FALL 2011 – PHYSICS 460/EE 470 – PHYSICAL OPTICS

MWF 8:30-9:20 WAT 417

Instructor: Eric B. Szarmes, Associate Professor of Physics

Course description:	This course presents the fundamentals of classical physical optics in sufficient depth to provide
Ĩ	both a solid understanding of optical phenomena, and a solid background for research in con-
	temporary optics. Fundamental ideas are unified through a mathematical treatment emphasizing
	Fourier analysis and linear systems theory for the description of linear wave propagation. Core
	topics include the propagation and interaction of optical fields and waves in matter, the vector
	nature of polarization phenomena, and the wave nature of light including temporal coherence
	and interferometry and spatial coherence and diffraction (Fourier optics). Specialized topics of
	interest include Gaussian transverse mode analysis and laser resonator optics, ultrafast pulse
	propagation and pulse shaping, and an introduction to nonlinear optics including the coupled wave theory of second harmonic generation.
Textbook:	B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics, 2nd Ed., Wiley, New York, 2007
Reference texts:	A.E. Siegman, Lasers, University Science Books, Mill Valley CA, 1986
	G.R. Fowles, Introduction to Modern Optics, Dover, New York NY, 1989
Grades based on:	7 problem sets (70%); 2 exams (30%)

COURSE OUTLINE

1.	Preliminary: - Fourier analysis and linear systems theory A - Maxwell's equations and optical fields in media A			App A, B Ch 5
2.	Polarization: - physical and mathematical description; Jones matrix analysis - anisotropic media; birefringence vs. optical activity - polarization control and devices			Ch 6
3.	Ray optics:	 review of principles paraxial analysis of simple ABCD matrix analysis; ap 	e elements; aberrations plications to periodic systems	Ch 1
4.	Wave optics:- solutions of the wave equation; mathematical representation and physical propertiesC- solutions of the paraxial wave equation; validity of the paraxial approximation- spatial and temporal properties of waves; diffraction and interferenceC			
5.	Beam optics:	 the fundamental and highe propagation and transform transverse mode analysis; 	er-order Gaussian transverse modes ation of Gaussian beams in ABCD systems orthogonal functions and mode decomposition	<i>Ch 3</i>
			(Midterm examination)	
6.	Spatial cohere	nce and diffraction theory:	integral solutions of the wave equation (Huygen vs. Fresnel)Fresnel and Fraunhofer diffractionFourier optics and spatial filtering; holography	Ch 4
7.	Temporal coh	erence and interferometry:	 concept of coherence; physical description of interference interferometers and spectral analysis 	Ch 11
8.	Laser resonator theory: - longitudinal mode structure and feedback; tunability - transverse mode structure and resonator stability analysis			Ch 10
9.	Linear pulse propagation: - group velocity dispersion; pulse compression and frequency chirping - space-time analogy and pulse shaping			Ch 22
10.	Intro. to nonlin	near optics: - physical descr - coupled-wave	ription; taxonomy of nonlinear optical processes analysis of second harmonic generation	Ch 21
			- (Final examination) ———	

Student Learning Objectives

After completing this course, students will be expected to be familiar with the following:

- 1) the application of linear systems theory in the description of optical systems (both in the time-domain and the spatial domain);
- 2) the nature of physical optics based on the solutions to Maxwell's equations;
- 3) the properties of polarized light and polarizing systems and their description in terms of the Jones calculus;
- 4) the geometric optics-limit to the wave equation, and the analysis of geometric optics using ray matrices;
- 5) the fundamentals of the wave nature of light including interference and diffraction;
- 6) the physical properties of Gaussian beams of all orders, and their application to optical systems;
- 7) the fundamentals of spatial coherence and diffraction, and temporal coherence and interferometry;
- the fundamentals of resonator theory, and the role of boundary conditions in modifying the temporal and spatial properties of light;
- 9) the basic description of pulse propagation and the analogy with diffraction;
- 10) the physical origins and mathematical description of nonlinear optics.