$B^{0}-\bar{B}^{0}$ mixing in unquenched lattice $Q C D$

Norikazu Yamada
RIKEN BNL Reserch Center
yamada@bnl.gov
for the JLQCD Collaboration
Phys.Rev.Lett.91(2003)212001
Super B factory workshop in Hawaii
January 19-22, 2004

Introduction

In the Standard Model, the mass difference of B and \bar{B} mesons is given by

$$
\begin{aligned}
\Delta M_{B_{q}}= & (\text { known factor }) \times\left|V_{t b}^{*} V_{t q}\right|^{2} \frac{\left\langle\bar{B}_{q}^{0}\right| \bar{b} \gamma_{\mu}\left(1-\gamma_{5}\right) q \bar{b} \gamma_{\mu}\left(1-\gamma_{5}\right) q\left|B_{q}^{0}\right\rangle}{M_{B_{q}}} \\
& (q=d \text { or } s) \\
& \delta\left(\left|V_{t b}^{*} V_{t q}\right|^{2}\right) \approx\left(\text { Error of } \Delta M_{B_{q}}\right)+(\text { Error in M.E. })
\end{aligned}
$$

- Experiments:
$\Delta M_{B_{d}}$: well determined ($\sim 1 \%$)
$\Delta M_{B_{s}}$: will be measured soon (\sim a few \%)
- Theory:

$$
\begin{aligned}
& \left\langle\bar{B}_{q}^{0}\right| \bar{b} \gamma_{\mu}\left(1-\gamma_{5}\right) q \bar{b} \gamma_{\mu}\left(1-\gamma_{5}\right) q\left|B_{q}^{0}\right\rangle=\frac{8}{3} B_{B_{q}}\left(\mu_{b}\right) f_{B_{q}}^{2} M_{B_{q}}^{2} \\
& \delta\left(B_{B_{q}} f_{B_{q}}^{2}\right) \approx 20-40 \% \text { (lattice QCD) }
\end{aligned}
$$

Introduction

In the Standard Model, the mass difference of B and \bar{B} mesons is given by

$$
\begin{gathered}
\Delta M_{B_{q}}=(\text { known factor }) \times\left|V_{t b}^{*} V_{t q}\right|^{2} \frac{\left\langle\overline{B_{q}^{0}}\right| \bar{b} \gamma_{\mu}\left(1-\gamma_{5}\right) q \bar{b} \gamma_{\mu}\left(1-\gamma_{5}\right) q\left|B_{q}^{0}\right\rangle}{M_{B_{q}}} \\
\quad(q=d \text { or } s) \\
\delta\left(\left|V_{t b}^{*} V_{t q}\right|^{2}\right) \approx\left(\text { Error of } \Delta M_{B_{q}}\right)+(\text { Error in M.E. }) \approx(\text { Error in M.E. })
\end{gathered}
$$

- Experiments:
$\Delta M_{B_{d}}:$ well determined ($\sim 1 \%$)
$\Delta M_{B_{s}}$: will be measured soon (\sim a few \%)
- Theory:

$$
\begin{aligned}
& \left\langle\bar{B}_{q}^{0}\right| \bar{b} \gamma_{\mu}\left(1-\gamma_{5}\right) q \bar{b} \gamma_{\mu}\left(1-\gamma_{5}\right) q\left|B_{q}^{0}\right\rangle=\frac{8}{3} B_{B_{q}}\left(\mu_{b}\right) f_{B_{q}}^{2} M_{B_{q}}^{2} \\
& \delta\left(B_{B_{q}} f_{B_{q}}^{2}\right) \approx 20-40 \% \text { (lattice QCD) }
\end{aligned}
$$

Theory error dominates.

Sources of uncertainty in the lattice calculation

- Scaling violation $\sim O\left(a^{n} m_{b}^{n}\right)$
currently $a m_{b} \sim 2$ to $3 \rightarrow$ serious problem

Sources of uncertainty in the lattice calculation

- Scaling violation $\sim O\left(a^{n} m_{b}^{n}\right)$
currently $a m_{b} \sim 2$ to $3 \rightarrow$ serious problem
\Rightarrow The use of effective theory (HQET, NRQCD) helps to reduce this to $O\left(a^{2} \Lambda_{\mathrm{QCD}}^{2}\right) \sim 5 \%$ and $O\left(\Lambda_{\mathrm{QCD}}^{2} / m_{b}^{2}\right) \lesssim 5 \%$

Sources of uncertainty in the lattice calculation

- Scaling violation $\sim O\left(a^{n} m_{b}^{n}\right)$ currently $a m_{b} \sim 2$ to $3 \rightarrow$ serious problem
\Rightarrow The use of effective theory (HQET, NRQCD) helps to reduce this to $O\left(a^{2} \Lambda_{\mathrm{QCD}}^{2}\right) \sim 5 \%$ and $O\left(\Lambda_{\mathrm{QCD}}^{2} / m_{b}^{2}\right) \lesssim 5 \%$
■ Operator matching
depending on to which order the operator is matched

$$
\begin{aligned}
& \mathcal{O}^{\text {cont }}=Z_{\mathcal{O}} \mathcal{O}^{\text {latt }} \\
& Z_{\mathcal{O}}=1+z_{1} \alpha+z_{2} \alpha^{2}+\cdots
\end{aligned}
$$

Sources of uncertainty in the lattice calculation

- Scaling violation $\sim O\left(a^{n} m_{b}^{n}\right)$
currently $a m_{b} \sim 2$ to $3 \rightarrow$ serious problem
\Rightarrow The use of effective theory (HQET, NRQCD) helps to reduce this to $O\left(a^{2} \Lambda_{\mathrm{QCD}}^{2}\right) \sim 5 \%$ and $O\left(\Lambda_{\mathrm{QCD}}^{2} / m_{b}^{2}\right) \lesssim 5 \%$
■ Operator matching
depending on to which order the operator is matched
\Rightarrow One-loop matching $\rightarrow O\left(\alpha^{2}\right) \sim 5 \%$

Sources of uncertainty in the lattice calculation

- Scaling violation $\sim O\left(a^{n} m_{b}^{n}\right)$ currently $a m_{b} \sim 2$ to $3 \rightarrow$ serious problem
\Rightarrow The use of effective theory (HQET, NRQCD) helps to reduce this to $O\left(a^{2} \Lambda_{\mathrm{QCD}}^{2}\right) \sim 5 \%$ and $O\left(\Lambda_{\mathrm{QCD}}^{2} / m_{b}^{2}\right) \lesssim 5 \%$
■ Operator matching depending on to which order the operator is matched
\Rightarrow One-loop matching $\rightarrow O\left(\alpha^{2}\right) \sim 5 \%$
■ Quenching error b

Quench ($N_{f}=0$)
Because of computational cost, the quenched approximation has been mainly studied so far.

Sources of uncertainty in the lattice calculation

- Scaling violation $\sim O\left(a^{n} m_{b}^{n}\right)$ currently $a m_{b} \sim 2$ to $3 \rightarrow$ serious problem
\Rightarrow The use of effective theory (HQET, NRQCD) helps to reduce this to $O\left(a^{2} \Lambda_{\mathrm{QCD}}^{2}\right) \sim 5 \%$ and $O\left(\Lambda_{\mathrm{QCD}}^{2} / m_{b}^{2}\right) \lesssim 5 \%$
- Operator matching depending on to which order the operator is matched
\Rightarrow One-loop matching $\rightarrow O\left(\alpha^{2}\right) \sim 5 \%$
- Quenching error

Quench ($N_{f}=0$)

Unquench ($N_{f} \neq 0$)

Now we can realize simulations with arbitrary number of N_{f}.

Sources of uncertainty in the lattice calculation

- Scaling violation $\sim O\left(a^{n} m_{b}^{n}\right)$ currently $a m_{b} \sim 2$ to $3 \rightarrow$ serious problem
\Rightarrow The use of effective theory (HQET, NRQCD) helps to reduce this to $O\left(a^{2} \Lambda_{\mathrm{QCD}}^{2}\right) \sim 5 \%$ and $O\left(\Lambda_{\mathrm{QCD}}^{2} / m_{b}^{2}\right) \lesssim 5 \%$
- Operator matching
depending on to which order the operator is matched
\Rightarrow One-loop matching $\rightarrow O\left(\alpha^{2}\right) \sim 5 \%$
■ Quenching error
Now we can realize simulations with arbitrary number of N_{f}.
\Rightarrow Incorporation of dynamical quarks

Sources of uncertainty in the lattice calculation

- Scaling violation $\sim O\left(a^{n} m_{b}^{n}\right)$ currently $a m_{b} \sim 2$ to $3 \rightarrow$ serious problem
\Rightarrow The use of effective theory (HQET, NRQCD) helps to reduce this to $O\left(a^{2} \Lambda_{\mathrm{QCD}}^{2}\right) \sim 5 \%$ and $O\left(\Lambda_{\mathrm{QCD}}^{2} / m_{b}^{2}\right) \lesssim 5 \%$
■ Operator matching depending on to which order the operator is matched
\Rightarrow One-loop matching $\rightarrow O\left(\alpha^{2}\right) \sim 5 \%$
- Quenching error Now we can realize simulations with arbitrary number of N_{f}.
\Rightarrow Incorporation of dynamical quarks
- Chiral extrapolation

Most of previous works have missed this problem.
Lattice can not simulate very light quarks ($\sim m_{u, d}$) directly.
\Rightarrow Extrapolations in m_{q} to $m_{q}=m_{u d}$ is required.

Sources of uncertainty in the lattice calculation

- Scaling violation $\sim O\left(a^{n} m_{b}^{n}\right)$ currently $a m_{b} \sim 2$ to $3 \rightarrow$ serious problem
\Rightarrow The use of effective theory (HQET, NRQCD) helps to reduce this to $O\left(a^{2} \Lambda_{\mathrm{QCD}}^{2}\right) \sim 5 \%$ and $O\left(\Lambda_{\mathrm{QCD}}^{2} / m_{b}^{2}\right) \lesssim 5 \%$
■ Operator matching depending on to which order the operator is matched
\Rightarrow One-loop matching $\rightarrow O\left(\alpha^{2}\right) \sim 5 \%$
- Quenching error

Now we can realize simulations with arbitrary number of N_{f}.
\Rightarrow Incorporation of dynamical quarks

- Chiral extrapolation

Most of previous works have missed this problem.
Focus on the discussion about the chiral extrapolations.

Simulation parameters

We performed the two-flavor (u and d in the loop) lattice simulation with the following parameters.

gauge :	Plaquette
light quark :	$O(a)$-improved Wilson
heavy quark :	NRQCD with $1 / m_{Q}$ corrections
lattice spacing :	$a^{-1}=2.22(4) \mathrm{GeV}$ from m_{ρ}
sea quark mass :	$m_{P S} / m_{V}=0.6-0.8\left(m_{\pi}=550-1000 \mathrm{MeV}\right)$
size :	$20^{3} \times 48$
\# of trajectories :	12,000 for each sea quark

Lattice QCD vs. Chiral Perturbation Theory

ChPT is a low energy effective theory of QCD, and tells us a low energy behavior of physical quantities.
e.g.) m_{π}^{2} dependence of f_{π}

$$
\begin{aligned}
\frac{f_{\pi}}{f}= & 1+c_{1} m_{\pi}^{2}+c_{2} m_{\pi}^{4}+\cdots \\
& -N_{f} \frac{m_{\pi}^{2}}{(4 \pi f)^{2}} \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)
\end{aligned}
$$

Lattice QCD vs. Chiral Perturbation Theory

ChPT is a low energy effective theory of QCD, and tells us a low energy behavior of physical quantities.
e.g.) m_{π}^{2} dependence of f_{π}

$$
\frac{f_{\pi}}{f}=\underbrace{1+c_{1} m_{\pi}^{2}+c_{2} m_{\pi}^{4}+\cdots}_{\text {Coef. of log term is known! }} \frac{m_{\pi}^{2}}{4 \pi f)^{2}} \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)
$$

Lattice QCD vs. Chiral Perturbation Theory

ChPT is a low energy effective theory of QCD, and tells us a low energy behavior of physical quantities.
e.g.) m_{π}^{2} dependence of f_{π}

$$
\frac{f_{\pi}}{f}=\underbrace{1+N_{1} m_{\pi}^{2}+c_{2} m_{\pi}^{4}+\cdots}_{\text {Coef. of log term is known! }} \frac{m_{\pi}^{2}}{4 \pi f)^{2}} \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)
$$

Does the lattice data show the logarithmic dependence?

Lattice QCD vs. Chiral Perturbation Theory

ChPT is a low energy effective theory of QCD, and tells us a low energy behavior of physical quantities.
e.g.) m_{π}^{2} dependence of f_{π}

$$
\frac{f_{\pi}}{f}=\underbrace{1+N_{1} m_{\pi}^{2}+c_{2} m_{\pi}^{4}+\cdots}_{\text {Coef. of log term is known! }} \frac{m_{\pi}^{2}}{4 \pi f)^{2}} \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)
$$

Does the lattice data show the logarithmic dependence?

Lattice data of m_{π}^{2} vs. $f_{\pi}\left(N_{f}=2\right)$ JLQCD@Lattice 2002

Lattice QCD vs. Chiral Perturbation Theory

ChPT is a low energy effective theory of QCD, and tells us a low energy behavior of physical quantities.
e.g.) m_{π}^{2} dependence of f_{π}

$$
\frac{f_{\pi}}{f}=1+c_{1} m_{\pi}^{2}+c_{2} m_{\pi}^{4}+\cdots .
$$

Coef. of log term is known!
Does the lattice data show the logarithmic dependence?

■ No curvature \Leftrightarrow Lattice data looks inconsistent with ChPT.

- A possible explanation is that the sea quark mass is too heavy to be described by ChPT. ($m_{\pi} \sim 550-1000 \mathrm{MeV}$)

How to incorporate this inconsistency into the systematic error?
$B^{0}-\bar{B}^{0}$ mixing in unquenched lattice $\mathrm{QCD}-\mathrm{p} .5$

Strategy

- In most of previous works, the polynomial (quadratic) fit was made in chiral extrapolations.
\Leftrightarrow Inconsistent with ChPT

Lattice data of m_{π}^{2} vs. $f_{\pi}\left(N_{f}=\mathbf{2}\right)$

$$
f_{\pi}=c_{0}+c_{1} m_{\pi}^{2}+c_{2}\left(m_{\pi}^{2}\right)^{2}
$$

Strategy

- In most of previous works, the polynomial (quadratic) fit was made in chiral extrapolations. \Leftrightarrow Inconsistent with ChPT
- Add chiral log with the known coef. to the fit function

Lattice data of m_{π}^{2} vs. $f_{\pi}\left(N_{f}=2\right)$

$f_{\pi}=c_{0}+c_{1} m_{\pi}^{2}+c_{2}\left(m_{\pi}^{2}\right)^{2}-N_{f} \frac{m_{\pi}^{2}}{(4 \pi f)^{2}} \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)$

Strategy

- In most of previous works, the polynomial (quadratic) fit was made in chiral extrapolations.
\Leftrightarrow Inconsistent with ChPT
- Add chiral log with the known coef. to the fit function

But when $m_{\pi} \gg \mu$ the effects of pion loops should decouple from the theory. \Rightarrow Contributions from log term should weaken as $m_{\pi} \rightarrow \infty$.

Lattice data of m_{π}^{2} vs. $f_{\pi}\left(N_{f}=2\right)$

$f_{\pi}=c_{0}+c_{1} m_{\pi}^{2}+c_{2}\left(m_{\pi}^{2}\right)^{2}-N_{f} \frac{m_{\pi}^{2}}{(4 \pi f)^{2}} \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)$

Strategy

- In most of previous works, the polynomial (quadratic) fit was made in chiral extrapolations.
\Leftrightarrow Inconsistent with ChPT
- Add chiral log with the known coef. to the fit function

But when $m_{\pi} \gg \mu$ the effects of pion loops should decouple from the theory. \Rightarrow Contributions from log term should weaken as $m_{\pi} \rightarrow \infty$.

Lattice data of m_{π}^{2} vs. $f_{\pi}\left(N_{f}=\mathbf{2}\right)$

- Modify the argument of log and make μ variable
Detmold et al., PRL87, 172001 (2001)

$$
f_{\pi}=c_{0}+c_{1} m_{\pi}^{2}+c_{2}\left(m_{\pi}^{2}\right)^{2}-N_{f} \frac{m_{\pi}^{2}}{(4 \pi f)^{2}} \ln \left(\frac{m_{\pi}^{2}}{m_{\pi}^{2}+\mu^{2}}\right)
$$

Strategy

- In most of previous works, the polynomial (quadratic) fit was made in chiral extrapolations.
\Leftrightarrow Inconsistent with ChPT
- Add chiral log with the known coef. to the fit function

But when $m_{\pi} \gg \mu$ the effects of pion loops should decouple from the theory. \Rightarrow Contributions from log term should weaken as $m_{\pi} \rightarrow \infty$.

- Modify the argument of log and make μ variable
Detmold et al., PRL87, 172001 (2001)

Lattice data of m_{π}^{2} vs. $f_{\pi}\left(N_{f}=\mathbf{2}\right)$

- Take variance of f_{π} with μ as the systematic uncertainty.
e.g.) $\mu \in[0, \infty] \Rightarrow f_{\pi}^{\text {phys }}=147-128 \mathrm{MeV}$
$f_{\pi}=c_{0}+c_{1} m_{\pi}^{2}+c_{2}\left(m_{\pi}^{2}\right)^{2}-N_{f} \frac{m_{\pi}^{2}}{(4 \pi f)^{2}} \ln \left(\frac{m_{\pi}^{2}}{m_{\pi}^{2}+\mu^{2}}\right)$

Summary of strategy

■ We take "a modified (poly+chiral log) function",

$$
f_{\pi}=c_{0}+c_{1} m_{\pi}^{2}+c_{2}\left(m_{\pi}^{2}\right)^{2}-N_{f} \frac{m_{\pi}^{2}}{(4 \pi f)^{2}} \ln \left(\frac{m_{\pi}^{2}}{m_{\pi}^{2}+\mu^{2}}\right)
$$

when extrapolating data to the chiral limit.
■ Change μ and take the variance as the sys error in the chiral extrapolation.

- We do not know the definitely appropriate range of μ. So we choose $\mu \in$ $[0, \infty]$ because this choice gives the largest (most conservative) error.
- This strategy introduces a model into lattice calculations. But this is the best way we can do right now.

This strategy is applied to the f_{B} and B_{B}.

Chiral perturbation theory with B mesons

Wise(1992), Burdman and Donoghu(1992), Grinstein et al.(1992), Goity(1992), Booth(1995), Sharpe and Zhang(1996)

Chiral log in $f_{B_{(s)}}\left(N_{f}=2\right.$ case $)$

$$
\begin{aligned}
& f_{B}:-\frac{3}{4}\left(1+3 g^{2}\right) \frac{m_{\pi}^{2}}{(4 \pi f)^{2}} \ln \left(\frac{m_{\pi}^{2}}{m_{\pi}^{2}+\mu^{2}}\right) \\
& f_{B_{s}}:-\left(1+3 g^{2}\right) \frac{m_{K}^{2}}{(4 \pi f)^{2}} \ln \left(\frac{m_{K}^{2}}{m_{K}^{2}+\mu^{2}}\right)
\end{aligned}
$$

Log term \rightarrow smaller effect for $f_{B_{s}}$, because $m_{\pi}^{2}<m_{K}^{2}$.

$g: B B^{*} \pi$ coupling

$$
\begin{aligned}
g & =0.6\left(D^{*}\right. \text { width, CLEO('02)) } \\
& =0.27\left(\text { One-loop ChPT }+D^{*} \rightarrow D \pi(\gamma),\right. \text { Stewart('98)) }
\end{aligned}
$$

Chiral perturbation theory with B mesons

Wise(1992), Burdman and Donoghu(1992), Grinstein et al.(1992), Goity(1992),
Booth(1995), Sharpe and Zhang(1996)

Chiral log in $f_{B_{(s)}}\left(N_{f}=2\right.$ case $)$

$$
\begin{aligned}
& f_{B}:-\frac{3}{4}\left(1+3 g^{2}\right) \frac{m_{\pi}^{2}}{(4 \pi f)^{2}} \ln \left(\frac{m_{\pi}^{2}}{m_{\pi}^{2}+\mu^{2}}\right) \\
& f_{B_{s}}:-\left(1+3 g^{2}\right) \frac{m_{K}^{2}}{(4 \pi f)^{2}} \ln \left(\frac{m_{K}^{2}}{m_{K}^{2}+\mu^{2}}\right)
\end{aligned}
$$

Log term \rightarrow smaller effect for $f_{B_{s}}$, because $m_{\pi}^{2}<m_{K}^{2}$.

Chiral log in $B_{B_{(s)}}\left(N_{f}=2\right.$ case $)$
$B_{B}:-\frac{1}{2}\left(1-3 g^{2}\right) \frac{m_{\pi}^{2}}{(4 \pi f)^{2}} \ln \left(\frac{m_{\pi}^{2}}{m_{\pi}^{2}+\mu^{2}}\right)$
$B_{B_{s}}$: No log term

Log term \rightarrow smaller effect for B_{B}, because $\left(1-3 g^{2}\right)$ is small.

$$
\begin{aligned}
g= & 0.6\left(D^{*}\right. \text { width, CLEO('02)) } \\
= & 0.27\left(\text { One-loop ChPT }+D^{*} \rightarrow D \pi(\gamma),\right. \text { Stewart('98)) } \\
& \text { The relevant coefs. are all present. }
\end{aligned}
$$

Results of f_{B}

Fitting data of $f_{B_{(s)}}$ to the modified function, we obtain

$$
\begin{aligned}
f_{B}= & 191(10)\left({ }_{-19}^{+0}\right)(12)(0) \mathrm{MeV} \\
\text { error } & (\text { stat. })(\text { chiral })(\text { sys. })\left(\mathrm{m}_{\mathrm{s}}\right)
\end{aligned}
$$

(chiral) is sizable $\operatorname{in} f_{B}$.

Results of f_{B}

Fitting data of $f_{B_{(s)}}$ to the modified function, we obtain

$$
\begin{aligned}
f_{B}= & 191(10)\left({ }_{-19}^{+0}\right)(12)(0) \mathrm{MeV} \\
\text { error } & (\text { stat. })(\text { chiral })(\text { sys. })\left(\mathrm{m}_{\mathrm{s}}\right)
\end{aligned}
$$

(chiral) is sizable $\operatorname{in} f_{B}$.

$$
f_{B_{s}}=215(9)\left({ }_{-2}^{+0}\right)(13)\left({ }_{-0}^{+6}\right) \mathrm{MeV}
$$

Results of f_{B}

Fitting data of $f_{B_{(s)}}$ to the modified function, we obtain

$$
\begin{gathered}
f_{B}=\quad 191(10)\left({ }_{-19}^{+0}\right)(12)(0) \mathrm{MeV} \\
\text { error } \quad\left(\text { stat.) (chiral)(sys.) }\left(\mathrm{m}_{\mathrm{s}}\right)\right. \\
\text { (chiral) is sizable in } f_{B} . \\
f_{B_{s}}= \\
\\
\Downarrow \\
f_{B_{s}} / f_{B}=15(9)\left({ }_{-2}^{+0}\right)(13)\left({ }_{-0}^{+6}\right) \mathrm{MeV} \\
\Downarrow
\end{gathered}
$$

$$
f_{B_{s}} / f_{B} \text { has a sizable uncertainty. }
$$

Results of B_{B}

Fitting data of $B_{B_{(s)}}$ to the modified function, we obtain

$$
\begin{aligned}
B_{B}\left(m_{b}\right)= & 0.836(27)\left({ }_{-27}^{+0}\right)(56)(0) \mathrm{MeV} \\
\text { error }= & (\text { stat. })(\text { chiral })(\text { sys. })\left(\mathrm{m}_{\mathrm{s}}\right)
\end{aligned}
$$

Results of B_{B}

Fitting data of $B_{B_{(s)}}$ to the modified function, we obtain

$$
\begin{aligned}
B_{B}\left(m_{b}\right)= & 0.836(27)\binom{+0}{-27}(56)(0) \mathrm{MeV} \\
\text { error } & (\text { stat. })(\text { chiral })(\text { sys. })\left(\mathrm{m}_{\mathrm{s}}\right) \\
B_{B_{s}}\left(m_{b}\right)= & 0.850(22)\left({ }_{-0}^{+18}\right)(57)\left({ }_{-0}^{+5}\right) \mathrm{MeV}
\end{aligned}
$$

Results of B_{B}

Fitting data of $B_{B_{(s)}}$ to the modified function, we obtain

$$
\begin{aligned}
& B_{B}\left(m_{b}\right)= 0.836(27)\binom{+0}{-27}(56)(0) \mathrm{MeV} \\
& \text { error } \text { (stat.)(chiral)(sys.) }\left(\mathrm{m}_{\mathrm{s}}\right) \\
& B_{B_{s}}\left(m_{b}\right)= 0.850(22)\binom{+18}{-0}(57)\left({ }_{-0}^{+5}\right) \mathrm{MeV} \\
& \Downarrow \\
& B_{B_{s}} / B_{B}= 1.017(16)\binom{+53}{-0}(17)\binom{+0}{-0}
\end{aligned}
$$

$B_{B_{s}} / B_{B}$ is determined with better precision than $f_{B_{s}} / f_{B}$.

Results of B_{B}

Fitting data of $B_{B_{(s)}}$ to the modified function, we obtain

$$
\begin{aligned}
& B_{B}\left(m_{b}\right)= 0.836(27)\binom{+0}{-27}(56)(0) \mathrm{MeV} \\
& \text { error }(\text { stat. })(\text { chiral })(\text { sys. })\left(\mathrm{m}_{\mathrm{s}}\right) \\
& B_{B_{s}}\left(m_{b}\right)= 0.850(22)\binom{+18}{-0}(57)\left({ }_{-0}^{+5}\right) \mathrm{MeV} \\
& \Downarrow \\
& B_{B_{s}} / B_{B}= 1.017(16)\binom{+53}{-0}(17)\binom{+0}{-0}
\end{aligned}
$$

$B_{B_{s}} / B_{B}$ is determined with better precision than $f_{B_{s}} / f_{B}$.

$$
\begin{gathered}
\Downarrow \\
\xi=\left(f_{B_{s}} \sqrt{B_{B_{s}}}\right) /\left(f_{B} \sqrt{B_{B}}\right)=1.14(3)\left({ }_{-0}^{+13}\right)(2)\left({ }_{-0}^{+3}\right) \\
\Downarrow
\end{gathered}
$$

Once ΔM_{s} has been obtained in experiments, $\left|V_{t s} / V_{t d}\right|$ can be determined with $\sim \pm 5 \%$.

Summary

■ We performed the first unquenched calculation of the $B^{0}-\bar{B}^{0}$ transition amplitude, focusing on the chiral extrapolations.

- Using data obtained with relatively heavy dynamical quarks, we explored the range of errors associated with the chiral extrapolation.
■ While B-parameters and $f_{B_{s}}$ are not affected with chiral logs by much, f_{B} is.
\square As a consequence, the error of $f_{B_{s}} / f_{B}$ is sizable, while that of $B_{B_{s}} / B_{B}$ remains small.

By the way, there is another way to extract $\left|V_{t s} / V_{t d}\right|$ with better accuracy.

Outlook : Grinstein ratio

B. Grinstein, Phys. Rev. Lett. 71 (1993) 3067

Grinstein ratio of decay constants : $R_{1}=\left(f_{B_{s}} / f_{B}\right) /\left(f_{D_{s}} / f_{D}\right)$

$$
f_{B_{s}, D_{s}}=f_{P_{d}}^{\text {static }} \times\left(1+O\left(\Lambda_{\mathrm{QCD}} / M_{B, D}\right)+O\left(m_{K}^{2} /\left(4 \pi f_{\pi}\right)^{2}\right)+\cdots\right)
$$

Its deviation from 1 is doubly suppressed:

$$
R_{1}-1 \sim\left(\frac{\Lambda_{\mathrm{QCD}}}{M_{B}}-\frac{\Lambda_{\mathrm{QCD}}}{M_{D}}\right) \times \frac{m_{K}^{2}}{(4 \pi f)^{2}} \ln \left(\frac{m_{K}^{2}}{(4 \pi f)^{2}}\right)
$$

- uncertainty in chiral extrapolation \Rightarrow small

■ Lattice QCD can calculate R_{1} very precisely!

Numerical results of the GR

Chiral extrapolation of the GR $\left(N_{f}=2\right)$
JLQCD@Latice 2003

$R_{1}=1.010(3)(8)(5) \quad$ (preliminary)
1% determination is possible.

SU(3) flavor breaking ratio (revisit)

$$
\frac{\Delta M_{B_{s}}}{\Delta M_{B_{d}}}=\frac{\left|V_{t s}\right|^{2}}{\left|V_{t d}\right|^{2}} \frac{M_{B_{s}}}{M_{B_{d}}} \frac{f_{B_{s}}^{2} \hat{B}_{B_{s}}}{f_{B_{d}}^{2} \hat{B}_{B_{d}}}
$$

\Downarrow
With the Grinstein Ratio,

$$
\left(\frac{\Delta M_{B_{s}}}{\Delta M_{B_{d}}}\right)_{\text {RunII }}=\frac{\left|V_{t s}\right|^{2}}{\left|V_{t d}\right|^{2}}\left(\frac{M_{B_{s}}}{M_{B_{d}}}\right)\left(\frac{f_{D_{s}}^{2}}{f_{D}^{2}}\right)_{\text {CLEO-c }}\left(\frac{\hat{B}_{B_{s}}}{\hat{B}_{B_{d}}} R_{1}^{2}\right)_{\text {Lattice }}
$$

Once $f_{D_{s}}, f_{D}$ and $\Delta M_{B_{s}}$ have been determined in on-going experiments, \Downarrow

$$
\left|V_{t s} / V_{t d}\right| \text { can be extracted very precisely! }
$$

The Grinstein ratio will give the first precise determination of $\left|V_{t s} / V_{t d}\right|$.

Outlook2 : Domain-Wall Fermion for light quarks

Clearly, having smaller dynamical quark masses improves the uncertainty in the chiral extrapolations.

Ginsberg-Wilson Fermions \Rightarrow very light quarks $\left(\lesssim 1 / 4 m_{s}\right)$
In particular, the domain-wall fermions (DWF) have been successfully used in large scale dynamical simulations of light hadrons (RBC Collaboration).

Outlook2 : Domain-Wall Fermion for light quarks

Clearly, having smaller dynamical quark masses improves the uncertainty in the chiral extrapolations.

Ginsberg-Wilson Fermions \Rightarrow very light quarks $\left(\lesssim 1 / 4 m_{s}\right)$
In particular, the domain-wall fermions (DWF) have been successfully used in large scale dynamical simulations of light hadrons (RBC Collaboration).

Please have their works in your mind!

Backup Slides

Previous results of f_{B}

Unquench ($N_{f}=2$)

It has been expected that

- $f_{B}^{\text {unq }}>f_{B}^{\text {que }}$ by $\sim 15 \%$
- $f_{B_{s}} / f_{B} \sim 1.16(5)$ in both

Present status of B_{B}

N. Yamada@Latice 2002

- Unquench results

The ratio is determined well already.

- Quenched results

Constraint on Unitarity Triangle

Current status with Theo err.~10-20\%,

$B^{0}-\bar{B}^{0}$ mixing in unquenched lattice $\mathrm{QCD}-\mathrm{p} .19$

