Physics 476: Modern Electronics for Physicists

Lecture: T R 9:30 - 10:20

Lab: R 12:30 - 15:20pm

Spring 2012

Professor Gary Varner Updated 3/27/2012

News:

- CAM file examples (from Matt), and instructions for use [txt]
- Design reference for those using the Universal Eval (from Xin Gao) [zip]

Group Meeting matrix:

Time Slot	Group	Торіс	Design Review	Status	Project/IDL Manifest ID	Comment
12:30 - 12:45	Instructor	Ceramic (Berkeley 8" MCP-PMT)	27-MAR		Ceramic 8" MCP-PMT Motherboard: IDL_12_016 Daughtercard: IDL_12_015	IRS3 daughtercard basis
12:45 - 13:00	Serge/Stephanie	mTC Clock And JTAG In PCI	20-MAR	DFM?	mTC-CAЛРСІ IDL_12_006	diff impedance matching
13:00 - 13:15	Josh/Mich	mTC High Voltage board IRS3 DC carrier	6-MAR 1-MAR	PO? PO?	MtChive HV card: IDL_12_007 IRS3 DC carr card: IDL_12_003	HV wiring almost done?
13:15 - 13:30	Keita	rad sensing system	22-MAR	schematics	FEDDX IDL_12_005	Diamond Detectors 2x in hand
13:30 - 13:45	Adam/Xiaowen	combined DAC_MON/TARGET_ASIC	15-MAR	layout	eKLM Readout IDL_12_009	documentation on <u>TARGET4</u>
13:45 - 14:00	Igal/Jared	new FE-I4 readout board (pix4tpc)	23-FEB	DFM?	(pix4tpc) DM TPC interface board IDL_12_011	4-die version later
14:00 - 14:15	Lauri/Ari	TARGET4 eval board	16-FEB	assy/test	TARGET4 eval Daughtercard IDL_12_004	documentation on <u>TARGET4</u>
14:15 - 14:30	Vihtori	HV board (& new NIM board)	1-MAR	DFM	hv8cb IDL_12_012	HV_board.zip
14:30 - 14:45	Janne/Jussi	STURM beam monitoring	7-FEB	assy/test	STURM2/Fermionics Motherboard: IDL_12_001 STURM2 DC: IDL_12_002	boards fabricated; assemble and test
14:45 - 15:00	ASIC all/SSL-MCP	open questions on ASIC topics / SSL MCP readout			ASICs	<i>IDL_ASIC</i> 'n <i>hippogrif</i> good to know
15:00 - 15:15	all	general Q & A				

On Thursday afternoon, break at about 15:25 for Departmental Colloquium

- Detailed course schedule information Revised: 1/10/2012
- Student Learning Objectives posted here

Project Links:

- Ceramic 8" MCP-PMT readout [instructor]
- eKLM Readout (needs acronym) [Adam Goss, Xiaowen Shi]
- pix4tpc (DM TPC interface board) [Igal Jaegle, Jared Yamaoka]
- <u>MtChive</u> (mTC High Voltage board) [Joshua Murillo, Michi Sakai]
- STURM2/Fermionics (overall project page OK?) readout [Janne Himanen, Jussi Kangaskoski]
- <u>mTC-CAJIPCI</u> (mTC Clock And JTAG In PCI) [Serge Negrashov, Stefanie Smith]

- TARGET4 eval Daughtercard (needs acronym) [Ari Parviainen, Lauri Karppinen]
- hv8cb HV board [Vihtori Virta]
- FEDDX (rad sensing system) [Keita Fukushima]

Course Reference Information:

- Class/Lab meets in Watanabe Hall room 221
- Instructor: Gary Varner Office: WAT 333 Laboratory: WAT 214
- e-mail: varner#phys.hawaii.edu, varner#hawaii.edu
- Office Hours: by arrangement in WAT 214 (when instructor not already committed)
- You will need to start your own webpage to document your project, for which SeaMonkey and instructions may be useful
- Direct link to MOSIS website

Grading: Exercises 20%, Final Project 40%, Final presentation 20%, Final report 20%.

Basically the project is the course.

• Final Presentations: Thursday May 13, 2010, 9:45 - 11:45 a.m. (to be confirmed...)

Lecture archive:

- First Lecture -- 10-JAN-2012
- Soldering basics; and the Surface Mount version (Robin Caplett) -- 12-JAN-2012
- Intermediate weeks -- largely exercises in running PADS
- An introduction to Crate Standards [PDF]
- Lecture notes of VHDL (Luca) [pdf1] [pdf2]
- VHDL examples (Mike) [zip]

Lab Exercises:

- Exercise zero -- as a warm-up
- First lab -- should be complete
- Exercise 2 and Exercise 3 -- should be complete
- Ex_4 and Ex_5 -- due 2/7
- <u>Ex 6</u> -- due 2/9
- <u>Ex 7 9</u> -- due by 2/16

Course Syllabus: Physics 476, UH Spring Semester 2012

Instructor: Dr. Gary Varner

Class Hours: T Th 9:30 - 10:20am, Lab Th 12:30 - 15:20 Watanabe 214

week	date	Lecture topics Laboratory topics		
1	10-Jan	electronics packaging	soldering and hand wiring	7
	12-Jan	assembly techniques	prototyping and wire-bonding	
2	17-Jan	Intro to PCB technology	Ex. 0: CAD/CAM	1
	19-Jan	Schematic capture (I)	Ex.1: symbols and hierarchy	
3	24-Jan	Schematic capture (II)	Ex. 2: wiring, busses, netlists	
	26-Jan	Schematic capture (III)	Ex. 3: parts/footprints	GSV -> MC
4	31-Jan	Design management	Ex. 4: Libraries and part creation	
	2-Feb	[Electronic standards]	Ex. 5: Placement	
5	7-Feb	Layout (I)	Ex. 6: Routing	
	9-Feb	Layout (II)	Ex. 7: Power and area fills	GSV -> MC
6	14-Feb	Layout (III)	Ex. 8: Artwork generation	
	16-Feb	Design review/submission	Ex. 9: da BOM	
7	21-Feb	Intro to Programmable Logic	Ex. 10: CAD tools	1
	23-Feb	CPLDs	Ex. 11: design entry	
8	28-Feb	FGPAs	Ex. 12: user constraints	
	1-Mar	VHDL language	Ex. 13: VHDL	
9	6-Mar	Verilog language	Ex. 14: Verilog	
	8-Mar	Logical simulation	Ex. 15: State table simulation	
10	13-Mar	Intro to analog simulation	Ex. 16: models	
	15-Mar	SPICE simulation	Ex. 17: accuracy, convergence	
11	20-Mar	Conceptual Design Preparation	parts specification	
	22-Mar	Intro to VLSI design	Conceptual Design Review	
12	27-Mar	SPRING	SPRING	
	29-Mar	BREAK	BREAK	
13	3-Apr	Bipolar vs. CMOS	Ex. 18: NAND and NOR	1
	5-Apr	Technical Design Preparation	Ex. 19: Amplifiers, parasitics	
14	10-Apr	Large system design	Technical Design Review	
	12-Apr	MOSIS and Fab. Processes	Ex. 20: DRC and submission	
15	17-Apr	Project Theory (I)	Project work	
	19-Apr	Critical Design Preparation	Project work	
16	24-Apr	Project Theory (II)	Critical Design Review	
	26-Apr	Deadline Management	Project work	
17	1-May	Final Design Review Prep.	Final Design Review	
	3-May	The Success of Failures	Project work	
18	9-May	Tentative: Final Prese	entations 9:45 - 11:45 am	

Prerequisite: Physics 475, equivalent or premission from instructor

Texts: Horowitz & Hill: The Art of Electronics

Johnson & Graham: High-Speed Digital Design: A Handbook of Black Magic Office hours: WAT333 M 10-11, any afternoon in WAT214 by appointment email: <u>varner@phys.hawaii.edu</u> Exercises: **Mandatory --** must be completed prior to next lab session Grading: 20% Exercises 40% Final project

20% Final presenation

- 20% Final report
- 20% Final report

PHYS476 Student Learning Outcomes

Successful completion of this course will require students to master the following subject material.

- 1. Application and reinforcement of basic physics knowledge as applied to Instrumentation problem solving
- 2. Develop familiarity with Modern electronics, consisting of
 - 1. Printed Circuit Board Layout
 - 2. Configurable logic ("firmware")
 - 3. Integrated Circuit Development
 - 4. Parts specification and acquisition
- 3. Application of Modern Electronics to a research level project
- 4. Introduction to project management
- Experience with scheduling and completion of tasks
 Technical risk management through the Design Review process
- 7. Completion and documentation of completed research instrumentation
- 8. Presentation of results to peers