FALL 2009 – PHYSICS 460/EE 470 – PHYSICAL OPTICS

TuTh 10:30-11:45 WAT 417

Instructor: Eric B. Szarmes, Associate Professor of Physics

Course description:	This course presents the fundamentals of classical physical optics in sufficient depth to provide both a solid understanding of optical phenomena, and a solid background for research in con- temporary optics. Fundamental ideas are unified through a mathematical treatment emphasizing Fourier analysis and linear systems theory for the description of linear wave propagation. Core topics include the propagation and interaction of optical fields and waves in matter, the vectorial nature of polarization phenomena, and the wave nature of light including temporal coherence and interferometry and spatial coherence and diffraction (Fourier optics). Specialized topics of interest include Gaussian transverse mode analysis and laser resonator optics, ultrafast pulse propagation and pulse shaping, and an introduction to nonlinear optics including the coupled wave theory of second harmonic generation.
Textbook:	B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics, 2 nd Ed., Wiley, New York, 2007
Reference texts:	A.E. Siegman, <i>Lasers</i> , University Science Books, Mill Valley CA, 1986 G.R. Fowles, <i>Introduction to Modern Optics</i> , Dover, New York NY, 1989
Grades based on:	7 problem sets (70%); 2 exams (30%)

COURSE OUTLINE

1.	Preliminary: - Fourier analysis and linear systems theory Ap - Maxwell's equations and optical fields in media					
2.	Polarization: - physical and mathematical description; Jones matrix analysis - anisotropic media; birefringence vs. optical activity - polarization control and devices					
3.	 Ray optics: - review of principles - paraxial analysis of simple elements; aberrations - ABCD matrix analysis; applications to periodic systems 					
4.	 Wave optics: - solutions of the wave equation; mathematical representation and physical properties - solutions of the paraxial wave equation; validity of the paraxial approximation - spatial and temporal properties of waves; diffraction and interference 					
5.	 Beam optics: - the fundamental and higher-order Gaussian transverse modes - propagation and transformation of Gaussian beams in ABCD systems - transverse mode analysis; orthogonal functions and mode decomposition 					
(Midterm examination)						
6.	Spatial coheren	- Fresne	al solutions of the wave equation (Huygen vs. Fresnel) el and Fraunhofer diffraction er optics and spatial filtering; holography	Ch 4		
7.	Temporal coher		pt of coherence; physical description of interference prometers and spectral analysis	Ch 11		
8.	. Laser resonator theory: - longitudinal mode structure and feedback; tunability Ch longitudinal mode structure and resonator stability analysis					
9.	D. Linear pulse propagation: - group velocity dispersion; pulse compression and frequency chirping C - space-time analogy and pulse shaping					
10.	 10. Intro. to nonlinear optics: - physical description; taxonomy of nonlinear optical processes - coupled-wave analysis of second harmonic generation 					
	(Final examination)					

Student Learning Objectives

After completing this course, students will be expected to be familiar with the following:

- 1) the application of linear systems theory in the description of optical systems (both in the time-domain and the spatial domain);
- 2) the nature of physical optics based on the solutions to Maxwell's equations;
- 3) the properties of polarized light and polarizing systems and their description in terms of the Jones calculus;
- 4) the geometric optics-limit to the wave equation, and the analysis of geometric optics using ray matrices;
- 5) the fundamentals of the wave nature of light including interference and diffraction;
- 6) the physical properties of Gaussian beams of all orders, and their application to optical systems;
- 7) the fundamentals of spatial coherence and diffraction, and temporal coherence and interferometry;
- 8) the fundamentals of resonator theory, and the role of boundary conditions in modifying the temporal and spatial properties of light;
- 9) the basic description of pulse propagation and the analogy with diffraction;
- 10) the physical origins and mathematical description of nonlinear optics.