message with a question
; mark

STRING optical module I POWER module version

message string:

<$>FORERR?<CR>

; author - John F. Babson, University of Hawaii Physics
; revision date - Oct. 13, 1985

link references

PUBLIC FORERR

EXTRNCODE (PUT_STRING, PUT_CHAR)

global variables

$INCLUDE(CONSNT.lNC)

; local definitions and variables

; const

FORERR_MSG SEGMENT CODE
RSEG FORERR_MSG

; var

FORMSG_1: DB '$FORMAT?',OOH ; format error message

; begin subroutine

FORERR_CODE SEGMENTCODE
RSEG FORERR_CODE

FORERR:

; send the format error message

MOV DPTR,#FORMSG_1
CALL PUT_STRING

MOV A,#CR
CALL PUT_CHAR

RET

RREROF:

-- ~ ~-~~---------~-- -~~

551

552

APPENDIXF

Source Code Listhag ofthe Underwater Hawai'j Programming
Language (UHPS)

The source code for program. UHPS consists of IS modules which are listed
below in approximate functional category. The include modules (INC) are
definitions of constants and macros giving structure to the language. The
primitive subroutines (PSI) are subroutines which work very close to the
hardware registers and do not use the stack for information passing. The
subroutines (ASI) and subroutine collections (S51) preform. higher level
functions relatively independent of the special hardware features of the 8051
family such as information type identification and conversion. These are all
listed according to the order shown in Table F.l below:

Table F.! Listing Order ofUHPS Routines

Class Name Description

Include files (INC):

UHPS
CONSNT
DASTRC
RUNMAC
LCSTRC

Master include file
Constant definitions
Data structure definitions (stack and table)
Runtime macro definitions.
Logic control structure definitions

Primative subroutines (PSI):
COMLIB Communications library
TIMER Software timing library
TABTIE Table handling library

RUNTIM Runtime library

Subroutines (A51):
INIT3
ISALNO
ISHEX
ASCBIN
GFETA

Subroutines (S51):
HEXSUB

System initialization
Is alphnumeric?
Is hex?
ASCII to binary
Embedded message

Hex to ASCII and ASCII to hex

553

The listing of the individual modules now follows:

554

; UHPS.lNC - include file for forcing inclusion of the standard UHPS
; include files

; author - John F. Babson, University of Hawaii Physics
; revision date - Aug 1986

$INCLUDE (CONSNT.lNC)
$INCLUDE (RUNMAC.lNC)
$INCLUDE (LCSTRC.lNC)

._ __ - _._---- -------_._--------------------

555

; include CONSNT.lNC
,
; file of global constants to be included at assembly time

; author - John F. Babson, University of Hawaii Physics
; revision date - Oct. 14, 1985

; global definitions

; const

; logical state constants

TRUE
FALSE

EQU 01 H ; logical state
EQU OOH ; logical state

; ASCII constants

at
LF
ESC
GREATER
DOLLAR
QUESTION

BIGA
BIGB
BIGC
BIGO
BIGE
BIGF
BIGG
BIGH
BIGI
BIGJ
BIGK
BIGL
BIGM
BIGN
BIGO
BIGP

EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

OOH
OAH
1BH
3EH
24H

3FH

41H
42H
43H
44H
45H
46H
47H
48H
49H
4AH
4BH
4CH
4DH
4EH
4FH
SOH

; carriage return
; line feed

; escape
; > used as a terminal prompt
; $ used for comm's synch

.?, .

; capital letter A
;B
;C
;0
;E
;F
;G
;H
; I
;J
;K
;L
;M
;N
;0
;P

--------- ---- -- ------

556

BIGQ EQU 51H ;Q
BIGR EQU 52H ;R
BIGS EQU 53H ;S
BIGT EQU 54H ;T
BIGU EQU 55H ;U
BIGV EQU 56H ;V
BIGW EQU 57H ;W
BIGX EQU 58H ;X
BIGY EQU 59H ;Y
BIGZ EQU 5AH ;Z

NULL EQU OOH ; ASCII null
NUMO EQU 30H ; ASCII number zero
NUM1 EQU 31H ; one
NUM2 EQU 32H ; two
NUM3 EQU 33H ; three
NUM4 EQU 34H ; four
NUM5 EQU 35H ; five
NUM6 EQU 36H ; six
NUM7 EQU 37H ; seven
NUM8 EQU 38H ; eight
NUM9 EQU 39H ; nine
SPACE EQU 20H ; ASCII space

; 8051 timer/counter program model and constants

; TCON - timer/counter control/status register definitions

; OVERFLOW FLAG -
set on overflow
clear by software

TFO EQU TCON.5 ; timerO
TF1 EQU TCON.7 ; timer1

; RUN CONTROL-
set to start
clear to stop

TRO EQU TCONA
TR1 EQU TCON.6

557

; INTERRUPT EDGE FLAG (Le. external interrupt detected)
set on interrupt
clear by software interrupt handler

lEO EQU TCON.1
IE1 EQU TCON.3

; INTERRUPT TYPE CONTROL FLAG (Le. sets interrupt trigger on
falling edge or low level)
set for falling edge
clear for low level

ITO EQU TCON.O
IT1 EQU TCON.2

; TIMERICOUNTERO

; mode control selection

MODOO EQU
MOD10 EQU
MOD20 EQU
MOD30 EQU

000000008
000000018
000000108
000000118

; 8 bit cntr, /32 prescaler
; 16 bit cntr
; 8 bit cntr, autoreload
; two 8 bit cntr's

; counter or timer

COUNTO
TIMEO

sou 000001008
EaU 000000008

; select counter
; select timer

; external gate control

GTONO
GTOFFO

sou 000010008
EQU 000000008

; external gate control ON
; external gate control OFF

558

; TIMERICOUNTER1

; mode control selection

MOD01
MOD11
MOD21
MOD31

EQU
EQU
EQU
EQU

000000008
000100008
001000008
001100008

; 8 bit cntr, /32 prescaler
; 16 bit cntr
; 8 bit cntr, autoreload
; disrupt counting

; [alt start/stop]

; counter or timer

COUNT1
TIME1

EQU 010000008
EQU 000000008

; select counter
; select timer

; external gate control

GTON1
GTOFF1

EQU 100000008
EQU 000000008

; external gate control ON
; external gate control OFF

; NOTE: timer initiation at assembly time

EX: MOV TMOD,MOD10+COUNTO+GTOFFO
; 8-bit COUNTERO w/o external gate

; NAME DATA STRUCTURES

; author - John F. Babson, University of Hawaii Physics
; revision date - Aug 1986

link references

; NONE

; note: this is a collection of macros that impliment useful data
; structures such as stacks (FILO) and tables (random access).

begin data structure macros

; MUPDATE - macro to write to a table

%*DEFINE(MUPDATE(TABLE,OFFSET,VALUE)) LOCAL LABEL
(

559

)

MOV
ADD
MOV

MOV

A,lfOloTABLE
A,%OFFSET

RO,A

@RO,%VALUE

%'point to table entry'
%'add offset'
%'point to position in table'
%'Ioad pointer'
%'fetch value'
%'write value into table'

; MFETCH - macro to read from a table

%*DEFINE(MFETCH(TABLE,OFFSET,VALUE)) LOCAL LABEL
(

)

MOV
ADD'
MOV

MOV

A,lfO/oTABLE
A,%OFFSET

RO,A
%VALUE,@RO

;'point to beginning of table'
;'Iocation = table +offset'
;'ptr --> location'
;'retrieve value from table'

500

; stack macros - current implimentation treats stacks as FILO
; tables with a global pointer around always pointing to the
; next empty location. this pointer is one byte long and thus
: limits the stack length to 128 bytes long. a future upgrade
; would be to make the pointer two bytes long thus allowing it
: to point to any part of data memory. additionally, the stack

: is treated as a push down stack rather than a push up stack
; like the system stack and thus it grows downward in memory
: rather than upward from its root location.

; MPSH - macro to push byte (value) onto stack

%*DEFINE(MPSH(USTACK,STKPTR,VALUE)) LOCAL LABEL
(

%MUPDATE(%USTACK,%STKPTR,%VALUE)
DEC %STKPTR

)

; MPUL - macro to pull byte (value) off of stack

%*DEFINE(MPUL(USTACK,STKPTR,VALUE)) LOCAL LABEL
(

INC %STKPTR
%MFETCH(%USTACK,%STKPTR,%VALUE)

)

; end data structure macros

561

note: this is a collection of macros that mirror the decision logic
primatives of the run time library RUNUB.P51. their function is to
simplify the calling of the run time primatives through the use of

; additional structured logic flow macros found in LCSTRC.INC.

; additionally, XDATA oriented versions of the above
; mentioned macros are included as well as the seven macros
; EPOP, EPUSH, EMOV, TMOV, FMOV, TAMOV, and FAMOVto

facilitate the semiautomatic conversion of routines
; originally written using DATA instead of XDATA memory.

; author - John F. Babson, University of Hawaii Physics

revision date - Sept. 16, 1985

link references

; NONE

begin decision macros

; in the following, X and Yare two byte values to be compared.
; the form MXOPY is used when X and Yare either DATA bytes or
; constants. the form EXOPY is used when both X and Y
; are XDATA bytes.
; the forms EXOPK or EKOPY are used when either X or Y

; is either a constant ("K" for constant) or DATA byte and the
; other one is an XDATA byte.

562

?Y>x.,
**

%*DEFINE(MXGTY(X,Y)) LOCAL LABEL
(

MOV RO,%X
MOV R1,%Y
CALL XGTY

)

%*DEFINE(EXGTY(X,Y)) LOCAL LABEL
(

%TMOV(RO,%X)
%TMOV(R1,%Y)
CALL XGTY

)

%*DEFINE(EXGTK(X,K)) LOCAL LABEL
(

%TMOV(RO,%X)
MOV R1,%K
CALL XGTY

)

%*DEFINE(EKGTY(K,Y)) LOCAL LABEL
(

MOV RO,%K
%TMOV(R1,%Y)
CALL XGTY

)

563

?Y<x,

%*DEFINE(MXLTY(X,Y)) LOCAL LABEL
(

MOV RO,%X
MOV R1,%Y
CALL XLTY

)

%*DEFINE(EXLTY(X,Y)) LOCAL LABEL
(

%TMOV(RO,%X)
%TMOV(R1 ,0/0Y)
CALL XLTY

)

%*DEFINE(EXLTK(X,K)) LOCAL LABEL
(

0/0TMOV(RO,%X)
MOV R1,%K
CALL XLTY

)

%*DEFINE(EKLTY(K,Y)) LOCAL LABEL
(

MOV RO.%K
%TMOV(R1,%Y)
CALL XLTY

)

?Y=x·,

%*DEFINE(MXEQY(X,Y)) LOCAL LABEL
(

MOV RO,%X
MOV R1,%Y
CALL XEQY

)

%*DEFINE(EXEQY(X,Y)) LOCAL LABEL
(

%TMOV(RO,%X)
%TMOV(R1,%Y)
CALL XEQY

)

%*DEFINE(EXEQK(X,K)) LOCAL LABEL
(

%TMOV(RO,%X)
MOV R1,%K
CALL XEQY

)

%*DEFINE(EKEQY(K,Y)) LOCAL LABEL
(

MOV RO,%K
%TMOV(R1,%Y)
CALL XEQY

)

---- ~ .. ---~. --

565

?YI-.-x.,
••

%·DEFINE(MXNEY(X,Y)) LOCAL LABEL
(

MOV RO,%X
MOV R1,%Y
CALL XNEY

)

%·DEFINE(EXNEY(X,Y)) LOCAL LABEL
(

%TMOV(RO,%X)
%TMOV(R1,%Y)
CALL XNEY

)

%·DEFINE(EXNEK(X,K)) LOCAL LABEL
(

%TMOV(RO,%X)
MOV R1,%K
CALL XNEY

)

%·DEFINE(EKNEY(K,Y)) LOCAL LABEL
(

MOV RO,%K
0./0TMOV(R1,%Y)
CALL XNEY

)

~ ~------~----------------~

566

?Y=>x,
••••••••• * ••••••••••••••••• *** •• *.** ••• * ••••••••••••

%·DEFINE(MXGEY(X,y») LOCAL LABEL
(

MOV RO,%X
MOV R1,%Y
CALL XGEY

)

%·DEFINE(EXGEY(X,Y)) LOCAL LABEL
(

0/0TMOV(RO,%X)
0/0TMOV(R1,%Y)
CALL XGEY

)

%*DEFINE(EXGEK(X,!<)) LOCAL LABEL
(

0/0TMOV(RO,%X)
MOV R1,%K
CALL XGEY

)

%*DEFINE(EKGEX(K,Y)) LOCAL LABEL
(

MOV RO,%K
%TMOV(R1,%Y)
CALL XGEY

)

._---- - ------- -------

?Y<=x,
•••

%·DEFINE(MXLEY(X,Y)) LOCAL LABEL
(

MOV RO,%X
MOV R1,%Y
CALL XLEY

)

%·DEFINE(EXLEY(X,Y)) LOCAL LABEL
(

%TMOV(RO,%X)
%TMOV(R1,%Y)
CALL XLEY

)

%·DEFINE(EXLEK(X,K)) LOCAL LABEL
(

%TMOV(RO,%X)
MOV R1,%K
CALL XLEY

)

%·DEFINE(EKLEY(K,Y)) LOCAL LABEL
(

MOV RO,%K
0/0TMOV(R1 ,%Y)
CALL XLEY

)

; end --- the decision macros

; begin XDATA PUSH, POP and MOV macros

; move an XDATA source byte (X) to a DATA destination (D)

%*DEFINE(TMOV(D,X)) LOCAL LABEL
(

MOV DPTR,lPkX
MOVX A,@DPTR
MOV %D,A

)

; move a DATA source byte (D) to an XDATA destination (X)

%*DEFINE(FMOV(X,D)) LOCAL LABEL
(

MOV A,%D
MOV DPTR,IP/oX
MOVX @DPTR,A

)

; move an XDATA source byte (X) to the A register

%*DEFINE(TAMOV(X)) LOCAL LABEL
(

MOV DPTR,IP/oX
MOVX A,@DPTR

)

; move the A register to an XDATA destination byte (X)

%*DEFINE(FAMOV(X)) LOCAL LABEL
(

MOV DPTR,IP/oX
MOVX @DPTR,A

)

568

; push an XDATA byte (X) onto the system stack

%*DEFINE(EPUSH(X)) LOCAL LABEL
(

MOV DPTR,#%X
MOVX A,@DPTR
MOV STACC,A
PUSH STACC

)

; pop an XDATA byte (X) off the system stack

%*DEFINE(EPOP(X)) LOCAL LABEL
(

)

POP
MOV
MOV
MOVX

STACC
A,STACC
DPTR,#%X
@DPTR,A

; mov an XDATA byte (X) to an XDATA byte(y)

%*DEFINE(EMOV(X,Y)) LOCAL LABEL
(

)

MOV
MOVX
MOV
MOVX

DPTR,#%Y
A,@DPTR
DPTR,#%X
@DPTR,A

; end --- the XDATA macros

; begin incremenVdecrement XDATA macros

; increment an XDATA byte (X)

%o\DEFINE(EINC(X» LOCAL LABEL
(

570

)

MOV
MOVX
INC

MOVX

DPTR,IIOJ!cX
A,@DPTR
A
@DPTR,A

; decrement an XDATA byte (X)

%o\DEFINE(EDEC(X)) LOCAL LABEL
(

)

MOV
MOVX
DEC

MOVX

DPTR,IIOJ!cX
A,@DPTR
A
@DPTR,A

; end --- the increment/decrement XDATA macros

; begin arithmetic XDATA macros

; straight addition of XDATA byte to <A>

%*DEFINE(EADD(X)) LOCAL LABEL
(

571

)

MOV
MOV
MOVX
MOV
MOV
ADD

RO,A
DPTR,#%X
A,@DPTR
R1,A
A,RO
A,R1

; addition with carry of XDATA byte to <A>

%*DEFINE(EADDC(X)) LOCAL LABEL
(

)

MOV
MOV
MOVX
MOV
MOV
ADDC

RO,A
DPTR,IIO.IoX
A,@DPTR
R1,A
A,RO
A,R1

; subtract with borrow of XDATA byte to <A>

%*DEFINE(ESUBB(X)) LOCAL LABEL
(

)

MOV
MOV
MOVX
MOV
MOV
SUBB

RO,A
DPTR,IIO.IoX
A,@DPTR
R1,A
A,RO
A,R1

:.

; end --- the arithmetic XDATA macros

; begin the logic XDATA macros

; logical AND of XDATA byte with <A>

%*DEFINE(EAND(X)) LOCAL LABEL
(

MOV RO,A
MOV DPTR,#%X
MOVX A,@DPTR
MOV R1,A
MOV A,RO
EAND A,R1

)

; logical OR of XDATA byte with <A>

%*DEFINE(EOR(X)) LOCAL LABEL
(

MOV RO,A
MOV DPTR,lPkX
MOVX A,@DPTR
MOV R1,A
MOV A,RO
EOR A,R1

)

; end --- the logical XDATA macros

572

; NAMELOGIC CONTROL STRUCTURES- -

link references

;NONE

note: this is a collection of macros that impliment the
; standard logic control structures as found in such languages as
; C, RATFOR, and PASCAL.

; author - John F. Babson, University of Hawaii Physics
; revision date - Aug 1986

begin control macros

; if then or else

; if (CONDITION) { }

%*DEFINE(MIF(X,CONDITION,Y,ELSELAB)) LOCAL LABEL
(

%%CONDITION(%X,%Y)
JNC %ELSELAB

)

; else { }

%*DEFINE(MELSE(ELSELAB,ENDLAB)) LOCAL LABEL
(

JMP %ENDLAB
%ELSELAB:

573

; while loop

; while (CONDITION) {

%*DEFINE(MWHILE(X,CONDITION,Y,BEGIN,END)) LOCAL LABEL
(

%BEGIN:
%%CONDITION(%X,%Y)

JNC %END
)

;}*' end the while 1*

%*DEFINE(MWEND(BEGIN,END)) LOCAL LABEL
(

JMP %BEGIN
%END:

)

; repeat until

; repeat {

%*DEFINE(MREPEAT(BEGIN)) LOCAL LABEL
(

%BEGIN:
)

; until (CONDITION)

%*DEFINE(MUNTIL(X,CONDITION,Y,BEGIN,END)) LOCAL LABEL
(

%%CONDITION(%X,%Y)
JNC %BEGIN

%END:
)

; end --- the control macros

---- - - --- ----

574

575

NAMECOMMUNICATIONS_LIBRARY

: author - John F. Babson, University of Hawaii Physics
: revision date - Oct. 31, 1985

link references

PUBLIC PUT_CRLF, PUT_STRING, PUT_CHAR, GET_CHAR
PUBLIC OUT_CRLF, OUT_STRING, OUT_CHAR, IN_CHAR
PUBLIC PUT_DATA_STR, GET_NUM, ECHO

EXTRN CODE (MDELAY)

This is the library of communications primatives used to interface
with an external communication system for receiving

; commands and responding with replies. The principle routines
: are GET_CHAR and PUT_CHAR which fetch and output a single
; ASCII character at a time respectively. These are
; primative routines and thus, in this context do not
; pass information to and from the stack upon being called but

rather do so using the following convention:

(A)
(RO)
(R1)
DPTR

contains inpuUoutput character
contains data string address
contains length of data string
address pointer to code string

local definitions and variables

; const

CR
LF

; var

EQU
EQU

ODH
OAH

: carriage return
: line feed

; begin library

COMUS_CODE SEGMENT CODE
RSEG COMUS_CODE

USING 0

; primative PUT_CRLF

; This routine outputs a Carriage Return and
; a Line Feed

MOV A,#CR
CALL PUT_CHAR
MOV A,#LF
CALL PUT_CHAR

RET

; primative OUT_CRLF.,
; OUT CRLF version of PUT CRLF- -

MOV A,#CR
CALL OUT_CHAR
MOV A,#LF
CALL OUT_CHAR

RET

576

; primative PUT_STRING

; Routine outputs a null-terminated string located
; in CODE memory, whose address is given in DPTR.

577

CLR
MOVC
JZ
CALL
INC
JMP

EXIT:

RET

A
A,@A+DPTR
EXIT
PUT_CHAR
DPTR
PUT_STRING

; primative OUT_STRING.,
; OUT_CHAR based version of PUT_STRING

CLR
MOVC
JZ
CALL
INC
JMP

FINISH:

RET

A
A,@A+DPTR
FINISH
OUT_CHAR
DPTR
OUT_STRING

; Routine outputs a string located in DATA memory,
; whose address is in R1 and its length in R2.

578

MOV
CALL
INC
DJNZ

RET

A,@R1
PUT_CHAR
R1
R2,PUT_DATA_STR

; primative PUT_CHAR

; This routine outputs a single character to console.
; The character is given in A.

PUT_CHAR:

JNB TI,$
CLR TI
MOV SBUF,A

RET

; primative OUT_CHAR

; this routine is a variation on PUT_CHAR which toggles
; a strobe line defined by the clearing of both the RD
; and WR lines for a wait period of at least 3 microseconds
; prior to outputting a character on the serial I/O line.
; this protocal is necessary in order to control the
; Computrol model CM-SOOK 500 kilobaud coaxial half duplex

; modem.

OUT_CHAR:

CLR RD set trans
CLR WR strobe low

NOP wait at
NOP least 3
NOP microseconds

JNB TI,$ output
CLR TI the
MOV SBUF,A character

SETB WR set trans
SETB R) strobe high

RET

579

580

: primative GET_NUM

: This routine gets a 4 character string from console
; and stores it in memory at the address given in RO.
; If a "X is received, routine starts over again.

GET_NUM:

MOV R2,#4
MOV R1,ARO

GET_LOOP:

CALL GET_CHAR

: set up string length as 4
: RO value may be needed for restart

: Next 4 instructions handle "X- the routine starts
; over if received

CLR ACC.7
CJNE A,#18H,GO_ON
CALL PUT_CRLF

JMP GET_NUM

GO_ON:

MOV @R1,A
INC R1
DJNZ R2,get_loop

RET

: clear the parity bit
: if not "X- go on

-------------------------------- --- --

581

; primative GET_CHAR

; This routine gets a single character from console.
; The character is returned in A.

GET_CHAR:

JNB
CLR
MOV
ANL

RET

RI,$
RI
A,SBUF
A,#01111111 B strip off any parity bit to ASCII

input character

582

; primative IN_CHAR

; this routine is a variation of GET_CHAR which has a built
; in 1 millisecond delay between each check for a new input
; character. two counters (R6 and R7) are loaded in advance

; of calling an input subroutine providing a time out facility
; that will force a return should the input not be completed

; within a given period of time.

; calling sequence

LOCOUNT EQU R6
HICOUNT EQU R7

MOV
MOV

LOCOUNT,#200
HICOUNT,#25

; 200 ms
; X 25 =5 sec

; finally call input routine which uses IN_CHAR

B,#OOH ; timeout status flag starts as FALSE

IN_CHAR1:

JNB RI,WAIT
CLR RI
MOV A,SBUF
RET

WAIT: ; wait 1ms before looking for another character -
decrement timeout counter and return if it underflows

CALL MDELAY ; 1ms delay
DJNZ R6,IN_CHAR1; not ready, loop 4 char again
MOV R6,#200 ; reload lower byte of counter

DJNZ R7,IN_CHAR1; not zero, loop 4 char again
MOV 8,#01H ; timeout status TRUE on return
RET ; when both counter byts clear, timeout

._--------- -- --_ .._----------------- ._-- .. _--_.

583

; primative ECHO

; Routine echoes all character input from the console
; one at a time.

ECHO:

CALL GET_CHAR
CALL PUT_CHAR

RET

; end library

-------------- --- ---~~

NAMESOFTWARE_TIMER

; primatives for software timing purposes:

584

; DELAY
; MDELAY
; SDELAY
; MINDEL
; HDELAY

- 4 microsec delay
- 1 millisec delay
- 1 second delay
- 1 minute delay
- 1 hour delay

; author - John F. Babson, University of Hawaii Physics
; revision date - Oct. 21, 1985

; calling sequence:

EX: CALL SDELAY ; 1 second delay

EX: to produce a 5 millisecond delay

MLCNT EQU R4 ; millisec counter

MOV MLCNT,#5H

FIVECNT:

CALL MDELAY
DJNZ MLCNT,FIVECNT

RET

; programming note: the registers here could be used in a
; more efficient manner with registers needed only to hold
; count information as to the number of 4micro (R2),
; milli (R3), second (R4), minute (R5), or hour (R6) counts to delay

link references

PUBLIC DEU\Y, MDELAY, SDELAY, MINDEL, HDELAY

- - _.~- ---~~-- - - ~- ----

programming model for all of the primative routines

585

A
RO
R1

DPTR
R2
R3
R4
R5

R6
R7

character i/o buffer
data string address
data string length

code string address
microsecond clock
microsecond counter
millisecond clock
millisecond counter

second clock
second counter

local definitions and variables

; const

; var

MRCLK EQU R2 ; microsecond clock
MRCNT EQU R3 ; microsecond counter

; counts no. of 250 microsec's
MLCLK EQU R4 ; millisecond clock
MLCNT EQU R5 ; millisecond counter

; counts no. of 1000 millisec's
SCCLK EQU R6 ; second clock
SCCNT EQU R7 ; second counter

586

; begin library

STIMER_CODE SEGMENT CODE
RSEG STIMER.-CODE

DELAY: ; 6 microsecond delay

; 2 microseconds for CALL (either ACALL or LCALL) plus
; 2 microseconds for RET

NOP ; plus 2 microseconds for NOP's
NOP

RET

MDELAY: ; 1 millisecond delay

MOV MRCNT,#2

MDELAY1:

MOV MRCLK,#62

MDELAY2:

; (2 + 496 + 3 MOV) x 2
= 1002 microsec = 1 millisec

; 62 x 8 = 496 microsec

CALL DELAY ; 6 microsec
DJNZ MRCLK,MDELAY2; 2 microsec => 8 microsec

DJNZ MRCNT,MDELAY1; 2 microsec => 2 microsec

RET

SDELAY: ; 1 second delay

MOV MLCNT,#4

SDELAYi:

MOV MLCLK,#250

; 4 X 250 millisec = 1 second

250 miJlisec

SDELAY2:

CALL MDELAY
DJNZ MLCLK,SDELAY2
DJNZ MLCNT,SDELAY1

RET

MINDEL: ; 1 minute delay

MOV SCCLK,#60

MINDEL1:

; 60 x 1 sec = 1 min

CALL SDELAY
DJNZ SCCLK,MINDEL1

RET

HDELAY: ; 1 hour delay

MOV SCCNT,#60 ; 60 x 1 min = 1 hour

HDELAY1:

CALL MINDEL
DJNZ SCCNT,HDELAY1

RET

; end library

- ---- - ---- -------------

588

NAME TABLE_LIBRARY
I

; collection of primatives for handling XDATA tables

; author - John F. Babson, University of Hawaii Physics

; revision date - Sept. 18, 1985

link references

PUBLIC POINT, STORE, FETCH

; programming model

RO lower address byte
R1 upper address byte
R2 table offset

LOWER
UPPER
OFFSET

EQU RO
EQU R1
EQU R2

; calling sequence (note the * indicates a macro since MPL
; will expand any use of the real macro symbol here even
; though this line is a comment)

EX: *TMOV (R2,OFFSET)
MOV DPTR,#TABLE
CALL POINT

MOV DPTR,#CELL
MOVX A,@DPTR
CALL STORE

CALL
or MOV

MOVX

FETCH
DPTR,#CELL
@DPTR,A

.._-_ .. ------------------

589

; begin library

TABLE_CODESBGMENTCODE
RSBG TABLE_CODE

; point to first entry in XDATA table no longer than 256
; bytes long and ADD known offset to the pointer

POINT:

CLR
MOV
ADDC
MOV

C ; clear carry setting known state
A,DPL ; add offset
A,OFFSET ; to lower
DPL,LOWER ; byte of DPTR

; increment upper
byte of DPTR

if any carry

A,DPH
A,#OOH
DPH,UPPER;

MOV
ADDC
MOV
RET

; store byte currently in <A> at the location pointed to by POINT

STORE:

MOV DPL,LOWER
MOV DPH,UPPER
MOVX @DPTR,A
RET

; retrieve address
within TABLE

; store value there

; fetch byte at location pointed to by POINT and place it in <A>

FETCH:

MOV
MOV
MOVX
RET

DPL,LOWER
DPH,UPPER
A,@DPTR

; retrieve address
; within TABLE
; fetch value there

end --- of the library

link references

PUBLIC XGTY, XLTY, XEQY, XNEY, XGEY, XLEY

note: this is a collection of logical condition primatives used for
; making logical comparisions such as is X > Y ? etc. the calling
; sequence in all cases is as follows:

MOV RD,X
MOV R1,Y
CALL XGTY

i.e. the first quantity X is loaded into the RD register,
; the second quantity Y is loaded into the R1 register.
; finally, the result of the comparision, either TRUE = 1
; or FALSE = 0 is returned in the carry flag (C).

; local definitions and variables

; const

; var

LOBYTE EQU RO
UPBYTE EQU R1

; lower byte for DPTR incrementation
; upper"

RUNLlB_DATA SEGMENT DATA
RSEG RUNLlB_DATA

X:
Y:

OS 1
OS 1

; X and Yare
; comparision values

---_. -------_.__.- ---~--

591

; begin library

RUNLlB_CODE
RSEG RUNLlB_CODE

SEGMENTCODE

; X > Y? this is the most basic of the comparision primatives.
; it is used by all of the other comparision primatives.

XGTY:

MOV A,R1 ;Y
CPL A
MOV R1,A ; !Y
MOV A,RO ;X
CLR C
ADDC A,R1
RET

XLTV: ; untried, this is independent of the others

MOV A,RO ;X
CPL A
MOV RO,A ; !X
MOV A,R1 ;Y
CLR C
ADDC A,RO
RET

--~-----------

;x = Y?

XEQY:

MOV
MOV
CALL
JC
MOV
MOV
CALL
JC
SETS
RET

EQNO:
CLR

RET

; X !=Y?

XNEY:

MOV
MOV
CALL
JC
MOV
MOV
CALL
JC
RET

EQYES:

RET

X,RO
Y,R1
XGlY
fO\O
RO,Y
R1,X
XGlY
fO\O
C

C

X,RO
Y,R1
XGlY
EQYES
RO,Y
R1,X
XGlY
EQYES

; save X
; save Y

; C is set thus TRUE

; C is not set thus FALSE

; save X
; save Y

; C is cleared thus FALSE

; C is set thus TRUE

592

593

; X => Y?

XGEY:

MOV X,RO ; save X
MOV Y,R1 ; save Y
CALL XGlY
JC GEYES
MOV RO,X
MOV R1,Y
CALL)(EO{

JC GEYES
RET ; C is cleared thus FALSE

GEYES:

RET ; C is set thus TRUE

; X <= Y?

XLEY:

MOV X,RO ; save X
MOV Y,R1 ; save Y
CALL XGlY
JNC LEYES
MOV RO,X
MOV R1,Y
CALL)(EO{

JC LEYES1
RET

LEYES:
SETB C ; LE True

LEYES1:
RET

: second, here is a primative to decrement the data pointer
: (DPTR) since none exists in symmetry to the INC DPTR
: instruction

DDPTR:

MOV UPBYTE,DPH ; fetch DPTR
MOV LOBYTE,DPL in two bytes
DJNZ LOBYTE,NOBORROW: decrement lower byte
DEC UPBYTE ; borrow 1 from upbyte

NOBORROW:

MOV DPL,LOBYTE
MOV DPH,UPBYTE

: end --- of the library

- --- ----------------

594

595

NAME INITIAL

intrinsic routine for initializing the 8051 family microcontroller
both the system stack and the serial I/O port are initialized

; author - John F. Babson, University of Hawaii Physics
; revision date - Aug 1986

link references

PUBLIC INITIAL

local definitions and variables

; const

AUTORLD
BAU300

SERPORT

; var

DSEGat 8

Eau 00100000B ; auto-reload mode for timer
EaU 99H ; 300 baud timer
EaU 1101101OB ; Serial Port

STACK: os 24 : at power-up, the stack pointer
: is initialized to point here.
; 24 byte space reserved.

596

; begin subroutine

INITIAL_PROCESSOR segmentCODE
RSEG INITIAL_PROCESSOR

INITIAL:

; This is the initializing section. Execution always
; starts at address 0 on power-up.

MOV TMOD,#AUTORLD ; set timer mode to auto-reload
MOV TH1,#BAU300 ; set timer for 300 BAUD

; (self determined)
MOV SCON,#SERPORT ; prepare the Serial Port
SETB TR1 ; start clock

RET

LAITINI:

$DEBUG

NAME IS_IT_ALPHA_NUMERIC

; SUBROUTINE ISALNO

; routine to check whether or not a candidate character
; is a valid ASCII alphanumeric value or not

; author - John F. Babson, University of Hawaii Physics
; revision date - Aug 1986

link references

PUBLIC ISALNO
EXTRN CODE (XGEY, XLEY)

; global constants and variables

$INCLUDE (UHPS.lNC)

; local definitions and variables

; const

; var

ISALNO_DATA SEGMENT DATA
RSEGISALNO_DATA

5m

CISAN01: OS
CISAN02: OS
CHAR: OS
eel "G· DS1-1 LT'\ •

1
1
1
1

; return
; address

; character buffer
; condition flag

:.

; begin subroutine

ISALNO_CODE SEGMENT CODE
RSEG ISALNO_CODE

ISALNO:

POP CISAN01; save return
POP CISAN02; address

POP CHAR ; the candidate alphanumeric character

; set error flag EFLAG = #FALSE
; this is the default condition for

; the following comparison

MOV EFLAG,#FALSE

; now, successively compare CHAR to
; see if it is a valid ASCII alphanumeric character

; setting EFLAG = #TRUE iff it is

; case - is it a number, then set eflag TRUE

%MIF (CHAR,MXGEY,#NUMO,ISALN01)

%MIF (CHAR,MXLEY,#NUM9,COMPEND)

MOV EFLAG,#TRUE

ISALN01:

; case - is it a capital letter, then set eflag TRUE

%MIF (CHAR,MXGEY,#BIGA,ISALN02)

%MIF (CHAR,MXLEY,#BIGZ,COMPEND)

MOV EFLAG,#TRUE

598

ISALN02:

: case - is it a small letter, then set eflag TRUE

%MIF(CHAR,MXGEY,#LETA,ISALN03)

%MIF (CHAR,MXLEY,#LETZ,COMPEND)

MOV EFLAG,#TRUE

COMPEND: : end comparisons

: now, return

599

PUSH EFLAG

PUSH CISAN02
PUSH CISAN01

RET

ONLASI:

return condition

restore return
address

return

600

$DEBUG

NAMEIS_IT_HEX

; SUBROUTINE ISHEX

; routine to check whether or not a candidate character
; is a valid ASCII hex value or not

; author - John F. Babson, University of Hawaii Physics
; revision date - Aug 1986

link references

PUBLIC ISHEX
EXTRN CODE (XGEY, XLEY)

; global constants and variables

$INCLUDE (UHPS.lNC)

; local definitions and variables

; const

; var

ISHEX_DATA SEGMENT DATA
RSEGISHEX_DATA

CISHEX1: DS
CISHEX2: DS
CHAR: DS
EFLAG: DS

1
1
1
1

; return
; address

; character buffer
; condition flag

~~. ------~--- - ------------~ ~ -- ~ - - ~

; begin subroutine

ISH8CCODE SEGMENT CODE
RSEG ISHE>CCODE

ISHEX:

POP CISHEX1; save return
POP CISHEX2; address

POP CHAR ; the candidate hex character

; set error flag EFLAG = #FALSE
; this is the default condition for

; the following comparison

MOV EFLAG,#FALSE

; now, successively compare CHAR to
; see if it is a valid ASCII hex character

; setting EFLAG =#TRUE iff it is

%MIF (CHAR,MXGEY,#NUMO,COMPEND)

%MIF (CHAR,MXLEY,#BIGF,COMPEND)

%MIF (CHAR,MXLEY,#NUM9,ISHEX1)

MOV EFLAG,#TRUE

%MELSE (ISHEX1 ,COMPEND)

%MIF(CHAR,MXGEY,#BIGA,COMPEND)

MOV EFLAG,#TRUE

601

COMPEND: ; end comparisons

:...

; now, return

PUSH EFLAG ; return condition

PUSH CISHEX2; restore return
PUSH CISHEX1; address

RET ; return

XEHSI:

NAME ASCILTO_BINARY

; SUBROUTINE ASCBIN

; routine to convert ascii hex numbers to their absolute binary
; values. ascii input should first be tested for validity using
;ISHEX.

; author - John F. Babson, University of Hawaii Physics
; revision date - Aug 1986

link references

PUBLIC ASCBIN, STAK
EXTRN CODE (XLEY)

; global constants and variables

$INCLUDE (UHPS.lNC)

; local definitions and variables

; const

603

; var

ASCBIN_DATA SEGMENT DATA
RSEG ASCBIN_DATA

604

STAK: DS 1 ; stack scratch buffer

ASCBIN_XDATA SEGMENT XDATA PAGE
RSEG ASCBIN_XDATA

ORG 100H

CASCBIN1: DS 1
CASCBIN2: DS 1
ASCII: DS 1

BINARY: DS 1

; begin subroutine

ASCBIN_CODE SEGMENTCODE
RSEG ASCBIN_CODE

ASCBIN:

; beginning of external data memory
; page

; return
; address
; input ASCII byte
; output BINARY byte

POP
MOV
MOV
MOVX

POP
MOV
MOV
MOVX

POP
MOV
MOV
MOVX

STAK ; save return
A,STAK
DPTR,#CASCBIN1
@DPTR,A

STAK ; address
A,STAK
DPTR,#CASCBIN2
@DPTR,A

STAK ; the candidate hex character
A,STAK
DPTR,#ASCII
@DPTR,A

; check if ASCII byte is a number [0..9]
; else it is a letter [A..F]

;MIF (ASCII,MXLEY,#NUM9,ASCBIN1)

; hand coded kludge for 'if to use external data space

MOV DPTR,#ASCII
MOVX A,@DPTR
MOV RO,A

MOV R1,#NUM9
CALL)(lEY

JNC ASCBIN1

; end the 'if' kludge

; convert ascii number [0..9]

605

MOV
MOVX
SUBB
MOV
MOVX

DPTR,#ASCII
A,@DPTR ; binary
A,#2FH ; = number - 2FH
DPTR,#BINARY
@DPTR,A

%MELSE (ASCBIN1,ASCBIN2)

; convert ascii letter [A..F]

MOV
MOVX
SUBB
ADDC
MOV
MOVX

DPTR,#ASCII
A,@DPTR ; binary
A,#41H ; = letter - 41H + OAH
A,#OAH
DPTR,#BINARY
@DPTR,A

ASCBIN2: ; endif

; now, return

606

MOV
MOVX
MOV
PUSH

MOV
MOVX
MOV
PUSH

MOV
MOVX
MOV
PUSH

RET

NIBCSA:

DPTR,#BINARY
A,@DPTR
STAK,A
STAK ; return value

DPTR,#CASCBIN2
A,@DPTR
STAK,A
STAK ; restore address

DPTR,#CASCBIN1
A,@DPTR
STAK,A
STAK address

return

------------- ----------

NAMEGFETA

; message to extraterrestrial visitors should instrument survive
; at bottom of the ocean while us surface cre~t!..::-dS and our
; civilization does not

; author - John F. Babson, University of Hawaii Physics
; revision date - Aug 1985

GFETA_CODE SEGMENT CODE
RSEG GFETA_CODE

DB '3 31 314 3141 31415314159 '

DB '0 1 2 3 4 5 6 7 8 9 '

DB 'GREETINGS FROM PLANET EARTH FROM'
DB 'JOHN BABSON,'
DB 'DAVE HARRIS, '
DB 'JOHN LEARNED, '
DB 'SHIGE MATSUNO, '
DB 'YOSHIKO MIYAKOSHI,'
DB 'DAN OCONNOR, '
DB 'VIC STENGER, '
DB 'CHUCK WILSON '

DB 'A BCD E F G H I J K L M '
DB 'N 0 P Q R STU V W X Y Z I

DB '3 31 314 3141 31415 314159 '

fJJ7

608

NAMEHEXADECIMAL_BINARY_SUBROUTINES

; this file is a collection of the routines for converting from binary
; to hex and back:

HEXBIN, HEXNIB --> convert hex to binary
BINHEX, NIBHEX --> convert binary to hex

; author - John F. Babson, University of Hawaii Physics
; revision date - Aug 1986

library link references

EXTRN CODE (XGTY, XNEY, XEQY, XGEY, XLEY)

PUBLIC HEXBIN, BINHEX

; the following include files are common to all of the subroutines in
; this file and should be moved with any subroutine extracted from
; this file.

$INCLUDE{RUNMAC.INC)
$INCLUDE{LCSTRC.lNC)
$INCLUDE{CONSNT.INC)

; subroutine hexbin

link references

; EXTRNCODE (XGTY, XEQY,XNEY, XGEY, XLEY)

local definitions and variables

; const

~----------------~-~

; var

HEXBIN_OATA SEGMENT DATA
RSEG HEXBIN_DATA

609

LOWER:
UPPER:
BINARY:
LNIB:
UNIB:
CHEXB1:
CHEXB2:

OS
OS
OS
OS
OS
DS
DS

1
1
1
1
1
1
1

; lower hex character
; upper hex character
; binary value
; lower binary nibble
; upper binary nibble
; call addr upper byte

" " lower"

; begin subroutine

HEXBIN_CODE SEGMENTCODE
RSEG HEXBIN_CODE

HEXBIN:

POP CHEXB2
POP CHEXB1

POP LOWER
POP UPPER

PUSH UPPER

CALL HEXNIB

POP UNIB

PUSH LOWER

CALL HEXNIB

POP LNIB

; save the
return address

; input the
; hex value

; find upper binary nibble

; find lower binary nibble

; shift left four bits of upper nibble

MOV A,UNIB

RL A
RL A
RL A
RL A

MOV UNIB,A

; combine nibbles to form binary byte

MOV A,UNIB

ADD A,LNIB

610

MOV BINARY,A

PUSH BINARY

PUSH CHEXB1

PUSH CHEXB2

RET

NIBXEH:

; return the value

; load the

; return address

; subroutine binhex

; local definitions and variables

; const

; var

BINHEX_OATA SEGMENT DATA
RSEG BINHEX_OATA

OUTHUP: OS 1 ; upper hex character out
OUTHLO: OS 1 ; lower hex character out
INBIN: OS 1 ; input binary byte
UPNIB: OS 1 ; upper binary nibble
LONIB: OS 1 ; lower
CBINH1: OS 1 ; call addr upper byte
CBINH2: OS 1 " " lower II

; begin subroutine

BINHEX_CODE SEGMENT CODE
RSEG BINHEX_COOE

BINHEX:

POP CBINH2 ; save the
POP CBINH1 ; return address

POP INBIN

; divide inbin into the two nibbles upnib and lonib

; lonib first - strip off upper four bits

MOV A,INBIN

611

ANL A,#00001111 B ; low tour bit mask

MOV LONIB,A

~ --~-- ~~ ----~-----

; upnib second - strip off lower four bits

MOV A,INBIN

612

ANL A,#11110000B

MOV UPNIB,A

; high four bit mask

; shift right four bits of upnib to place the bits
; in lowest four bit position

MOV A,UPNIB

RR A
RR A
RR A
RR A

MOV UPNIB,A

; finish the conversion passing the nibbles to nibhex

PUSH UPNIB

CALL NIBHEX

POP OUTHUP

PUSH LONIB

CALL NIBHEX

POP aJTHLO

; return outhup and outhlo

PUSH OUTI-ILO

PUSH OUTHUP

613

PUSH CBINH1
PUSH CBINH2

RET

XEHNIB:

; load the
; return address

614

; subroutine hexnib

; local definitions and variables

; canst

MAXLEN B:1J OFH maximum length of single
; digit hex numbers

HEXNIB_CODE SEGMENT CODE
RSEG HEXNIB_COOE

; var

HEXTAB: DB 30H,31H,32H,33H,34H,35H,36H,37H,38H,39H
OB 41H,42H,43H,44H,45H,46H

; the ascii hexidecimal look-up table

HEXNIB_DATA SEGMENT DATA
RSEG HEXNIB_OATA

HEX: OS 1 ; hex character
NIB: OS 1 ; binary nibble

LENGTH: DS 1 ; pointer in hextab
TABVAL: OS 1 ; value returned from hextab
EXIT: OS 1 ; condition flag for exiting
CHEXN1: OS 1 ; call addr upper byte
CHEXN2: OS 1 . " " lower ",

; begin subroutine

HEXNIB:

POP CHEXN2
POP CHEXN1

POP HEX

; save the
return address

; input hex value

-------------- - ------ -- ---------

; point to beginning of hex table - hextab

MOV DPTR,#HEXTAB

; initialize length counter

MOV LENGTH,#O

; clear the exit condition flag

MOV EXIT,#FALSE

; while (exit = false)

%MWHILE(EXIT,MXEQY,#FALSE,HNIB1,HNIB2)

; look up hex value in table

615

CLR A no offset

MOVC A,@A +DPTR

MOV TABVAL,A

; if (hex = tabval) then
I

%MIF(HEX,MXEQY,TABVAL,HNIB3)

JMP HNIB2; break from the while loop

; else

%MELSE(HNIB3,HNIB4)

INC DPTR

INC LENGTH

; if (length => 16) then

%MIF(LENGTH,MXGEY,#MAXLEN,HNIB5}

MOV EXIT,#TRUE

HNIB5: ; endif

HNIB4: ; endif

; end while

%MWEND(HNIB1,HNIB2}

; return

616

MOV NIB,LENGTH

PUSH NIB

PUSH CHEXN1
PUSH CHEXN2

RET

BINXEH:

; output the nibble

; load the
return address

; subroutine nibhex.
•
; local definitions and variables

; const

617

OFFSET

; var

EQU 37H ; big Itr ascii hex offset

NIBHEX_DATA SEGMENT DATA
RSEG NIBHEX_DATA

BINNIB:
OUTHEX:
CNIBH1:
CNIBH2:

DS
DS
DS
DS

1
1
1
1

; binary nibble
; hex character
; call addr upper byte

" "lower "

; begin subroutine

NIBHEX_CODE SEGMENT CODE
RSEG NIBHEX_CODE

NIBHEX:

POP CNIBH2
POP CNIBH1

POP BINNIB

; save the
; return address

; input the nibble

; if (binnib > 9) then outhex := biga +binnib

%MIF(BINNIB.MXGTY.#9.NHEX1)

MOV A.#OFFSET

ADD A,BINNIB

MOV OUTHEX,A

; else

%MELSE(NHEX1,NHEX2)

MOV A,#NUMO

ADD A,BINNIB

MOV OUTHEX,A

NHEX2: ; end if

; return outhex

PUSH OUTHEX

PUSH CNIBH1
PUSH CNIBH2

RET

XEHBIN:

; output the hex value

; load the
; return address

618

619

APPENDIXG

Source Code Listing ofthe Executive Program for Controlling
the StringBottom Controller (MERLIN)

The source code for program MERLIN consists of 47 modules which are
listed below in Table G.1 according to functional category:

Table G.I Listing Order of MERLIN Routines

Class Name

Main:
main
inpoll

cmdpoll

timpoll

allpoll

evmpoll

nextbyte
cmdserv

alIserv
evmserv

Description

Main program (MERLIN)

Poll all input ports for input notifying system of
any characters received

Parse the command string for a valid command
also, handle exceptions
Parse for a STRING command, if found, initiate
time out for reply

Parse for an ''all call" STRING command - handle
exception

Parse for an environmental module command
handle exception

Place next byte in command buffer

Service a complete command, else call error
routine

Exception code for an "all calI" command
Exception code for an environmental module
command

Commands:

coinpat
rawsel
stkhgt
source
sorsel
xtrbit
readad
mreset

I/O Routines:

datlat

tablat

outlatch
inport
outport

Error Routines:

deverr
forerr
cmderr
timerr

Coincidence pattern
Raw select
Stack height
Source on/off
Source select
Extra bit (drive spare lines)
Read an analog (A to D) channel
Master reset

Move SBC optical path data from internal table to
external latch

Move SBC latch control data from internal table to
external latch
Output a byte to a latch port
Read a byte from specified port
Write a byte to specifiedport

Device error reply
Format error reply
Command error reply
String timeout error reply

Communications:

msgreply
allecho
upecho
downecho
evmmsg

allmsg

621

Output message on CAB and OPT
Output byte on CAB, STH, PWR, & OPT
Output byte on CAB and OPT
Output byte on PWR and 8TR
Output fake environmental module message on
CAB and OPT
Output fake "all call" replies on CAB and OPT

Type Checking and Conversion:
ascbin Convert ASCII character to binary
binhex Convert byte sized binary numbers to two

byte hex equivalent
nibhex Convert four bit binary nibble into ASCII hex

character
ishex Test character if it's an ASCII hex number

Initialization and Control:
init Initialize CAB and STR at 300 baud
deinit Return to SB-180 ROM monitor
delay Delay one millisecond

------- -----

Device Drivers:
atod

incab
instr
inpwr
outcab
outstr
outpwr
outopt

622

Convert specified channel analog input to digital
value
Input a character from CAB
Input a character from STR
Input a character from PWR
Output a character to CAB
Output a character to STR
Output a character to PWR
Output a character to OPT

Header (include) Files:
SBCDEF.H
SBCGLOB.H

SBCMON.H

Common SHC system definitions
Declarations for global variables, mostly
for debugging

Common ROM monitor definitions

The listing of the individual modules now follows:

----~~-~ -- ------ ----------------------

623

/*
* MAIN - Main driver for the String Bottom Controller
* program MERLlli.

*
* This sets 'sbcnm' flag to TRUE before entering the
* top level loop, indicating normally running the SOC
* program. If a corrmand from <CABLE> is [ZZ], 'sbcnm' flag
* will be set to FAISE in 'Q1)SERV' which is called by
* '(M)POLL', then exits from the top level loop and returns
* to the R:M monitor.
*
* (Note: This calls terrpora:ry routine 'CLEAR' to
* initialize all global variables. Initial values of
* table [] have to be defined and assigned in ' INIT ' later.)

*
* Routines called: INIT, INPOLL, (M)POLL, UPECHO, DEINIT

*
* authors John F. Babson and Yoshiko Miyakoshi,
* University of Hawaii, Physics
* Revised by John F. Babson
* Revision date: Jan. 26, 1987
*
*/

#include SBCDEF.H

/* declare all global variables here */

#include SBCGIDB.H

main () /* control the SBC modules */
{

/* initialize the SBC program (interrupt, baud rate, * /
/* default pararreters for the SEC latch) */

INITOi

CLEAR() i /* terrporary initialization of globals */

624

/* set flag to normal, loop condition */

sbcnm = TRUE;

/* repeat until get a conmand [ZZ] from <CABLE> */

do{
/* poll input ports <CAB>, <STR> and <PWR> */
/* to fetch a character */

ThlPOLL() ;

if (inflg & ONCAB) { /* inflg(CAB) is on */

/* poll for a carmand and parse it */
/* if corrplete, execute each corrmand */

CMJPOLL() ;
}

else if (inflg & ONSTR) { /* inflg(STR) is on */

/* echo a character from <STR>
back to <CAB> */

UPEX:HO (inbuf [STR]) ;

inflg = inflg & OFFSTR;/* clear inflg(STR) */
}

else if (inflg & (M>WR) { /* inflg(PWR) is on */

/* echo a character from <PWR>
back to <CAB> */

UPEX:HO (inbuf [PWR]) ;

inflg = inflg & OFFPWR;/* clear inflg(PWR) */
}

} while (sbcrun = TRUE);

--_ .. _-- - -_.- .. -_._--_.- ----.__._-----------_.-------

:...

625

/* reset the SEC program (error flag, interrupt) */
/* and return to the SEC monitor */

DEINIT ();

} /* end of main */

CLEAR() /* temporary initialization */
{

inflg = 0;
dev = 0;
bytnum = 0;

poll = FALSE;/* disable exception parsing for EVMPOLL */
talk = FALSE;/* disable exception parsing for ALLPOLL */
t.ime = FALSE;/* disable exception parsing for TIMPOLL */
tirnout = FALSE; /* disable software STRING / PCWER time

out counter */
count = MAXmI'; /* set count down t.irre out counter to

maximum */

inbuf[O] = 0; inbuf[l] = 0; inbuf[2] = 0;

cmd[O] = 0; crnd[l] = 0; cmd[2] = 0; cmd[3] = 0;

table[O] = 0; table[l] = 0; table[2] = 0;
table[3] = 0; table[4] = 0; table[S] = 0;
table[6] = 0; table[7] = 0; table[8] = 0;

} /* end of clear */

-- ---------------

626

/*
* lliPOLL - Routine to poll all input ports to fetch
* available characters. These characters are placed into the
* buffer 'INBUF' and a flag is set in 'nJFLG' so that they
* may be grabed. at a latter date by other routines in an
* asynchronous manner.
*
*
*

Routines called ~, ALLECHO, INSTR, INPWR

* author - John Babson,
* University of Hawaii, Physics
* Revised by Y. Miyakoshi
* Revision date : Jan. 23, 1987
*
*/

#include SBCDEF.H

extern int inbuf [] ;
extern int inflg;
extern int time;
extern int timout;
extern int count;
extern int bytnurn;

INPOLLO /* poll all input ports for a character */
{

int c; /* input charecter */

/* first, look for input from the cable */

c = incabO;

if (c != NULL) {

inbuf [CAB] = c;

/* set bit inflg(CAB) */

inflg = (inflg & OFFCAB) I Cl'K::AB;

allecho (c) ; /* echo the input back upstairs */

}

/* second, look for a character from the string */

c = instrO;

if (c != NULL) {

inbuf[S'IR] = c;

/* set bit inflg(STR) */

inflg = (inflg & OFFSTR) I CNSTR;

/* with an input character, reset software
time out */

time = FALSE; /* clear exception Parsing flag */
count = MAXOJT; /* reaset count down variable */

}

/* last, look for a character from the power module */

c = inpwrO;

if (c != NULL) {

inbuf[PWR] = c;

628

/* set bit inflg(PWR) */

inflg = (inflg &OFFPWR) I ONPWR;

/* with an input character, reset software
time out */

time = FALSE; /* clear exception parsing flag * /
count = MAXCNT; /* reset count down variable */

}

/* finally, before corrpleting the character input poll,
check to see if a software time out is in process
looking for input from either the STRING or PCWER
ports */

if (timout = TRUE) { /* software time out test */
count-;

if (count = 0) {
TIME:RRO;
tirne= FALSE;

count = MAXCNI';

bytnum = 0;
}

}

.
} /* end of inPOll */

/* time out. message */

/* clear exception
parsing flag */

/* reset count down
variable */

/*
*
* QvDPOLL - Routine to grab a next character, checking
* device error & format; error. Also trap exception
* conditions of EVM and S'I'R.ThX; "all call" commands. If a
* corrplete cornnand is is received, execute it by calling
* '(M)SERV'.

*

629

*
*
*

Routines called: DEVERR, NEXTBY'IE, (M)SERV,
FORERR, ISHEX, EVMPOLL, ALLP01J.J, TIMP01J.J

* authors John F. Babson and Y. Miyakoshi,
* University of Hawaii, Physics
* Revised by John F. Babson
* Revision date : Jan. 23, 1987
*
*/

#include SBCDEF.H

extern int
extern int
extern int
extern int
extern int
extern int
extern int
extern int
extern int

inbuf[] ;
inflg;
cEv;
bytnum;
PJIl;
talk;
tine;
tirrout;
count;

(M)POLL () /* get a next char, checking error, and
if corcplete corrmand, execute it */

{

int c; /* data character from CABLE */

c = inbuf[CAB];
inflg = inflg & OFFCAB; /* clear inflg(CAB) */

---------------- -

/* first, check flags to see if an exception parser is
needed */

if (poll = TRUE) {

EVMPOLL (c) ;
return;

}
if (talk = TRUE) {

ALLPOLL (c) ;
return;

}
if (time = TRUE) {

TJM?OLL() ;

return;

/* environmental module poll */

/* all call to STRING */

/* time out routine for STRING /
Pa"JER */

/* no exception parser yet needed so continue the
parsing here */

} else {
if (bytnum = 0) {

if (c = ooL) {
bytnum = 1;

talk = FAISE; /* reset talk switch */

}
else {

bytnum = 0;

631

}
}
else if (bytnurn = 1) {

if (c = OOL) {
bytnurn = Ii

}

else {
bytnurn = 2i
dev = Ci

}
}

else if (bytnurn = 2) {

if (c = OOL) {
bytnurn = Ii

}
else if ((c = dev) && (ISHEX (c)

TRUE)) {

bytnurn = 3i

/* device is valid so check for exception
parsing */

if (dev = EVM) { /* dev is env.
module */

/* force exception parsing of
comnand by EVMPOLL starting
on next pass */

poll = '!RUEi

632

} else if (dev == ALLMOD) {/*dev is all*/

/* force exception parsing of
ccmnand by ALLPOLL starting
on next pass */

talk = TRUE; /* modules call */

} else if (dev == ALDOM) { /*dev is all*/

/* force exception parsing of
corrmand by ALLPOLL starting
on next pass */

talk = TRUE; /* a1s call */

} else if (dev == ALLCM) {/*dev is all*/

/* force exception parsing of
corrrnand by ALLPOLL starting
on next pass */

talk = TRUE; /* CMs call */

} else if (Idev != IATCH) &&

(poll != TRUE) &&

(talk != TRUE» {

/* force exception parsing of
conmand by TIMPOLL starting
on next pass */

}

tine = 'IRUE;

------ - ---

/* STRING/PCMR */

633

else {
poll = FALSE; /* ? still needed ? */

}
}

else { /* invalid device so issue
error message and start
over */

bytnum = 0;
DEVERR();

return;
}

/* continue regular SOC corrmand parsing eventually
executing the cornnand (CMJSERV) or issuing a
format error (FORERR) */

}

else if (bytnum = 3) {

NEXTBYTE (c) ;
}

else if (bytnum = 4) {

NEXTBYTE (c) ;
}

else if (bytnum = 5) {

NEXTBYTE(c) ;

if (c = ffi) {
CM)SERV() ;

bytnum = 0;
return;

}

/* ard[O] */

/* ard[l] */

/* ard[2] */

/* corrplete a
corrmand */

}

else if (bytnum = 6) {

NEXTBYTE (c) ;
}
else if (bytnum = 7) {

if (c = CR) {
(M)SERV() ;

bytnum = 0;
}

else {
bytnum = 0;
FORERR() ;

}

return;
}
else {

bytnum = 0;
FORERR() ;

}
}

} /* end of Q1)POLL */

/* ard[3l */

/* corrplete a
COITIPand */

634

/*

*
* TIMPOLL - Routine to poll a conmand for the STRING. If a
* complete corrmand is received, enable tine out counter to
* generate a TIMERR if no response is received within the
* time out per.led.
*
* Routines called : NEXTBYTE

*
* author John F. Babson,
* University of Hawaii, Physics
* Revision date : Jan. 28, 1987
*
*/

#include SBCDEF.H

extern int bytnum;
extern int time;
extern int tirrDut;

TIMPOLL(c) /* STRING time out poll */
int c; /* data character from CABLE */
{

if (bytnum = 3) {

635

NEXWY'IE (c) ;
}

else if (bytnum = 4) {

NEXWY'IE (c) ;

}
else if (bytnum = 5) {

NEXTBY'IE (c) ;

/* ard[O] */

/* ard[l] */

/* ard[2] */

636

if (c = CR) {
bytnurn = 0; /* crnplete ccrnnand received */
t.i.rre = FALSE; /* disable exception parsing */
timout = TRUE; /* enable software t:i.ne out

in case no input is
received from STRJNG or
ParER. ports */

}
}

else if (bytnurn = 6) {

NEXTBYTE (c);
}

else if (bytnum = 7) {

NEXTBYTE (c);

/* ard[3] */

/* ard[4] */

if (c = CR) {
bytnum = 0; /* corrplete conmand received */
time = FAISE; /* disable exception parsing * /
timout = TRUE; /* enable software t.irre out

in case no input is
received from STRING or
ParER. ports */

}
}
else {

bytnurn = 0;

}
} /* end of TTIM80LL */

/*
*
* ALLPOLL - Routine to poll a corrmand for all calls to the
* S'I'RIN3.
* If a cormplete conmand is received, execute it by
* calling'ALISERV' •

*
* Routines called NEXTBYTE, ALLSERV, FORERR

*
* author John F. Babson,
* University of Hawaii, Physics
* Revision date : Jan. 23, 1987
*
*/

#include SBCDEF.H

extern int bytnum;
extern int talk;

ALLPOLL(c) /* STRING "all call" exception code */
int c: /* data character from CABLE */
{

if (bytnum = 3) {

NEXTBYTE (c);

}
else if (bytnum = 4) {

NEXTBYTE (c) ;

}
else if (bytnum = 5) {

NEXTBYTE{c) ;

}

/* ard[O] */

/* ard[l] */

/* rnd[2] */

else if (bytnum = 6) {

NEXTBYTE (c) ;

}

else if (bytnum = 7) {

NEXTBYTE (c) ;

if (c = CR) {

ALlSERV () ;

bytnum = 0;
talk = FALSE;

}

else {
bytnum = 0;
talk = FALSE;
FDRERR(} ;

}
}

else {
bytnum = 0;
talk = FAISE;
FORERR() ;

}

} /* end of ALLPOLL */

/* cm::i[3] */

/* ord] 4] */

/* carplete the all call
ccmrand */

638

639

/*
*
* EVMPOLL - Routine to poll a CCJI'({(\3lld for the envirorurental
* module.
* If a corrplete ccmnand is received, execute it by
* calling 'EVMSERV'.
*
* Routines called: NEX'IBYTE, EVMSERV, FORERR

*
* authors Y. Miyakoshi and John F. Babson,
* Univerisity of Hawaii
* Revision by John F. Babson
* Revision date : Jan. 23, 1987
*
*/

#include SBCDEF.H

extern int bytnurn;
extern int poll;

EVMPOLL(c) /* environmental module poll */
int c; /* data character from CABLE */
{

if (bytnurn = 3) {

NEXTBY'IE (c) ;
}
else if (bytnurn = 4) {

NEX'IBY'IE (c) ;

if (c = CR.) {
EVMSERV(); /*
bytnurn = 0;
poll = FAlSE;

}

}

/* ard[O] */

/* ard[l] */

case 1 - corrplete a single */
/* letter corrmand */

else if (bytnurn = 5) {

NEXTBY'IE (c) ;
}

else if (bytnurn = 6) {

NEXTBY'IE (c) ;
}
else if (bytnurn = 7)

NEXTBY'IE (c) ;
}

else if (bytnurn = 8)

/* ard[2] */

/* ard[3] */

/* ard[4] */

640

NEXTBY'IE(c); /* ard[5] */

if (c = CR) {

EVMSERV 0 ; /* case 2 - complete an */
bytnurn = 0; / * F comrand */
poll = FAISE;

}
}

else if (bytnurn = 9) {

NEXTBY'IE (c) ;
}
else if (bytnurn =10) {

/* ard[6] */

NEXTBY'IE(c); /* ard[7] */

if (c = CR) {

EVMSERVO; /* case 3 - carplete a */
bytnum = 0; /* D comrand */
poll = FAISE;

}
else {

bytnum = 0;
poll = FAISE;
FORERR() ;

}
}

else {
bytnum = 0;
poll = FAlSE;
FORERR() ;

}

} /* end of EVMPOLL */

641

Routines called : FORERR

642

/*
*
* NEXTBYTE - Routine to get a byte into ODD, 0101, ...
* CJ:.1)7 I checking fonnat error.
*
*
*
* authors Y. ~yakoshi and John F. Babson,
* University of Hawaii, Physics
* Revised by John F. Babson
* Revision date : Jan. 28, 1987
*
*/

#include SBCDEF.H

extern int ard [] ;
extern int bytnum;
extern int poll;
extern int talk;
extern int time;
extern int tirrout;
extern int count;

NEXTBYTE(byte) /* get a byte into ODD, CMD1, ... , CMD7 */
int byte;
{

int i;

if (byte = COL) {

bytnum = 1;

poll = FALSE; /* disable exception parsing
for EVMPOLL */

talk = FALSE; /* disable exception parsing
for ALLPOLL */

tiroe = FALSE; /* disable exception parsing
for TIMPOLL */

643

timout = FAISE; /* disable software STRING /
rovER t.irre out counter */

count = MAXQ'l"T; / * set count t.irre out counter
to maximum */

FORERR() ;
}

else {

i = bytnum - 3;
ard[i] = byte;
bytnum++i

}

} /* end of NEXTBYTE */

644

/*
*
* (M)SERV - Routine to do comnand services or return an
* error message for invalid corrmands.

*
* If a corrmand is [ZZ], set normal, loop condition to
* FAISE to return S8180 MJnitor.

*
* Corrmand fonnat :
* $ <DEV> <DEV> <(1)0> <(M)1> <CR>
* or $ <DEV> <DEV> <(1)0> <CMJ1> <DATAO> <DATAlXCR>

*
*
*
*
*

Routines called : COINPAT, RAWSEL, STKHGT, SCXJRCE,
SORSEL, XTRBIT, READAD, MRESET,
ALISERV, OVERR

* authors John F. Babson and Y. Miyakoshi
* Revision date: Nov. 17, 1986
* Revised by Y. Miyakoshi

*
*/

#include SBCDEF.H

extern int cEv;
extern int ard[];
extern int sbcrun;

ODSERV()

{

/* service the corrmand or return an error
message for invalid corrmands */

if (clev != IATCH)
return;

645

if (amd[O] == 'e') {
if (amd[l] == 'P') {

if (ard[2] == '0')
OOINPATO; 1* comnand is [CP] *1

else
GDERR() ;

}

else
GDERR() ;

}
else if (cmd[O] == 'R') {

if (cmd[l] == 'S') {
if (ard[2] == '0')

RAWSEL 0 ; 1* corrmand is [RS] *I
else

GDERR() ;
}
else

GDERR() ;
}

else if (cmd[O] == 'S') {
if (crrd[l] == 'H') {

if (ard[2] == '0')
STKHGT();I* command is [SH] *1

else
GDERRO;

}

else if (ard[l] == '0')
SOURCE () ; 1* corrrnand is [SO] *I

else if (ard[l] == 'S')
SORSEL(); 1* carnrnand is [5S] *1

else
CMJERRO;

}

else if (ard[O] == 'X') {
if (cmd[l] == 'B')

XTRBITO; 1* corrmand is [XB] *1
else

CMJERR() ;
}

646

else if (cmd[O] == 'A') {
if (cmd[l] == 'D') {

if (cmd[2] == '0')
READADO; /* corrmand is [AD] */

else
CMJERR() ;

}
else

(M)ERRO;
}
else if (cmd[O] == 'M') {

if (cmd[l] == 'R')
MRFSETO; /* comnand is [MR] */

else
ODERR() ;

}
else if (cmd[O] == 'Z') {

if (cmd[l] == 'Z')
sbcrun = FALSE; /* comnand is [ZZ] */

else
CMJERR() ;

}
else if (cmd[O] == 'W') {

if (cmd[l] == 'E' II cmd[l] == 'F')
ALISERVO; /* carmand is [WE/WF] */

else
CMJERR() ;

}
else

CMJERR() ;

} /* end of (M)SERV */

1*
*
* ALISERV - Parser for O.M. and C.M. carrmancie ALL-eALL.
* Parallels EVMSERV.

*
* Corrmand format : W <ElF> <O-F> <O-F>

*
* Routines called : AIJMSG, (1)ERR

*
* author John F. Babson,
* University of Hawaii, Physics
* Revised by Yoshiko Miyakoshi
* Revision date: Dec. 4, 1986
*
*1

#include SBCDEF.H

extern int ard[] ;

ALISERV () 1* string "all call" service *1
{

if (cmd[O] == 'W') {
if «ard[l] == 'E') II (ard[l] = 'F')) {

if (ISHEX (ard[2]) == TRUE &&

ISHEX (ard[3]) == TRUE)

AIJMSGO;

else

GDERR() ;
}

}

} 1* end of ALISERV *1

647

648

/*

*
* EVMSERV - Routine to do ccmnand service for the
* environmental module or return an error messaqe for
* invalid carmand.
*
* Corrmand format; :
* $ B B {R,Z,T,L,B,O} «re-
* or $ B B F HEX(O) HEX (1) HEX (2) HEX (3) <CR>
* or $ B B 0 HEX(O) HEX(l) HEX (2) HEX (3) 1 1 <rn>
*
* Routines called: EVMv1SG, EVM::M), QvDERR, ISHEX
*
* authors Y. Miyakoshi and John F. Babson,
* University of Hawaii, Physics
* Revised by John F. Babson
* Revision date : Dec. 4, 1986
*
*/

#include SBCDEF.H

extern int ard[] ;
extern char corrmand [] ; /* for debugging */

EVMSERV () /* envi.rorment.al, module service */
{

corrmand[O] - lEI; carmand[l] = IMI;

/* case 1 : {R, Z, T,L,B,O} */

if (ard.[O] - IR 1 II ard.[O] - 'Z' II ard.[O] - IT I II
arrl[O] - ILl II ard.[O] - 'B I II arrl[O] - 101)

{

E\lMv1SGO;

---------------------------- --

}

/* case 2 : F HEX(O) HEX (1) HEX(2) HEX (3) */

else if (cmd[O] == 'F') {
if (ISHEX(ard[l]) == TRUE &&

ISHEX(cmd[2]) == TRUE &&

ISHEX(cmd[3]) == TRUE &&

ISHEX(cmd[4]) == TRUE)

E\lM'1SG 0 ;
else

CMJERR() ;
}

/* case 3 : D HEX(O) HEX (1) HEX(2) HEX (3) 1 1 */

else if (cmd[O] == 'D') {
if (ISHEX (cmd[l]) == TRUE &&

ISHEX(cmd[2]) == TRUE &&

ISHEX(cmd[3]) == TRUE &&

ISHEX(cmd[4]) == '!RUE) {

if (cmd[5] == '1' && cmd[6] == '1') {

/* do nothing - this is the EM 300
baud durcp corrmand so no second
echo reply is expected */

}

else
CMJERR() ;

}
else

(M)ERRO;
}

else
CM:>ERR() ;

} /* end of EVMSERV */

649

Conmand format : C P <0> <O-F>

/*
*
* COlNPAT - Routine for the carmand service 'coincidence
* pattern'.
*
*
*
* Routines called: ISHEX, ASCBIN, ALIMSG, TABIAT,
* GDERR

*
*
* authors John F. Babson and Y. Miyakoshi,
* University of Hawaii, Physics
* revised by Y. Miyakoshi
* Revision date : Nov 21, 1986

*
*/

#include SBQ)EF.H

650

extern int ard[];
extern char table [] ;
extern char corrmand[] ; /* for debugging */

COlNPAT () /* corrmand service - coincidence pattern
C P <0> <O-F> */

{

corrmand[O] - 'C'; carmand[l] = 'P';

if (ISHEX (an::i[3]) = TRUE) {

ALIMSGO;

table [5] = (table [5] & OxFO) I (ASCBIN(ard[3])) ;
/* write onto LH of

table [5] */

TABIAT() ;
}
else

CMJERR() ;

} /* end of COINPAT */

651

652

/*
*
* RAWSEL - Routine for the ccmnand service 'raw select' .

** Carrmand format; : R S <0> <O-F>

*
* Routines called: ISHEX, ASCBlli, ALIMSG, TABLAT,
* GDERR
*
* authors John F. Babson and Y. Miyakoshi,
* University of Hawaii, Physics
* revised by Y. Miyakoshi
* Revision date : Nov 21, 1986
*
*/

#include SBCDEF.H

extern int ord[] ;
extern char table [] ;
extern char corrmand[] ; /* for debugging */

RAWSEL 0 /* carrnand service - raw select - R S <0> <O-F> */
{

carmand[O] = 'R'; carrnand[l] = 'S';

if (ISHEX (ard[3]) = TRUE) {

ALIMSGO;

table [5] = (table [5] & OxOF) I
((ASCBlli(arrl[3]» « 4);
/* write onto UH of table[S] */

TABIATO;
}
else

CMJERRO;

} /* end of RAWSEL */

---------------------- - ---

653

/*
*
* STKHGI' - Routine for the carmand service 'stack hight' •
*
* C<mnand format : S H <0> <O-F>
*
* Routines called : ISHEX, ASCBIN, ALIMSG, TABIAT,
* ODERR

*
* authors John F. Babson and Y. Miyakoshi,
* University of Hawaii, Physics
* revised by Y. Miyakoshi
* Revision date : Nov 21, 1986
*/

:fl:inclucle SBCDEF.H

extern int ard[];
extern char table [] ;
extern char corrmand[] ; /* for debugging */

STKHGI' 0 /* corrmand service - stack hight - S H <0> <O-F> */
{

corrmand[0] = 'S'; ccmnand[1] = ' H' ;

if (ISHEX (ard[3]) = TRUE) {

ALIMSGO;

table [4] = (table[4] & OxOF) I
((ASCBIN (ard[3] » « 4);

/* write onto UH of table[4] */

TABIATO;
}
else

GDERRO;

} /* end of STKHGT */

654

/*
*
* SCXJRCE - Routine for the carmand service 'source on/off'.

*
*
*

Ccmnand fonnat : S 0 <0-8> <0/1>

* Routines called: ASCBIN, ALIMSG, TABIAT, GDERR

*
* authors John F. Babson and Miyakoshi,
* University of Hawaii, Physics
* revised by Miyakoshi
* Revision date : Nov 21, 1986
*
*/

extern int arrl[];
extern char table [] ;
extern char comnand[] ; /* for debugging */

saJRCEO /*comnand service - source on/off
S 0 <O-B> <0/1> */

{
char *ptr;
int acd2;
int ard3;
int i;
int bit;

corrmand[O] = 'S'; carmand[l] - '0';

if (((aIrl[2] >= '0' && ard[2] <= '9') II
ard[2] = 'A' II ard[2] = 'B') &&

(aIrl[3] = '0' II ard[3] = '1'))

{

ALIMSGO;

0Yd2 = ASCBIN(ard[2]);
aocl3 = ASCBIN(ard[3]) ;

655

ptr = table + 3; /* ptr points to table [3] */

if (ard2 > 7) {
ard2 = ard2 - 8; /> set bit position

to 0 */
ptr++; /* go to next byte

location */
}

bit = 1;

if (ard2)
for (i = 0; i < ard2; i ++)

bit = bit « 1;

*ptr = *ptr & -bit; /* reset one bit and */
/ * mask others */

if (aIrl3)

TABIATO;
}
else

CMJERR() ;

*ptr = *ptr I bit; /* set one bit */

} /* end of SCXJICE */

656

/*

*
* SORSEL - Routine for the carmand service 'source select' .

** Command format : S S <1-9> <0-3>
*
* Routines called: ASCBlli, ALIMSG, TABIAT, CMJERR

** authors John F. babson and Y. Miyakoshi,
* University of Hawaii
* revised by Y. Miyakoshi
* Revision date : Nov 21, 1986
*
*/

extern int ard[];
extern char table [] ;
extern char ccmnand[] ; /* for debugging */

SORSELO /* comnand service - source select
S S <1-9> <0-3> */

{
char *ptr;
int ard2;
int ard3;

comnand[O] - 'S'; carmand[l] = 'S';

if ((ard[2] >= '1' && ard[2] <= '9') &&
(cmd[3] >= '0' && ard[3] <~ '3')) {

ALIMSGO;

ard2 = ASCBThI(ard[2]);
ard3 = ASCBThI(ard[3]);

ptr = table + 6; /* ptr points to table[6] */

657

if (ard2 >= 5 && ard2 < 8)
ptrt+; /* ptr points to table[7] */

else if (ard2 = 9)
ptr = ptr + 2; /* ptr points to table [8] */

if (ard2 = 2 I I acd2 = 6)
acd3 = ard3 « 2;

else if (ard2 = 3 II ard2 = 7)
acd3 = ard3 « 4;

else if (ard2 = 4 II ard2 = 8)
acd3 = ard3 « 6;

if (ard2 = 1 I I ard2 = 5 I I aoci2 = 9)
*ptr = (*ptr & OxFC) I and3;

else if (ard2 = 2 I I ard2 = 6)
*ptr = (*ptr & OxF3) I and3;

else if (ard2 = 3 II ard2 = 7)
*ptr = (*ptr & OxCF) I and3;

else if (ard2 = 4 II ard2 = 8)
*ptr = (*ptr & Ox3F) I and3;

TABIAT() ;
}
else

CMJERR() ;

} /* end of SORSEL */

658

/*
*
* XTRBIT - Routine for the cornnand service 'extra bit' .
*
* Command format : X B <0-5> <0/1>
*
* Routines called: ASCBIN, ALIMSG, TABIAT, CMJERR
*
* authors John F. Babson and Y. Miyakoshi,
* University of Hawaii, Physics
* revised by Y. Miyakoshi
* Revision date : Nov 21, 1986
*
*/

extern int ard[];
extern char table [] ;
extern char corrmand[] ; /* for debugging */

XTRBIT 0 /* corrmand service - extra bit - X B <0-5> <0/1> * /
{

int ard2;
int ard3;
int i;
int bit;

corrmand[O] - 'X'; ccmnand[l] = 'B';

if ((arrl[2] >= '0' && emi[2] <= '5') &&

(arrl[3] -- '0' I I emi[3] -- '1')) {

ALIMSGO;

ard2 = ASCBIN(ard[2]);
arrl3 = ASCBIN (ard[3]) ;

bit = 4;

659

if (ard2)
for (i = 0; i < ard2; i++)

bit = bit « 1;

table[8] = table[8] & -bit; /* reset one bit and
mask others */

if (ard3)
table [8] = table[8] I bit;/*set one bit*/

TABIAT() ;
}
else

(M)ERRO;

} /* end of XTRBIT */

--

/*
*
* READAD - Routine for the ccmnand se:r:vice 'atod
* conversion'.
*
* Conmand forrrat : A D <0> <O-F>
*
*
*
*

Routines called : ISHEX, ASCBIN, ATCO, BINHEX,
UPECHO, CMJERR

* authors Y. Miyakoshi and John F. Babson,
* University of Hawaii, Physics
* Revised by John F. Babson
* Revision date : Feb. 23, 1987
*
*/

#include SBCDEF.H

extern int ard[];
extern char carrnand [] ; /* for debugging */

READAD () /* corrmand se:r:vice - ATOO conversion - A D <0> <O-F>
make sure rressage is onl,y RCM code */

{

char value;
char upbyte;
char lobyte;
int chan;

/* returned value from ATOO * /

/* channel # for ATCO */

ccmrandfO] = 'A'; corrmand [1] = rD';

if (ISHEX (cm::i[3]) = TRUE) {

chan = ASCBIN (an:i[3]) ;

value = ATCD (chan) ;

BINHEX(value, &Ufbyte, &labyte);

UPEQIO (OOL) ;
UPEQIO('C');
UPEQIO('C');
UPEQIO('A');
UPEQIO('0');

UPECHO(Ufbyte) ;
UPECHO (lobyte) ;
UPECHO (CR) ;

}
else

CMJERRO;

} /* end of readad */

661

662

/*
*
* MRESET - Routine for the carmand service 'master reset I •

*
* Crnmand format : M R
*
* Routines called : aJTIA'ICH

*
* authors John F. Babson and Y. Miyakoshi,
* University of Hawaii, Physics
* Revised by Y. Miyakoshi
* Revision date : July 28, 1986
*
*/

#include SBCDEF.H

extern int ard [] ;
extern char ccmnand[];

MRESET () /* master reset */
{

/* for debugging */

corrmand[O] = 'M'; ccmna.nd[l] = 'R';

outlatch(MASTST, 0);

} /* end of rnreset */

/* strobe the master reset */

/*
*
* DATIAT - Routine to move the SEC optical path data from
* the internal table into the external latch.
*
* Routines called : CUI'IA'ICH

*
* authors - John Babson and Dave Harris,
* University of Hawaii, Physics
* Revised by Y. Miyakoshi
* Revision date : July 23, 1986

*
*/

#include SBCDEF.H

extern char table [] ;

int datlat 0 {

int i;

for (i = 0; i < 3; i++) { /* move the data into the
latch */

outlatch (IATCHO + i, table [i]) ;
}

outlatch (DATAST, 0) ; /* strobe the data */

} /* end of datlat */

------ - ---

663

Routines called : CUI'LATCH

/*
*
* TABIAT - Routine to move the SOC optical path data from
* the internal table into the external latch.

*
*
*
* authors - John Babson and Dave Harris,
* University of Hawaii, Physics
* Revised by Y. Miyakoshi
* Revision date : July 19, 1986
*
*/

#include SBCDEF.H

extern char table [] ;

int tablat() {

int i;

for (i = 3; i < 9; i++) {

outlatch (IATCHO + if table [i]); /* move the
settings into the latch */

}

} /* end of tablat */

665

/*
*
* OOl'IATCH - Routine to output a byte to a specified port.
*
*
*

Routines called :

* authors John F. Babson and Y. Miyakoshi,
* University of Hawaii, Physics
* revised by Y. Miyakoshi
* Revision date : June 2, 1986
*
*
*/

outlatch (port, byte) /* write a byte to a specified port */
{

#asm

KP D · return address,
KP H · data in HL, H=O,
KP B · port# in Be, B=O,

MJ.l A,L ; nove data
IE OEDH,79H ; Z80 CXJT (C),A

PUSH B · restore,
PUSH H · stack,
PUSH D · restore return address,

#endasm

} /* end of outlatch * /

666

/*
*
* rnPORT - Routine to call one of three input routines
* 'IN::'AB' for the optical cable, 'INSTR' for the string, or
* 'ThlPWR' for the power switch.
*
* Routines called: IN:::AB, INSTR, ThlPWR

*
* author - John Babson,
* University of Hawaii Physics
* Revised by Y. Miyakoshi
* Revision date : July 23, 1986
*
*/

#include SBCDEF. H

int inport (port)
int port;
{

int c;

if (port = CAB)
c = incabO;

else if (port; = STR)
c = instrO;

else if (port = PWR)
c = inpwrO;

return (c);

} /* end of inport */

----- -_. --

/*
*
* CUI'PORT - Routine to call one of four output routines.
* I outcab I for the optical cable
* I outstr I for the string
* I outpwr I for the power switch
* I outopt I for the SEC optical path

*
* Routines called: CXJ'I'CAB, CXJTSTR, CXITPWR, CXJTOPT
*
* authors - John Babson and Dave Harris,
* University of Hawaii Physics
* Revised by Y. Miyakoshi
* Revision date : July 23, 1986

*
*/

#include SBQ)EF.H

outport (port, byte)
int port;
int byte;
{

if (port = CAB)
outcab (byte) ;

else if (port = STR)
outstr (byte) ;

else if (port = PWR)
outpxr (byte) ;

else
outopt (byte) ;

} /* end of outport */

668

/*
*
* DEVERR - Routine to respond to device error condition.
* It sends up an error messaqe to <CAB> & <OPT>, and
* also sends down a dollar sign to <STR> & <PWR>.

*
*
*

M2ssage format : $? ? D E V R <CR>

* Routines called: UPECHO, IXJiJNECHO

*
* authors John F. Babson and Y. Miyakoshi,
* University of Hawaii, Physics
* Revised by John Babson
* Revision date : Feb. 23, 1986

*
*/

#include SBCDEF.H

DEVERR()

{

/* respond to device error condition by sending
back error message with '?' -- make sure
message is only RQv1 code. */

UPECHO (OOL) ;
UPECHO (,? ') ;
UPECHO (, ? ') ;

UPECHO('D');
UPECHO ('E ') ;
UPECHO('V');
UPECHO('R') ;
UPECHO (rn.) ;

IXl'VNECHO (OOL) i

} /* end of DEVERR */

/*
* FORERR - Routine to respond to nessage format error.
* It sends up an error rressage to <CAB> & <OPT>, and
* also sends down a dollar sigh to <STR> & <PWR>.

*
* M=ssage format : $? ? <DEV> <DEV> FOR M <CR>

*
* Routines called : UPECHO, lXW'JECHO
*
* authors John F. Babson and Y. Miyakoshi,
* University of Hawaii, Physics
* Revised by John Babson
* Revision date : Feb. 23, 1987
*/

#include SBmEF.H

extern int Wi

FORERR()

{

/* respond to message format error condition by
sending back error message with '?' -- make
sure rressage is on!y RCM code. */

UPEQiO (OOL) i
UPEQiO (, ? ') i
UPEQiO (, ? ') i

UPEQiO (cev) i
UPEQiO (dev) i

UPEQiO('F') i
UPEQiO ('0') i
UPEQiO ('R') i
UPEQiO('M') i
UPErnO (ffi) ;

WI'l'JECHO (OOL) i

} /* end of EDRERR */

-- _.. _- ---- -~---_.

670

/*
*
* CM:>ERR - Routine to respond to ccmnand error condition.
* It sends up the iIrf>roper carmand with '?' to <CAB> &

* <OPT>, and also sends down a dollar sign to <S'IR> &

* <PWR>.

*
* M2ssage format; : $? ? <OEV> <DEV> <Q.DO>
* . .. <CM:>6> <CR>

*
* Routines called : UPECHO, IXl"JNECHO

*
* authors John F. Babson and Y. Miyakoshi,
* University of Hawaii, Physics
* Revised by John Babson
* Revision date : Feb. 23, 1987
*
*/

#include SBCDEF.H

extern int cEv;
extern int bytmmr
extern int end.[] ;

CH>ERR{)

{

int i;

/* respond to ccmnand error condition by
echoing back irrproper corrmand with '?'
make sure nessage is only RCM code. */

UPECHO (OOL) ;
UPECHO (I? I) ;

UPECHO (, ? ') ;

UPECHO (dev) ;
UPEQiO{dev) ;

.. __ .. - -------------

if (dev = EVM) {

for (i = 0; i < bytnum - 3; i ++)
UPECHO(cm:i(i]);

}

else {

UPECHO (cm:i[0]) ;
UPECHO (acd[l]) ;

}

UPECHO (CR) ;

IX:XrJNECHO (OOL) ;

} /* end of CM>ERR */

- ~_ ... _--- ----

671

f{/2

/*

*
* TIMERR - Routine to send back a t.irre out error rressage to
* the CABLE, when no response received fran a stting module
* (i.e. no '$' received within one second or so.)
*
* Message fonnat : $ TIM E <rn>
*
* Routines called : UPECHO
*
* authors Y. Miyakoshi and John F. Babson,
* University of Hawaii, Physics
* Revised by John F. Babson
* Revision date : DEC. 4, 1986
*
*/

#include SBCDEF.H

extern int dev;

tirrerr () /* t.irre out error rressage */
/* routine to send a tirre out error message back up

the CABLE */
{

/* send the rnessage $TIME<CR> on a byte by byte basis */

UPECHO (OOLLAR) ;
UPECHO('T');
UPECHO (, I ') ;
UPECHO('M');
UPECHO ('E ') ;
UPOCHO (CR) ;

} /* end of t.irrerrr */

Routines called : UPECHO

/*
*
*
* MSGREPLY - Routine to write out caracters to <CAB> &

* <OPT>.

*
*
*
* authors John F. Babson and Y. Miyakoshi,
* University of Hawaii, Physics
* revised by Y. Miyakoshi
* Revision date : July 12, 1986
*
*/

#include SBCDEF.H

673

MSGREPLY (msg)
char *msg;
{

/* write characters to CAB & OPT */

int i;
int c; /* convert data character to int */

for (i = 0; msg[i] != EOS; i++) {

c = msg[i];

UP:EX:HO (c) ;

}

} /* end of MSGREPLY */

074

/*

*
* ALLECHO - Routine to write out a byte to <CAB>,<OPT>,
* <STR>, & <PWR>.

*
* Routines called: UPECHO, lXWNECHO

*
* authors John F. Babson and Y. Miyakoshi,
* University of Hawaii, Physics
* revised by Y. Miyakoshi
* Revision date : July 12, 1986
*
*/

/* note - use outport (port, byte) */

ALLECHO (byte)
int byte;
{

/* write a byte to CAB, STR, PWR & OPT */

upecho (byte) ;

downecho (byte) ;

} /* end of ALLEQ10 */

/*
*
* UPECHO - Routine to write out a byte to <CAB> & <OPT>.

*
* Routines called : OOTCAB, OOTOPT

*
* authors John F. Babson and Y. Miyakoshi,
* University of Hawaii, Physics
* revised by Y. Miyakoshi
* Revision date : July 21, 1986
*
*/

/* note - use outport (port, byte) */

#include SBCDEF.H

UPECHO(byte) /* write a byte to CAB & OPT */
int byte;
{

outcab (byte) ; /* outport (CAB, byte) */

outapt (byte); /* outport (OPT, byte) */

} /* end of UPECHO */

()75

f>76

/*
*
* ~HO - Routine to write out a byte to <STR> & <PWR>.

*
*
*

Routines called: corsra, oorPWR

* authors John F. Babson and Y. Miyakoshi,
* University of Hawaii, Physics
* revised by Y. Miyakoshi
* Revision date : July 21, 1986
*
*
*/

/* note - use outport (port, byte) */

#include SBCDEF.H

r:x:::wNECHO (byte) /* write a byte to S'IR & PWR */
int byte;
{

outstr (byte) ;

outp-zr (byte) ;

} /* end of downecho */

/* outport (S'IR, byte) */

/* outport (PWR, byte) */

/* case 1 : {R,Z,T,L,B,O} */

/* send rressage to CABIE */
/* $ B B ••• */

/*
** E\7MI1SG - Routine to send a fake rressage from environmental
* module.
*
7.. Routines called : UPECHO

*
* authors John F. Babson and Y. Miyakoshi,
* University of Hawaii, Physics
* Revised by John F. Babson
* Revision date : Dec. 11, 1986
*
*/

#include SBCDEF.H

extern int ard[];

EVl'-:MSG () / * fake environmental module rressage */
{

UPECHO (OOL) ;
UPECHO('B');
UPECHO('B');
UPECHO(ard[O]) ;
UPECHO (ard[l]) ;

if (ard[l] = CR)
return;

else {
UPECHO(ard[2]);
UPECHO(ard[3]};

.UPECHO(ard[4]);
UPEC"HO (ard[S]);

if (cmd[S] = OR) /* case 2 . F HEX(O) .•• HEX(3)*/

return;

... __._--------------

else { /* case 3 : D HEX(O) ••• HEX (3) 1 1 */

678

UPECHO (,1 ') ;
UPECHO('1');
UPEX:HO (CR) ;

}

}

} /* end of EVM-1SG */

..._--------------

/*
*
* ALIMSG - Routine to fake "all call" reply rressaqe,

*
* Routines called : UPECHO

*
* author John F. Babson,
* University of Hawaii, Physics
* Revision date: Nov. 17, 1986
*
*/

#include SBCDEF.H

extern int ard[] ;
extern int dev;

AIJ.MSG 0 /* fake "all call" reply nessaqe */
{

UPEQiO (OOL) ;
UPEQiO(dev) ;
UPEQiO(dev) ;

UPECHO(ard[O]) ;
UPECHO(ard[I]) ;
UPECHO(ard[2]) ;
UPECHO (ard[3]) ;

UPECHO (CR) ;

} /* end of ALIMSG */

079

680

/*
* ASCBIN - Routine to convert a ASCII character to its
* binary image.
*
* Routines called :
*
* authors John F. Babson and Y. Miyakoshi,
* University of Hawaii, Physics
* revised by John F. Babson
* Revision date : July 9, 1986
*
*/

#define NUMOFF OX30
#define LETOFF OX41

ascbin(c) /* converts a ASCII character to its binary image
*/
char c;
{

int binary; /* value to be returned */

/* check to see if char c is a number 0.. 9, if not then
it is a letter A ••F */

if (c <- '9')
binary = c - NUM:FF;

else

/* subtract the ascii
offset */

binary = c - LETOFF + OXOA; /* subtract the ascii
offset and start
count at OA hex */

return (binary);

} /* end of ascbin */

#undef NLMJEF
#undef LEIOEF

681

/*
*
* BINHEX - Routine to convert byte sized binary numbers into
* to their two byte ascii hex equivalent.
*
* Routines called : NIBHEX

*
* author - John F. Babson,
* University of Hawaii, Physics
* revision date - July 20, 1986

*
*/

#define~ OXOF /* low nitble mask */
#define UPMASK OXFO /* high nitble mask */

binhex (iribin,outhup,outhlo)

char iribin;
char *outhup;
char *outhlo;

{

/* input binary byte */
/* high ascii hex byte */
/* low ascii hex byte */

char upnib;
char lonib;

/* high binary nibble */
/* low binary nibble */

/* divide iribin into the two nitbles upnib and lonib */

lonib = inbin & :LCMASK;

upnib = inbin & UPMASK;

/* shift right four bits of upnib to place the bits in
lowest four bit position */

upnib = upnib » 4;
upnib = upnib & OxOF;

682

/* finish the conversion passing the niJ:::bles to nibhex*/

*outhup = nibhex (upnib) ;

*outhlo = nibhex(lonib);

} /* end of binhex */

#undef :LG1ASK
#undef UPMASK

-_._-----

/*
*
* NIBHEX - Routine to take a four bit binary nibble and
* convert it into an ascii hex character.

*
* Routines called. :

*
* author - John F. Babson,
* University of Hawaii, Physics
* revision date - June 18, 1986
*
*/

char nibhex (nibble)

char nil:ble;

{

char value;

if (nibble > 9) {

value = nil::ble + 'A' - 10;

} else {

value = nibble + '0';

}

return (value);

} /* end of nibhex */

683

684

/*
*
* ISHEX - Routine to test a character if it's a ASCII hex
* m.miber.
* It returns TRUE if it's <O-F>, otherwise returns
* FAISE.
*
* Routines called :
*
* authors John F. Babson and Y. Miyakoshi,
* University of Hawaii, Physics

*
*/

#inclucie SBmEF.H

ISHEX(c)
FALSE */
char c;
{

/* returns TRUE if it's O-F, otherwise returns

if «c >= '0' && c <= '9') I I (c >='A' && c < 'F'))

return (TRUE) ;

else

return(FAISE);

} /* end of ISHEX */

/*
*
* JNIT - Routine to initialize the SEC control program.
* It does the following :
* disables the HD64180 asychronous
* cormnmications ports interrupts.
* sets the baud rate for all serial
* cormnmication to 300 baud.
* - loads default parameters into the SEC latch.

*
* Routines called :

*
* author - John Babson,
* University of Hawaii, Physics
* Revised by Y. Miyakoshi
* Revision date : Jan. 19, 1987

*
*/

=ll=include SBCM:N.H

685

=ll=define KM 1 /* 1 if TRUE (RCM system),
o if FAISE (OOS system) */

/* extern char table []; */

JNIT()
{

/* disable the ASCI interrupt on the CAB port and set
both the CAB and STR ports to 300 baud */

=ll=a.sm

IE OEDH, 38H,STAT1 ; SEl80 INO A, (STAT1)
ANI 1111011lB; Receive Interrupt Enable - off
IE OEDH, 39H,STAT1 ; SBl80 CXJTO (STAT1),A

MJI
IE

A,OOOOI10lB ; Baud Rate - 300
OEDH,39H,CNTLBO ; SE180 ooro (CNrLBO),A

-------- - ----

IF R:M ; change to 300 baud only if RCM
ill OIDH,39H,CNI'LB1; SB180 CXJI'O (CNI'LB1),A
ENDIF

; note - default for console is 9600 baud

#endasm

/* now, set the SOC default parameter values */

/* note - need to define the default values */

/*
table [3] -
table [4] -
table [5] -
table [6] -
table [7] -
table [8] -
table [9] -

tablatO;
*/

} /* end of init */

686

/*
*
* DEINIT - Routine to :return to the SB180 MJnitor.
* It does the following :
* - resets all error flags (OVRN, FE and PE) to
* zero,
* - enables the asynchronous cormnmications ports
* interrupts.
* - force return to SB180 MOnitor.

*
* Routines called :
*
*
*
*
*

Notes:
- value of label OOS determines proper consol baud
rate upon :return to 008 or RQ.1 monitor

* authors Y. Miyakoshi and John F. Babson,
* University of Hawaii, Physics
* Revision date: sept. 17, 1986

*
*/

#inclucie Sl3CJI1l'.J.H

#define 008 o /* 1 if TRUE, 0 if FALSE */

deinitO /* enable ASCI interrupt - ch.1 */
/* reset all error flags */

{

#asm

ill
J:lNI
IE

ill
CRT
ill

OIDH, 38H,CNI'IAl ; SB180 INO A, (CNTIAl)
11110111B ; Error Flag Reset - off
OIDH,39H,CNI'IA1 ; SB180 CXirO (Q'ITLAl),A

OIDH,38H,STAT1 ; SB180 INO A, (STATI)
00001000B ; R-oceive Interrupt Enable - on
OIDH, 39H,STAT1 ; SB180 coro (STAT1),A

IF IXE
M1I A,OOOOlOOOB ; Baud Rate - 9600 for DOS
rn OEDH,39H,CNI'LBI ; SB180 00'1'0 (rn:rLBl),A
ENDIF

; Force return to SB180 M::>nitor

#endasrn

} /* end of deinit */

-- -- ----- ---- --

688

/*
*
* DEIJl~Y - Routine to cause one millisecond of tirre delay.
*
* Routines called :
*
* authors John F. Babson and Y. Miyakoshi,
* University of Hawaii, Physics
* Revised by Y. Miyakoshi
* Revision date: July 17, 1986
*
*/

delayO /* delay 1 millisecond */
{

#asm

689

MJI A, 200

I..ffi>:
N]?

N]?

N]?

IXR A
JNZ r.a:F

#endasm

; counter 200 times

; decrerrent counter

} /* end of delay */

/*
** ATCD - Device driver routine for the AOC0816 16 channel
* a to d converter chip.

*
* author - John F. Babson, University of Hawaii, Physics
* revision date - July 23, 1986

*
*/

#include SBCM::N.H

int atod (chan)

{

chan; /* pass the channel identity to be read to ASM
level */

#asm

; set up stack for pararret.er passing

600

EO? 0

EO? H

STARr:

; return address

; channel identity (chan)

MJJ A,L ; select channel address

; write out the channel to atod chip starting
; conversion process

m OEDH,39H,ADC1 ; SB180 core (ADCl),A

WAIT:

; read status - is end of conversion true ?

IE OEDH,38H,ASTATUS; SB180 rno A, (ASTATUS)

ANI EIX: ; check for EXX: condition

; DANGER !!! - should add a timeout to prevent a
; system hangup

Jl WAIT; busy wait until EXX: condition set

READ:

; read in the byte

IE OEDH,38H,ADCl ; SBl80 rno A, (AOCI)

MAT L,A ; store ''byte'' (in <L»

MlI H,O ; pad <H> with all zeros

; restore the stack

691

PUSH H

PUSH D

#endasm

} /* end of atod */

; return value (c)

; return address

/*
* note: calling sequence -

*
* chan = ascbin (channel)
* ; [chan is binary, channel is ascii hex]

*
* value = atod(chan); [value is binary value returned]
*/

--- ------- - ---------

692

/*
* incab - routine to input a byte fran the optical cable
* (CAB)
* note, much of this code is modified. fran the SB180
* nonitor
*
* authors - John Babson and David Harris,
* University of Hawaii, Physics
* revised by Y. Miyakoshi - May 28, 1986
* revision date - Nov. 1986

*
*/

/*
* assembly note: options for stripping parity and checking
* for control character input exist and can be enabled. or
* disabled accordingly by corrmenting out (or not) the
* appropriate lines marked. by a" >" pointer
* in the inline corrrrent area.
*/

#include SBCM:N.H

int incab() {

#asn

; note - ASCI interrupt's been disabled. in main driver

; set up stack for pararreter pass.inq

KP D · return address,
KP H · return value (c),

MlI B,6 · initialize tirlEr counter,
; 5 msec of tine delay

IN::1\BI:
IB OEDH,38H,STATI; SBI80 INO A, (STATI) -

; check status
ANI 80H ; receiver not ready
Jl DEIAY ; null data

IB OEDH,38H,RDRl ; SBI80 INO A, (RDRl)
; read data byte

ANI 7EH ; > strip parity
JM? IN:AB2 ; > return data byte directly

; skip SCHECK

SCHECK:
a>I I8H · cntl-X,
Jl RESTARI' ; force a restart
a>I 03 · cntl-e,
Jl RESTARI' ; force a restart
a>I IOH · cntl-P,
JNZ IN:AB2 . default path,
PUSH PEW · else,
I.J)A OCHOFLG . toggle,
eM\. ; printer
SlA OCHOFLG ; flag
EO? PEW
JM? IN:AB2

RESTARI':
IHill AOORIMSG · reply with warm boot,
mIL MPRJNI'F · message,
~ M:NJP · and execute wann boot,

ABOR'IMSG:
IB 'WBOO ' , ODH, 0 ; warm boot messaqe, CR

693

DEIAY:
IXR
MJJ
Jl

MJI

B
A,B
NXDATA

A, 200

; select nat tirrer counter
; move t.imer counter -
; tirre out with null data

; loop counter for 1 rnsec delay

I.CXF:
N:P
N:P
N:P
IXR A
JNZ I.ro?

JM? n.r1ffil

NXDATA:
XPA A

IN:AB2:
M).J L,A
MlI H,O

.~ decrenent loop counter
; repeat until tirre out

; try again for input

; clear Q;>

; store ''byte'' (in <L»
; pad <H> with all zeros

; restore the stack

PUSH H
PUSH D

; return value (c)
; return address

; note - ASCI interrupt will be enabled in main driver

#endasm

} /* end of incab */

---- -------- --------

/*
* instr - routine to input a byte fran the string (S'IR).
* note, much of this code is modified fran the SB180
* monitor
*
* authors - John Babson and David Harris,
* University of Hawaii, Physics
* revised by Y. Miyakoshi
* revision date - NOv. 1986
*
*/

/*
* assembly note: options for stripping parity and checking
* for control character input exist and can be enabled or
* disabled accordingly by corrmenting out (or not) the
* appropriate lines marked by a" >" pointer
* in the inline corrrrent area.
*/

#include s:BCM::N.H

int instr () {

#a.sm

; note - ASCI interrupt's been disabled in main driver

; set up stack for Parameter passing

Fa> D · return address,
Fa> H · return value (c),

MJI B,6 · initialize tiner counter,
· 5 msec of ti.rre delay,

695

696

INSTR1:
IB DEDH,38H,STATO ; SB18D INO A, (STATO) -

; check status
ANI 80H · receiver not ready,
JZ DElAY · null data,

IB OEDH,38H,RDRO ; SB180 INO A, (RDRO) -
; read data byte

ANI 7EH · > strip parity,
JM? ThlSTR2 · > return data byte directly,

· skip SCHECK,
DEIAY:

IXR B · select next timer counter,
f!DJ A,B · move timer counter --,
Jl IDSDATA · time out with null data,
MJI A,200 · loop counter for 1 msec delay,

Ial':
N:l?
N:l?
N:l?
IXR A · decrerrent loop counter,
JNZ Ial' · repeat until time out,
JM? INSI'Rl · try again for input,

NJSDATA:
XPA A · clear <A>,

JNSTR2:
f!DJ L,A ; store ''byte'' (in <L»
MJI H,O ; pad <H> with all zeros

; restore the stack

PUSH H
PUSH D

; return value (c)
; return address

;note - ASCI interrupt will be enabled in main driver

#endasm

} /* end of instr */

/*
* inpwr - routine to input a byte fran the power module
* (PWR), one shot read version.

*
* authors - John Babson, David Harris, and Yoshiko Miyakoshi
* University of Hawaii Physics
* revision date - Nov. 11, 1986

*
*/

/* assembly note: option for stripping parity exists and can
* be enabled or disabled accordingly by commenting out (or
* not) the appropriate lines marked by a" >" pointer
* in the inline corrment area.
*/

#include SBCM::N.H

int inp-rr () {

; set up stack for pararreter passing

RP D · return address,
RP H · return value(c),

MJI B,6 · initialize timer counter,
· 5 msec of time delay,

80H
DElAY

7EH
INEWR2

INPWRl:
m

ANI
JZ

m

ANI
JM?

OEDH, 38H,PSTAT ; SB180 INO A, (PSTAT)
; check status

; receiver not ready
; null data

OEDH, 38H,PDATA ; SE180 INO A, (PDATA)
; read data byte

; > strip parity
; return data byte directly

DEIAY:
IXR B · select next ti.ner counter,
MJl A,B · nove ti.ner counter --,
Jl NJPDATA · tine out with null data,

WI A, 200 · loop counter for 1 msec delay,
I.CO?:

N]?

N]?

N]?

IXR A · decrement loop counter,
J.NZ ra::P · repeat until tirre out,

JM? INEWRl ; t:r:y again for input

N)PDATA:
XPA A · clear <A>,

JNPWR2:
MJl L,A ; store "byte" (in <L»
WI H,O · pad <H> with all zeros,

; restore the stack

PUSH H · return value (c),
PUSH D · return address,

#endasm

} /* end of iqpwr */

698

/*
*
* CXJTCAB - Routine to output a byte to the optical cable
* port.
*
* Routines called :
*
* authors - John Babson and David Harris,
* Uni'"Jersity of Hawaii, Physics
* Revised by Y. Miyakoshi
* Revision date : June 10, 1986

*
*
*/

#include SBCMl'J.H

outcab(byte) {

#asrn

<XJTCABO:

699

MJJ A,L
PUSH Pgr;j

<XJTCABl:

; write the ''byte''
; <A> to CAB

; check status
IE OEDH, 38H,STATI ; SB180 INO A, (STATl)

ANI az ; if '!DR not errpty
JZ aJI'CABl ; then wait
Rl? Pgr;j ; if '!DR errpty

; send the data
IE OEnH, 39B,'IDRl ; SB180 curo (TORl),A

PUSH PSW
I..DA illfCFIG ; echo printer?
CPA A
JNZ EDD; yes - then echo
EO? PSN ; no - :return directly
JlI1? CXJIOlli2

700

ron:
I..DA
CPA
Jl
I..DA
SI.'A

PRNSTAT ; to centronics port
A
EnD ; wait printer free
o ; mark printer busy
PRNSTAT

Dr
EO? PSV
ClJI' CENlOC
ClJI' CENIDS
ClJI' CENlOC
EI

CXJIOlli2:

#endasm

} /* end of outcab */

; output data - clear strobe
; output data - set strobe
; output data - clear strobe

/*
*
* aJ'I'S'IR - Routine to output a byte to the string port.
*
* Routines called :
*
* authors - John Babson and David Harris,
* University of Hawaii, Physics
* Revised by Y. Miyakoshi
* Revision date : June 10, 1986
*
*/

#include SBCM:N.H

outstr(byte) {

#asm

curSTRO:

701

MJJ A,L
PUSH P3"l

curSTR1:

; write the ''byte''
; -o» to STR

; check status
m OEDH,38H,STATO; SB180 INO A, (STATO)

ANI Q2 ; if '!DR not enpty
Jl <XJTSTRl ; then wait
ECP PSi ; if '!DR enpty

; send the data
rn OEDH, 39H, 'IDRO ; SB180 CXJI'O ('IDRO),A

#endasrn

} /* end of outstr */

/*
* OOTPWR - Routine to output a byte to the power module
* port.
*
* Routines called :

*
* authors - John Babson, Dave Harris,and Yoshiko Miyakoshi
* University of Hawaii, Physics
* Revision date: July 20, 1986
*/

#include SBCM::N.H

outpwr (byte) {

#asn

aJI'PWRo:

702

MJJ A,L
PUSH PEW

CXJTPWRl:

; write the ''byte''
; <]:V to PWR

; check status

IE OEDH, 38H,PSTAT ; SB180 INa A, (PSTAT)

ANI 40H ; if XHR not errpty
Jl OOTPWRl; then wait
RP PEW ; if XHR errpty

; send the data

ill OEDH,39H,PDATA ;SB180 coro (PDATA),A

#endasm

} /* end of outpwr */

- - _._--_._------ -_._---

/*
*
* CXJ'IOPT - Routine to output a byte on the 23 bit wide
* serial data optical channel.
*
* Routines called : DATIAT

*
* authors John· F. Babson and Y. Miyakoshi,
* University of Hawaii
* Revised by Y. Miyakoshi
* Revision date : July 18, 1986
*
*/

extern char table [] ;

CXJ'IOPT(c) /* writes data on OPT of latch */
{

char byte;

byte = c; /* convert integer to character */

703

table [0] = byte;
table [1] = byte;

/* load the byte */
/* load the byte */

table[2] = table[2] & Ox80; /* mask MSB */
table[2] = OxAA; /* load ?0101010 */

/* move the pattern into the latch & strobe the SEC */

DATIATO;

} /* end of outopt */

704

/*
*
* SBCDEF. H - Header file of defines for the String Bottom
* Controller program.
*
*
*
*
*

This must be included (as #include SBCDEF.H) in all C
source code files in which any of these defines are
used.

* authors John F. Babson and Yoshiko M[yakoshi,
* University of Hawaii, Physics
* Revision date: Nov. 19, 1986
*
*/

/* device defines */

#define PO"JER. ' A '
#define EVM 'B '
#define LATCH 'C'
#define CM1 ' 1 '
#define ~ '2'
#define CM3 ' 3 '
#define CM4 '4'
#define eMS ' 5 '
#define CM6 ' 6 '
#define C1:!fl '7 '
#define Q11 ' 8 '
#define CM2 ' 9 '
#define ALI.MD ' 0 '
#define ALLCM 'E'
#define ALLCM 'F'

/* flag defines */

/* power module */
/* environrrental module */
/* latch */
/* optical module 1 */
/* optical module 2 */
/* optical module 3 */
/* optical module 4 */
/* optical module 5 */
/* optical module 6 */
/* optical module 7 */
/* calibration module 1 */
/* calibration module 2 */
/* all modules */
/* all calibration modules */
/* all optical modules */

#define CNC'AB
#define CNSTR
#define CNPWR
#def:L"1e OFFCAB
#defineOFFSTR
#define OFFPWR

Ox01
Ox02
Ox04
OxFE
OxED
OxFB

/* on inflg(O) - 0000 0001 */
/* on inflg(l) - 0000 0010 */
/* on inflg(2) - 0000 0100 */
/* off inflg{O)- 1111 1110 */
/* off inflg{l)- 1111 1101 */
/* off inflg(2)- 1111 1011 */

705

/* carmon port defines */

#define CAB 0
#define sra 1
#define PWR 2
#define OPT 3

/* optical cable */
/* string */
/* power */
/* data word on latch */

/* latch address defines */

#define LATCHO OxFO
#define LATCH3 OxF3
#define DATAST OxF9
#define MASTST OxFB

/* first latch byte */
/* fourth latch byte */
/* the data strobe pulse */
/* master reset strobe pulse */

/* software time out - note that in INPOTL that INCAB, INSTR,
* and INPWR are all 5 msec delays so that one poll pass for
* all three ports is 15 msec long. Thus, a 5 sec wait is
* about 300 passes X 15 msec
*/

#define MAXCNT 300

/* others */

/* max count for t.ime out */

#define DOL
#define DOLIAR
#define CR
#define EOS
#define NULL
#define TRUE
#define FALSE

'$,
'$,
'\r'
'\0'
o
1
o

/* dollar sign */
/* dollar sign */
/* carriage return */
/* end of string */

/* end of SBCDEF.H */

706

/*
*
* SBCGLOB.H - Header file of declaration of all global
* variables.
*
*
*
*
*
*
*

This file must be included in 'MAIN' procedure of the
String Bot.t.cra Controller program (as #include
SBQ:;IOB. H). Any of these global variables must be
declared as '~em' in all files in which that global
is used.

* authors Yoshiko Miyakoshi and John F. babson,
* University of Hawaii, Physics
* Revised by John F. Babson
* Revision date: Jan. 22, 1987

*
*/

int sbcrun; /* control flag for no:r:mally running */
/* SEC program if TRUE, else run */
/* SB180 MJnitor * /

:int inbuf [3] ; /* buffer for a input character: */
/* inbuf[O] inbuf[1] iribuf[2] */
/* <CAB> <STR> <PWR> */

int inflg; /* bit flag for a input character: */
/* bitflg(bitO) bitfIg (bit1) bitfIg (bit2) */
/* <CAB> <STR> <PWR> */

int dev; /* defined device name
/* (defines are in 'SBmEF. H' file)

*/
*/

:int arrl[8]; /* comnand from console:
/* <ardO> <ordl.> ••• <ard7>

*/
*/

int bytm.nn; /* index on corrmand line data character */
/* (0-11) */

7fJl

int poll; /* switch for Environrrental M:x:iule Poll:*/
/* if 'poll' is 'EVM' do 'EVMPOLL' */
/* else do 'CMJPOLL ' */

int talk; /* switch for STRJN; "ALL CALL" */
/* if 'talk' is TRUE do 'ALLPOLL' */

/ * else do 'QvDPOLL ' */

int time; /* switch for STRJN; module response
/* if "tirre ' is TRUE do 'TIMPOLL'
/* else do ' QvDPOLL '

*/
*/
*/

int timout; /*
/*
/*
/*
/*
/*
/*

flag for controlling software time */
out when a valid (format, wise) */
STRThlG or PCWER corrmand is passed */
on so if no response is received */
by t.ine out period the system will */
not hang waiting for input from */
the port */

int count; /* count to control software time out */

char table [9] ;
/*
/*
/*

/* internal table of bytes
corresponding to ports on latch

table [0] table [8]
latch [0] ••• latch [8]

*/
*/
*/
*/

char corrmand[2]; __, /* for debugging */

/* end of SBCGIDB.H */

708

/*
** SBCM::N. H - Header file of defines for connecting up the
* modified SE180 monitor program (renamed Sl3CMl.'J.Z80) with
* the String Bottom Controller program.

*
*
*
*
*

This must be included (as iinclude SBCM:N.H) in
all C source code files in which any of these
defines are used.

* authors John Babson and David Harris,
* University of Hawaii, Physics
* Revised by Yoshiko Miyakoshi
* Revision date: Aug. 19, 1986
*
*/

/* corrmon defines */

idefine STATD 04H /* I/O port 0 (S'IR) status */
idefine STATl OSH /* I/O port 1 (CAB) status */
idefine MPRINTF 13C8H /* Z8D monitor PRINTF */
#define PSTAT OElli /* I/O J?(loJER status */

/* input defines */

#define RDRO 08H /* receive data port 0 */
#define RDRl 09H /* receive data port 1 */
#define EX:H<::>Fffi OFF2DH /* echo flag for printer */
#define M::NJP 0369H /* monitor jurrp (restart address) */
#define PDATA OEOH /* receive data roJER */

/* output defines */

#define 'IDRO 06H /* transmit data port 0 */
#define 'IDRl 07H /* transmit data port 1 */
#define PRNSTAT OFF2FH /* printer status */
#defii1e CEN'I'IX: OCOH /* centronics "clear" */
#define CENIDS 0ClH /* centronics "set" */

709

/* other I/O addresess */

#d=fine CNI'IAO OOH /* ASCI control register AO (AUX) */
#d=fine CNI'IAl OlB /* ASCI control register Al (ffi\]') */
#d=fine CNI'LBO 02H /* ASCI control register BO (AUX) */
#d=fine CNI'LB1 03H, /* ASCI control register B1 (ffi\]') */

/* AT(]) device driver defines */

#define AOC1 OE2H
#define ASTATUS OEFH
#define EOC 02H

/* end of SBCMON.H */

/* atod enable line */
/* atod status line */
/* atod EOC condition 00000010B */

~-----------------------------

710

REFERENCES

PREFACE

Childress, White, and Walter, Fun With Our Family, Scott, Foresman, and
Company, Glenview, lllinois, 1965 (good Dick and Jane example)

CHAPrERI

Griffiths, David, Introduction to Elementary Particles, Harper and Row,

Publishers, New York, 1987

CHAPrER2

Alexander, G. et al., Phys. Lett. 78B, 162 (1978)

Bacino, W., et al., Phys. Rev. Lett. 42, 749 (1979)

Blocker, C.A., Dorfan, J.M., et aI., Phys. Lett. 109B, 119 (1982)

Feldman, G.J., Trilling, G.H., et aI., Phys. Rev. Lett. 48, 66 (1982)

Particle Properties Data Booklet, April 1988 from "Review of Particle
Properties", Phys. Lett. B 204 (April 1988)

711

Alexander, G. et al .• Phys. Lett. 78B. 162 (1978)

Bacino. W., et al., Phys. Rev. Lett. 42, 749 (1979)

Blocker, C.A., Dorfan, J.M., et al., Phys. Lett.l09B, 119 (1982)

Li, X. and Ma, E., Phys. Rev. Lett. 47. 1788 (1981)

Particle Properties Data Booklet. April 1988 from "Review of Particle
Properties". Phys. Lett. B 204 (April 1988)

Tsai. Y.S.•Phys. Rev. D 4. 2821 (1971)

Weinberg; Steven. The Pirst Three Minutes, A Modern View of the Origin
of the Universe. Basic Books. Inc. New York, New York. 1977

CHAP.rER4

Bosetti, P .• et al., DUMAND II Proposal to Construct a Deep-Ocean

Laboratory for the study of High Energy Neutrino Astrophysics and Particle

Physics. UH Preprint #HDC-2-88. Hawaii DUMAND Center, University of
Hawaii, July 27, 1988

Jackson, John David, Classical Electrodynamics, 2nd Edition. John Wiley
and Sons. New York.1975

MatSUDa, S., et al., Nuc. Inst. Meth.• A276, 359 (1989)

712

CHAP.rER5

Alekseyev, E.N. et. al., Baksan Underground Scintillation Telescope,
Proc. 16th ICRC, Kyoto,vol. 10, pp. 276-281 (1979)

Alexeyev, E.N., Alexeyeva, L.N., Chudakov, A.E., and Krivosheina,
LV., Status of the Baksan Experiment on the Search for Neutrino Bursts
from Stellar Collapses, Proc. 20th ICRC, Moscow, pp. 277-280 (1987)

Andreyev, Yu.M., Gurentsov, V.I., and Kogai, LM., Muon Intensity
from the Baksan Underground Scintillation Telescope, Proc. 20th
IeRC, Moscow,pp. 200-203 (1987)

Bionta, R.M. et al., Observation of a Neutrino Burst in Coincidence
with Supernova SN1987a in the LAR... Phys.Rev.Lett.58, 1494 (1987)

Bionta, R.M., et. al., The 1MB Search for Stellar Collapse, Proc. 20th
ICRC, Moscow, vol. 6, p. 317, 1987

Chen, H.H., Kropp, W.R., Sobel, H.W., and Reines, F., Muons Produced by
Atmospheric Neutrinos: Analysis*, Phys. Rev. D, 4, 99 (1971)

Chudakov, A.E. et. al., Study of High Energy Cosmic Ray Neutrinos,
Status and Possibilities of Baksan Underground Scintillation Telescope,
Proc. 16th ICRC, Kyoto, vol. 10, pp. 287-292 (1979)

-------- ----------------------- ---- ---

713

Crouch, M.F., Landecker, P.B., Lathrop, J.F., Reines, F., Sandie, W.G.,
Sobel, H.W., Coxell, H., and Sellschop, J.P.F., Cosmic-ray muon fluxes
deep underground: Intensity vs. depth, and the neutrino-induced
component, Phy. Rev. D, 18 (1978)

Grant, A.L., Review of the Status of Proton Decay Experiments Outside the
USA, Proceedings of the 1982 Summer Workshop on Proton Decay
Experiments, June 7-11, 1982, Argonne National Laboratory, pp. 203-223,
Ayres, D.S. (ed), 1982

Haines, T.J., et aI., Calculation of Atmospheric Neutrino Induced
Backgrounds in a Nucleon Decay Search, Phys. Rev. Lett. 57, 1986-1989
(1986)

Hirata, K.S., et. al., Experimental Study of the Atmospheric Neutrino
Flux, Phys. Lett. D, 205, 416 (1988)

Ikeda, H., et. al., KEK - (UT)2 Experiment on Proton Decay, Proc. 17th
ICRC, Paris, vol. 7, p. 185, 1981

Kielczewska, D., et aI., Experimental Limits on the Nucleon Lifetime
from the 1MB Detector, In *Kazimierz 1985, Proceedings, Elementary
Particle Physics*, 383-395

Krishnaswamy, M.R., Menon, M.G.K., Narasimham, V.S., Hinotani,
K., Ito, N., Miyake, S., Osborne, J.L., Parsons, A.J. and Wolfendale,
A.W. The Kolar Gold Fields neutrino experiment I. The interactions of
cosmic ray neutrinos, Proc.Roy. Soc. Lond. A. 323,489 (1971)

Krishnaswamy, M.R., Menon, M.G.K., Narasimham, V.S.,Hinotani,
K., Ito, N., Miyake, S., Osborne, J.L., Parsons, A.J. and Wolfendale,
A.W. The Kolar Gold Fields neutrino experiment II. Atmospheric muons
at a depth of 7000 hg cm-2 (Kolar), Proc. Roy. Soc. Lond. A. 323, 511 (1971)

714

LoSecco, J.M., et. al., A Study of Atmospheric Neutrinos with the 1MB
Detector, Proc. 19th rene, La Jolla, vol. 8, pp. 116-119, 1985

Menon, M.G.K., Naranan, S., Narasimham, V.S., Hinotani, K., Ito, N.,
Miyake, S., Craig, R., Creed, D.R., Osborne, J.L., and Wolfendale, A.W.
Studies of cosmic ray neutrino interactions in the Kolar Gold Field
experiment, Proc. Roy. Soc. A. 301, 137 (1967)

Menon, M.G.K., Naranan, S., Narasimham, V.S., Hinotani, K., Ito, N.,
Miyake, S., Craig, R., Creed, D.R., Osborne, J.L., and Wolfendale, A.W.
The Kolar Gold Fields neutrino project, Canadian Journal of Physics, 46,
S344 (1968)

Oyama, Y., et. al., Experimental Study of Upward Going Muons In

Kamiokande, ICR-178-88-24, 20 p., Oct. 1988

Reines, F., IV High Energy neutrinos underground: status of the Case
Wits-Irvine experiment and future prospect, Proc Roy Soc A 301, 125 (1967)

Reines, F., Kropp, W.R., Gurr, H.S., Lathrop, J., Crouch, M.F., Sobel,
H.W., Sellschop, J.P.F., and Meyer, B. Measurements of interactions of
cosmic-ray neutrinos, Can. Jour. ofPhy, 46, S350 (1968)

Reines, F., Kropp, W.R., Sobel, H.W., Gurr, H.S., Lathrop, J., Crouch,

M.F., Sellschop, J.P.F., and Meyer, B., Muons Produced By Atmospheric
Neutrinos: Experiment*, Phys. Rev. D, 4, 80 (1971)

Svoboda, R., et. al., The !MB Proton Decay Detector, Proceedings of
the NATO Advanced Study Institute on Composition and Origin of
Cosmic Rays, Sicily, Italy, June 20-30, 1982, pp. 363-366, Shapiro, M.M.
(ed.),1983

715

CHAPrER6

Jennings, Fred, Practical Data Communications - Modems, Networks and
Protocols, Blackwell Scientific Publications, Oxford, U.K., 1986

Roden, Martin S., Digital Communication Systems Design, Prentice-Hall,
Inc., Englewood Cliffs, N.J., 1988

Taub, Herbert and Schilling, Donald L., Principles of Communications
Systems, McGraw-Hill Book Company, New York, 1971

Signetics Analog Timer Manual, Signetics Corporation, Sunnyvale
California, circa 1977

TMS99532 Application Report, Texas Instruments, July 1983

CHAPrER7

THE COMPLETE MOTOROLA MICROCOMPUTER DATA LIBRARY,
Motorola Corporation, Phoenix, AZ, 1978

LINEAR DATABOOK, National Semiconductor Corporation, Santa Clara,
CA,1982

MCS-51 Family of Single Chip Microcomputers User's Manual, Intel
Corporation, Santa Clara, CA, July 1981

Microcontroller Handbook, Intel Corporation, Santa Clara, CA, 1983

MM54HC174HC HIGH SPEED microCMOS LOGIC FAMILY DATABOOK,
National Semiconductor Corporation, Santa Clara, CA, 1983

Photomultiplier Handbook, RCA Corporation, Lancaster, PA, 1980

716

CHAPrER8

THE COMPLETE MOTOROLA MICROCOMPUTER DATA LIBRARY,
Motorola Corporation, Phoenix, AZ, 1978

LINEAR DATABOOK, National Semiconductor Corporation, Santa Clara,
CA,1982

MCS-51 Family of Single Chip Microcomputers User's Manual, Intel
Corporation, Santa Clara, CA, July 1981

MCS-51 MACRO ASSEMBLER USER'S GUIDE, Intel Corporation, Sanata
Clara, CA, 1983

Microcontroller Handbook, Intel Corporation, Santa Clara, CA, 1983

MM54HC174HC HIGH SPEED microCMOS LOGIC FAMILY DATABOOK,
National Semiconductor Corporation, Santa Clara, CA, 1983

Photomultiplier Handbook, RCA Corporation, Lancaster, PA, 1980

CHAPrER9

Cummings, W. C., The Mythical Manmonth, Addison-Wesley, New York,
1974

IEEE, The 2nd Software Engineering IEEE Conference (Jack Tarr HoteD,
San Francisco, California, 1976

Intel Semiconductor Corporation, The 8051 Users' Manual, Intel Inc., San
Jose, California, 1982

717

Jensen, Kathleen and Wirth, Niklaus, PASCAL User Manual and Report,
Springer-Verlag, New York, 1979

Kernighan, Brian W. and PIauger, P. J., Software Tools, Addison-Wesley
Publishing Company, Menlo Park California, 1976

Kernighan, Brian W. and Ritchie, Dennis M., The C Programming
Language, Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632, 1978

Leventhal, Lance A., Z80 Assembly Language Programming, Adam
Osborne and Associates, Inc., Berkeley, California 94710, 1979

Lewis, T. G. Software Engineering for Micros, The Electrifying
Streamlined Blueprint Speedcode Method, Hayden Book Company, Inc.,
Rochelle Park, New Jersey, 1979

Motorola Semiconductor Products, M6800 Microprocessor Programming
Manual, Motorola Inc., Phoenix, Arizona 85036, 1976

CHAPTER 10

Bilofsky, Walt, C/80 Small C Compiler, The Software Toolworks, Sherman
Oaks CA, 1981

Cain, Ron, A Small C Compiler for the 8080's, Dr. Dobb's Journal of
COMPUTER Calisthenics & Orthodontia, Running Light Without Overbyte,
People's Computer Company, Menlo Park CA, No. 45, VoI.5, Issue 5., pp. 5
19,May1980

718

Cain, Ron, A Runtime Library for the Small c Compiler, Dr. Dobb's
Journal of COMPUTER Calisthenics & Orthodontia, Running Light
'Without Overbyte, People's Computer Company, Menlo Park CA, No. 48,
Vol.5, Issue 8., pp. 4-15, September 1980

Ciarcia, Steven A., Build the SB180 Single-Board Computer, Part 1: The
Hardware, Byte, McGraw-Hill, Hightstown, NJ, Vol. 10, No.9, pp. 87-101.

Ciarcia, Steven A., Build the SB180 Single-Board Computer, Part 2: The
Software, Byte, McGraw-Hill, Hightstown, NJ, September 1985, Vol. 10, No.
10, pp, 87-101, September 1985

Conn, Richard, ZCPR3 The Manual, New York Zoetrope, Inc., New York,

1985

Digital Research, CP/M 2.0 User's Guide, Digital Research, Pacific Grove
CA,1979

Hitachi America Ltd., HD64180 8-Bit High Integration CMOS
Microprocessor User's Manual, Hitachi America Ltd., San Jose CA,
October 1985

Kernighan, Brian W. and Plauger, P.J., Software Tools, Addison-Wesley
Publishing Company, Reading Mass., 1976

Kernighan, Brian W. and Ritchie, Dennis M., The C Programming
Language, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1978

Microsoft Corporation, Microsoft MACRO-80 ASSEMBLER Software
Reference Manual, Microsoft Corporation., 1979

719

Richie, D.M., Johnson, S.C., Lesk, M.E., Kernighan, B.W., The C
Programming Language, Dr. Dobb's Journal of COMPUTER Calisthenics
& Orthodontia, Running Light Without Overbyte, People's Computer
Company, Menlo Park CA, No. 45, Vo1.5, Issue 5., pp. 20-29, May 1980

SLR Systems, SLRNK+ Superlinker Plus User's Guide. SLR Systems,
Butler PA. 1985

The Micromint, Inc.• SB180 Single Board Computer Users Manual. The
Micromint, Inc .• Vernon Conn.. 1985

CHAPTER 11

Babson, J. et al., Cosmic Ray Muons in the Deep Ocean, DH Preprint
#HDC-1-89, submitted to Phys. Rev. D (1989)

Crookes, J. N., and Rastin, B. C., Nuc. Phys. B, 58, 93 (1973)

Kobayakawa, K. private communication (1987)

APPENDIXC

Griffiths, David. Introduction to Elementary Particles, Harper and Row,
Publishers, New York, 1987

