Physics 350 – Electricity and Magnetism			
	Instructor: Eric B. Szarr Office: Watanab	R 10:30–11:45 WAT 113 nes (szarmes@hawaii.edu) ne Hall, Room 212 00 MWF, Watanabe Hall, Room 421	
Course Description:	Electrodynamics occupies a unique position in the physics curriculum. Of the four fundamen- tal forces, it alone governs – together with the principles of quantum mechanics – <i>all</i> of the local physical interactions of everyday life. It also presents students with their first example of a fully developed and self-consistent field theory. This course develops the fundamentals of classical electrodynamics as embodied in Maxwell's equations, the Lorentz force law, and the constitutive relations describing static and time-varying electric and magnetic fields in vacuum and in matter. The treatment also develops and utilizes the mathematical tools of vector differ- ential and integral calculus, special functions, and the techniques of mathematical physics. The course is designed to emphasize the rich mathematical and physical content of the electromag- netic field, and to provide a solid foundation for advanced study at the post-graduate level.		
Textbook:	David J. Griffiths, Introduction to	Electrodynamics, 4 th ed., Pearson Higher Ed., Boston, 2013	
Course website:	https://laulima.hawaii.edu → PHY	S-350-001 [MAN.72296.FA15] → Resources	
Grade distribution:	Weekly assignments: Midterm examinations 1 and 2: Final examination:	10% 25%/25% 40%	
Grade assignment: (approximate)	$\begin{array}{cccc} A+ & 90 > & B+ & 75-80 \\ A & 80-90 & B & 65-75 \end{array}$	C+ 60-65 C- 40-50 C 50-60 D/F < 40	

COURSE OUTLINE

Dates	Topics	Chapter
8/25–9/8	introduction; status of electrodynamics; review of vector analysis; vector differential calculus; vector integral calculus; the Dirac delta function	1
9/10–9/24	electrostatics; the electric field E; Coulomb's law; divergence and curl of electrostatic fields; electric potential; work and energy in electrostatics; properties of conductors	2
October 1	Midterm Examination #1	
9/29–10/13	Laplace's equation; boundary conditions and uniqueness theorems; method of images; separation of variables; multipole expansion; monopoles and dipoles	3
10/15-10/27	electric fields in matter; polarization; dielectrics and induced dipoles; field of polarized objects; the electric displacement D ; linear and nonlinear dielectrics; permittivity	4
November 5	Midterm Examination #2	
10/29–11/12	the magnetic field B ; magnetostatics; the Lorentz force law; forces and currents; the Biot-Savart law; vector properties; Ampere's law; magnetic vector potential	5
11/17–11/19	magnetic fields in matter; magnetization; torques and forces on magnetic dipoles; the auxiliary field H ; magnetic media; permeability	6
11/24–12/8	the electromotive force; electromagnetic induction; Faraday's law; Maxwell's correction to Ampere's law; Maxwell's equations in vacuum and in matter	7
12/10	review	
Dec. 14–18	Final Examination	