PHYSICS 450 – ELECTROMAGNETIC WAVES

Spring Semester 2024; TR 9:00–10:15; MSB 307
Instructor: Eric B. Szarmes (szarmes@hawaii.edu)
Office: Watanabe Hall, WAT 212; Office hours: to be announced

Course description
Historically, one of the most important consequences of Maxwell’s investigations into electrodynamics was the understanding that light is a purely electromagnetic phenomenon. Having developed Maxwell’s equations and explored various applications of electrodynamics in Phys 350, we focus our attention in Phys 450 on the nature and propagation of electromagnetic waves in vacuum and in media. We also explore general solutions to Maxwell’s equations that reveal the rich physical content of these equations – that electromagnetic fields possess energy, linear momentum and angular momentum – and lastly, how electric and magnetic fields are not separate entities, but instead are fundamentally related through the four dimensional structure of spacetime. The course thus concludes with a thorough development of the theory of relativity.

Textbooks
• David J. Griffiths, Introduction to Electrodynamics, 4th ed., Cambridge University Press, 2017

Course website
https://laulima.hawaii.edu/ → PHYS-450-001 [MAN.80791.SP24]

Grade distribution
Weekly Homework: 50%
Quizzes/ Midterms: Q(5%) / M1(15%) / M2(15%)
Final Examination: 15%

Grade assignment
A+ 90+ B+ 75–80 C+ 60–65 C− 40–50
A 80–90 B 65–75 C 50–60 D/F < 40

In-class lectures
The primary format of Phys 450 will be in-class lectures. The complete lecture notes for each class will be made available on Laulima prior to each class, and during the class itself I will discuss selected features of the topics covered. Periodic quizzes will be administered and submitted in class. All exams will be take-home and submitted online.

• Prior to each class, lecture notes will be made available under the Resources tab on the Laulima website.

Online resources
Unfortunately, the classroom to which Phys 450 is assigned, MSB 307, is not Zoom-ready and does not have a Zoom-capable camera or microphone. Thus, I will not be able to record the lectures this semester. Since the class is officially in-person, I would ask that you attend class regularly. I will continue to post the lecture notes prior to class, and will be available to discuss any questions you may have.

• I have requested that our class be relocated to WAT 420, should that room become available during the semester.

Homework
Weekly Homework is to be submitted by the start of class on the specified date by uploading solutions (in pdf format) to Laulima. You are welcome to write out your homework by hand – legibly! – in which case you can upload scans or smart-phone photos after converting to pdf. Alternately, word-processor or LaTeX formats are also most welcome and, indeed, encouraged.

• Homework assignments will be posted and submitted through the Assignments tab on the Laulima website.

Corrections
Up until one week after any problem set is returned to you, you may submit corrections to any problem on that problem set, together with the original problem set, for up to 3 points (out of 10) per problem. Corrections must be done on the original problem set (written directly on the original writeup for small corrections) or on a separate page (attached to the original problem set for longer corrections) as needed. If you are not sure where you made your original error, or have trouble understanding anything about a problem for which you lost points, you may consult with me to discuss any questions you may have.

… continued
Late fee policy

I encourage you to complete and submit all homework, even if it is late! The goal of the course is to learn the material, and the problem sets are designed to help with this. But it is also true that it is easy to fall behind, and equally important to keep up.

To encourage you to submit your homework on time, I will charge a late fee of 2 points per day. Thus, submission on the due date after start of class is 2 points reduction, submission one day later is 4 points reduction, etc. For modestly late homework, I don’t think this is too great, but obviously becomes more serious the later the homework. I will not let any late fees reduce your score to less than 50% of your raw score.

If you submit corrections, then the additional 3 corrections points (per problem) are applied to the original score, not the late fees.

- Late homework will not be accepted after one calendar week past the due date.

Office hours

The format for office hours will be determined in class.

COURSE OUTLINE

<table>
<thead>
<tr>
<th>Dates</th>
<th>Topics</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 9–Feb 8</td>
<td>the wave equation; properties of waves; electromagnetic plane waves in free space and dielectric media; reflection at surfaces; electromagnetic waves in conductors; guided waves</td>
<td>Griff 9</td>
</tr>
<tr>
<td>Feb 13–Feb 20</td>
<td>energy, momentum and angular momentum in electric and magnetic fields; Poynting’s theorem; Maxwell’s stress tensor</td>
<td>Griff 8</td>
</tr>
<tr>
<td>Feb 15</td>
<td>Midterm Examination #1</td>
<td></td>
</tr>
<tr>
<td>Feb 22–Feb 29</td>
<td>potential theory; scalar and vector potentials; Coulomb and Lorentz gauges; retarded potentials; Lienard-Wiechert potentials; fields of a moving charge</td>
<td>Griff 10</td>
</tr>
<tr>
<td>Mar 5–Mar 7</td>
<td>nature and origin of electromagnetic radiation; power radiated by a moving charge; charges in arbitrary motion</td>
<td>Griff 11</td>
</tr>
<tr>
<td>Mar 12</td>
<td>Midterm Examination #2</td>
<td></td>
</tr>
<tr>
<td>Mar 12–Apr 9</td>
<td>principle of relativity; clock synchronization; the nature of time; the metric equation; proper time; the Lorentz transformation; Lorentz contraction; the causal structure of spacetime; four-vectors; energy and momentum</td>
<td>Notes (Griff 12)</td>
</tr>
<tr>
<td>Apr 11–Apr 23</td>
<td>electrodynamics and relativity; transformation of electric and magnetic fields; the field tensor and relativistic potentials</td>
<td>Notes (Griff 12)</td>
</tr>
<tr>
<td>Apr 25–Apr 30</td>
<td>Review Sessions</td>
<td></td>
</tr>
<tr>
<td>May 6–10</td>
<td>Final Exam Week</td>
<td></td>
</tr>
</tbody>
</table>