Course Syllabus: Physics 476, UH Spring Semester 2010

Special ASIC-specific version

Instructor: Dr. Gary Varner

Class Hours: T R 9:00 - 10:15am; Lab T 12:30 - 1:20; R 12:30 - 3:30pm Watanabe 221

week	date	Lecture topics	Laboratory topics	
1	12-Jan	Intro to ASICs	computer resources	
	14-Jan	Design specs/Deadline Manage	Cadence/ID Lab server Acct.	
2	19-Jan	Intro to IC fabrication	Ex. 0: The design viewpoint	
	21-Jan	Schematic capture (I)	Ex.1: Tutorial 1	
3	26-Jan	Extra lab time	Ex. 2: Tutorial 2	GSV away
	28-Jan	Schematic capture (III)	Ex. 3: Tutorial 3	
4	2-Feb	Bipolar vs. CMOS	Ex. 4: Your design kit	
	4-Feb	Building blocks (I)		
5	9-Feb	DAC/Special circuit topics (I)	Ex. 5: Basic hierachy build	
	11-Feb	Special circuit topics (I)		
6	16-Feb	ADC/Special circuit topics (II)	Ex. 6: Specs	
	18-Feb	Special circuit topics (II)	Specification Review	
7	23-Feb	Intro to SPICE	Ex. 7: Simulation intro	
	25-Feb	Tolerance and robustness		
8	2-Mar	Input coupling	Ex. 8: SPICE Convergence	
	4-Mar	Impedance matching		
9	9-Mar	Analog bandwidth	Ex. 9: SPICE limitations	
	11-Mar	Design resources		
10	16-Mar	Power	Ex. 10: Design proof	
	18-Mar	Ideal Performance	Conceptual Design Review	
11	23-Mar	SPRING	SPRING	
	25-Mar	BREAK	BREAK	GSV away
12	30-Mar	Extra lab time	Ex. 11: Intro to Layout	
	1-Apr	Extra lab time		
13	3-Apr	Bipolar vs. CMOS	Ex. 12: Layout optimization	
	5-Apr	Clock/Power distrib. Theory		
14	10-Apr	Large system design	Ex. 13: Floorplanning	
	12-Apr	MOSIS and Fab. Processes		
15	17-Apr	Project Theory (I)	Project work	
	19-Apr	Design submission	Project work	
16	24-Apr	Project Theory (II)	Artwork generation	
	26-Apr	Deadline Management (Rev)	Project work	
17	1-May	Final Design Review Prep.	Final Design Review	
	3-May	The Success of Failures	Final Design Review (latest)	
18	13-May	Thursday: Final Presentations 9:45 - 11:45 am		

Prerequisite: Physics 475, equivalent or premission from instructor

Texts: Horowitz & Hill: The Art of Electronics

Johnson & Graham: High-Speed Digital Design: A Handbook of Black Magic

Office hours: Any time in WAT214 by appointment

email: varner@phys.hawaii.edu

Exercises: Mandatory -- must be completed prior to next lab session

Grading: 20% Exercises 40% Final project 20% Final presenation