B^0 - \overline{B}^0 mixing in unquenched lattice QCD

yamada@bnl.gov

for the JLQCD Collaboration

Phys.Rev.Lett.91(2003)212001

Super B factory workshop in Hawaii January 19-22, 2004

Introduction

In the Standard Model, the mass difference of B and \bar{B} mesons is given by

$$\Delta M_{B_q} = \left(\text{known factor} \right) \times |V_{tb}^* V_{tq}|^2 \frac{\langle \bar{B}_q^0 | \bar{b} \gamma_\mu (1 - \gamma_5) q | \bar{b} \gamma_\mu (1 - \gamma_5) q | B_q^0 \rangle}{M_{B_q}}$$
$$(q = d \text{ or } s)$$

 $\delta(|V_{tb}^*V_{tq}|^2) \approx (\text{Error of } \Delta M_{B_q}) + (\text{Error in M.E.})$

• Experiments:

 ΔM_{B_d} : well determined (~ 1%) ΔM_{B_s} : will be measured soon (~ a few %)

• Theory:

 $\langle \bar{B}_{q}^{0} | \ \bar{b}\gamma_{\mu}(1-\gamma_{5})q \ \bar{b}\gamma_{\mu}(1-\gamma_{5})q \ |B_{q}^{0}\rangle = \frac{8}{3}B_{B_{q}}(\mu_{b})f_{B_{q}}^{2}M_{B_{q}}^{2} \\ \delta(B_{B_{q}}f_{B_{q}}^{2}) \approx 20\text{--40 \% (lattice QCD)}$

Introduction

In the Standard Model, the mass difference of B and \bar{B} mesons is given by

$$\Delta M_{B_q} = \left(\text{known factor} \right) \times |V_{tb}^* V_{tq}|^2 \frac{\langle \bar{B}_q^0 | \bar{b} \gamma_\mu (1 - \gamma_5) q | \bar{b} \gamma_\mu (1 - \gamma_5) q | B_q^0 \rangle}{M_{B_q}}$$
$$(q = d \text{ or } s)$$

 $\delta(|V_{tb}^*V_{tq}|^2) \approx (\text{Error of } \Delta M_{B_q}) + (\text{Error in M.E.}) \approx (\text{Error in M.E.})$

• Experiments:

 ΔM_{B_d} : well determined (~ 1%) ΔM_{B_s} : will be measured soon (~ a few %)

• Theory:

 $\langle \bar{B}_{q}^{0} | \ \bar{b}\gamma_{\mu}(1-\gamma_{5})q \ \bar{b}\gamma_{\mu}(1-\gamma_{5})q \ |B_{q}^{0}\rangle = \frac{8}{3}B_{B_{q}}(\mu_{b})f_{B_{q}}^{2}M_{B_{q}}^{2} \\ \delta(B_{B_{q}}f_{B_{q}}^{2}) \approx 20\text{--40 \% (lattice QCD)}$

Theory error dominates.

Scaling violation $\sim O(a^n m_b^n)$ currently $am_b \sim 2$ to $3 \rightarrow$ serious problem

• Scaling violation $\sim O(a^n m_b^n)$

currently $am_b\sim$ 2 to 3 ightarrow serious problem

⇒ The use of effective theory (HQET, NRQCD) helps to reduce this to $O(a^2 \Lambda_{\rm QCD}^2) \sim$ 5% and $O(\Lambda_{\rm QCD}^2/m_b^2) \gtrsim$ 5%

- Scaling violation $\sim O(a^n m_b^n)$ currently $am_b \sim 2$ to 3 \rightarrow serious problem
 - ⇒ The use of effective theory (HQET, NRQCD) helps to reduce this to $O(a^2 \Lambda_{\rm QCD}^2) \sim$ 5% and $O(\Lambda_{\rm QCD}^2/m_b^2) \lesssim$ 5%
- Operator matching depending on to which order the operator is matched

$$\mathcal{O}^{\text{cont}} = Z_{\mathcal{O}} \mathcal{O}^{\text{latt}}$$
$$Z_{\mathcal{O}} = 1 + z_1 \alpha + z_2 \alpha^2 + \cdots$$

- Scaling violation $\sim O(a^n m_b^n)$ currently $am_b \sim 2$ to $3 \rightarrow$ serious problem
 - ⇒ The use of effective theory (HQET, NRQCD) helps to reduce this to $O(a^2 \Lambda_{\rm QCD}^2) \sim$ 5% and $O(\Lambda_{\rm QCD}^2/m_b^2) \lesssim$ 5%
 - Operator matching
 - depending on to which order the operator is matched
 - \Rightarrow One-loop matching $\rightarrow O(\alpha^2) \sim$ 5%

- Scaling violation $\sim O(a^n m_b^n)$ currently $am_b \sim 2$ to $3 \rightarrow$ serious problem
 - ⇒ The use of effective theory (HQET, NRQCD) helps to reduce this to $O(a^2 \Lambda_{\rm QCD}^2) \sim$ 5% and $O(\Lambda_{\rm QCD}^2/m_b^2) \lesssim$ 5%
- Operator matching depending on to which order the operator is matched
 - \Rightarrow One-loop matching $\rightarrow O(\alpha^2) \sim$ 5%
- Quenching error

Quench ($N_f=0$) Because of computational cost, the quenched approximation has been mainly studied so far.

- Scaling violation $\sim O(a^n m_b^n)$ currently $am_b \sim 2$ to $3 \rightarrow$ serious problem
 - ⇒ The use of effective theory (HQET, NRQCD) helps to reduce this to $O(a^2 \Lambda_{\rm QCD}^2) \sim$ 5% and $O(\Lambda_{\rm QCD}^2/m_b^2) \lesssim$ 5%
- Operator matching depending on to which order the operator is matched
 - \Rightarrow One-loop matching $\rightarrow O(\alpha^2) \sim$ 5%
 - I Quenching error

Now we can realize simulations with arbitrary number of N_f .

- Scaling violation $\sim O(a^n m_b^n)$ currently $am_b \sim 2$ to $3 \rightarrow$ serious problem
 - ⇒ The use of effective theory (HQET, NRQCD) helps to reduce this to $O(a^2 \Lambda_{\rm QCD}^2) \sim$ 5% and $O(\Lambda_{\rm QCD}^2/m_b^2) \lesssim$ 5%

Operator matching

depending on to which order the operator is matched

 \Rightarrow One-loop matching $\rightarrow O(\alpha^2) \sim$ 5%

Quenching error

Now we can realize simulations with arbitrary number of N_f .

 \Rightarrow Incorporation of dynamical quarks

- Scaling violation $\sim O(a^n m_b^n)$ currently $am_b \sim 2$ to $3 \rightarrow$ serious problem
 - ⇒ The use of effective theory (HQET, NRQCD) helps to reduce this to $O(a^2 \Lambda_{\rm QCD}^2) \sim$ 5% and $O(\Lambda_{\rm QCD}^2/m_b^2) \lesssim$ 5%
- Operator matching

depending on to which order the operator is matched

- \Rightarrow One-loop matching $\rightarrow O(\alpha^2) \sim$ 5%
- Quenching error

Now we can realize simulations with arbitrary number of N_f .

- \Rightarrow Incorporation of dynamical quarks
- Chiral extrapolation

Most of previous works have missed this problem.

Lattice can not simulate very light quarks ($\sim m_{u,d}$) directly. \Rightarrow Extrapolations in m_q to $m_q=m_{ud}$ is required.

- Scaling violation $\sim O(a^n m_b^n)$ currently $am_b \sim 2$ to $3 \rightarrow$ serious problem
 - ⇒ The use of effective theory (HQET, NRQCD) helps to reduce this to $O(a^2 \Lambda_{\rm QCD}^2) \sim$ 5% and $O(\Lambda_{\rm QCD}^2/m_b^2) \lesssim$ 5%
- Operator matching

depending on to which order the operator is matched

- \Rightarrow One-loop matching $\rightarrow O(\alpha^2) \sim$ 5%
- Quenching error

Now we can realize simulations with arbitrary number of N_f .

- \Rightarrow Incorporation of dynamical quarks
- Chiral extrapolation

Most of previous works have missed this problem.

Focus on the discussion about the chiral extrapolations.

Simulation parameters

We performed the two-flavor (u and d in the loop) lattice simulation with the following parameters.

gauge :	Plaquette
light quark :	O(a)-improved Wilson
heavy quark :	NRQCD with $1/m_Q$ corrections
lattice spacing :	a^{-1} = 2.22(4) GeV from $m_{ ho}$
sea quark mass :	m_{PS}/m_V =0.6–0.8 (m_π =550–1000 MeV)
size :	$20^3 \times 48$
# of trajectories :	12,000 for each sea quark

Lattice QCD vs. Chiral Perturbation Theory

ChPT is a low energy effective theory of QCD, and tells us a low energy behavior of physical quantities.

e.g.) m_{π}^2 dependence of f_{π}

$$\frac{f_{\pi}}{f} = 1 + c_1 m_{\pi}^2 + c_2 m_{\pi}^4 + \cdots \\ - N_f \frac{m_{\pi}^2}{(4\pi f)^2} \ln\left(\frac{m_{\pi}^2}{\mu^2}\right)$$

Lattice QCD vs. Chiral Perturbation Theory

ChPT is a low energy effective theory of QCD, and tells us a low energy behavior of physical quantities.

e.g.) m_{π}^2 dependence of f_{π}

$$\frac{f_{\pi}}{f} = 1 + c_1 m_{\pi}^2 + c_2 m_{\pi}^4 + \cdots \\ \underbrace{-N_f}_{4\pi f)^2} \frac{m_{\pi}^2}{4\pi f)^2} \ln\left(\frac{m_{\pi}^2}{\mu^2}\right)$$

Coef. of log term is known!

ChPT is a low energy effective theory of QCD, and tells us a low energy behavior of physical quantities.

e.g.) m_{π}^2 dependence of f_{π}

$$\frac{f_{\pi}}{f} = 1 + c_1 m_{\pi}^2 + c_2 m_{\pi}^4 + \cdots \\ \underbrace{-N_f}_{4\pi f)^2} \frac{m_{\pi}^2}{4\pi f)^2} \ln\left(\frac{m_{\pi}^2}{\mu^2}\right)$$

Coef. of log term is known!

Does the lattice data show the logarithmic dependence?

Lattice QCD vs. Chiral Perturbation Theory

ChPT is a low energy effective theory of QCD, and tells us a low energy behavior of physical quantities.

e.g.) m_{π}^2 dependence of f_{π}

$$\frac{f_{\pi}}{f} = 1 + c_1 m_{\pi}^2 + c_2 m_{\pi}^4 + \cdots \\ \underbrace{-N_f}_{4\pi f)^2} \frac{m_{\pi}^2}{4\pi f)^2} \ln\left(\frac{m_{\pi}^2}{\mu^2}\right)$$

Coef. of log term is known!

Does the lattice data show the logarithmic dependence?

Lattice data of m_{π}^2 vs. f_{π} (N_f =2) JLQCD@Lattice 2002

Lattice QCD vs. Chiral Perturbation Theory

ChPT is a low energy effective theory of QCD, and tells us a low energy behavior of physical quantities.

e.g.) m_{π}^2 dependence of f_{π}

$$\frac{f_{\pi}}{f} = 1 + c_1 m_{\pi}^2 + c_2 m_{\pi}^4 + \cdots \\ \underbrace{-N_f}_{4\pi f)^2} \frac{m_{\pi}^2}{4\pi f)^2} \ln\left(\frac{m_{\pi}^2}{\mu^2}\right)$$

Coef. of log term is known!

Does the lattice data show the logarithmic dependence?

- No curvature \Leftrightarrow Lattice data looks inconsistent with ChPT.
- A possible explanation is that the sea quark mass is too heavy to be described by ChPT. ($m_{\pi} \sim 550-1000$ MeV)

How to incorporate this inconsistency into the systematic error?

Lattice data of m_{π}^2 vs. f_{π} (N_f =2) JLQCD@Lattice 2002

 In most of previous works, the polynomial (quadratic) fit was made in chiral extrapolations.
 Inconsistent with ChPT Lattice data of m_{π}^2 vs. f_{π} (N_f =2)

$$f_{\pi} = c_0 + c_1 m_{\pi}^2 + c_2 (m_{\pi}^2)^2$$

- In most of previous works, the polynomial (quadratic) fit was made in chiral extrapolations.
 Inconsistent with ChPT
- Add chiral log with the known coef. to the fit function

$$f_{\pi} = c_0 + c_1 m_{\pi}^2 + c_2 (m_{\pi}^2)^2 - N_f \, \frac{m_{\pi}^2}{(4\pi f)^2} \, \ln\left(\frac{m_{\pi}^2}{\mu^2}\right)$$

- In most of previous works, the polynomial (quadratic) fit was made in chiral extrapolations.
 Inconsistent with ChPT
- Add chiral log with the known coef. to the fit function

But when $m_{\pi} \gg \mu$ the effects of pion loops should decouple from the theory. \Rightarrow Contributions from log term should weaken as $m_{\pi} \rightarrow \infty$.

$$f_{\pi} = c_0 + c_1 m_{\pi}^2 + c_2 (m_{\pi}^2)^2 - N_f \, \frac{m_{\pi}^2}{(4\pi f)^2} \, \ln\left(\frac{m_{\pi}^2}{\mu^2}\right)$$

- In most of previous works, the polynomial (quadratic) fit was made in chiral extrapolations.
 Inconsistent with ChPT
- Add chiral log with the known coef. to the fit function

But when $m_{\pi} \gg \mu$ the effects of pion loops should decouple from the theory. \Rightarrow Contributions from log term should weaken as $m_{\pi} \rightarrow \infty$.

 Modify the argument of log and make μ variable

Detmold et al., PRL87, 172001 (2001)

$$f_{\pi} = c_0 + c_1 m_{\pi}^2 + c_2 (m_{\pi}^2)^2 - N_f \, \frac{m_{\pi}^2}{(4\pi f)^2} \, \ln\left(\frac{m_{\pi}^2}{m_{\pi}^2 + \mu^2}\right)$$

- In most of previous works, the polynomial (quadratic) fit was made in chiral extrapolations.
 Inconsistent with ChPT
- Add chiral log with the known coef. to the fit function

But when $m_{\pi} \gg \mu$ the effects of pion loops should decouple from the theory. \Rightarrow Contributions from log term should weaken as $m_{\pi} \rightarrow \infty$.

• Modify the argument of log and make μ variable

Detmold et al., PRL87, 172001 (2001)

$$f_{\pi} = c_0 + c_1 m_{\pi}^2 + c_2 (m_{\pi}^2)^2 - N_f \, \frac{m_{\pi}^2}{(4\pi f)^2} \ln\left(\frac{m_{\pi}^2}{m_{\pi}^2 + \mu^2}\right)$$

• Take variance of f_{π} with μ as the systematic uncertainty.

e.g.) $\mu \in [0,\infty] \Rightarrow f_\pi^{\mathrm{phys}} = 147\text{--}128 \; \mathrm{MeV}$

Summary of strategy

■ We take "a modified (poly+chiral log) function",

$$f_{\pi} = c_0 + c_1 m_{\pi}^2 + c_2 (m_{\pi}^2)^2 - N_f \frac{m_{\pi}^2}{(4\pi f)^2} \ln\left(\frac{m_{\pi}^2}{m_{\pi}^2 + \mu^2}\right)$$

when extrapolating data to the chiral limit.

- Change μ and take the variance as the sys error in the chiral extrapolation.
- We do not know the definitely appropriate range of μ . So we choose $\mu \in [0,\infty]$ because this choice gives the largest (most conservative) error.
- This strategy introduces a model into lattice calculations. But this is the best way we can do right now.

This strategy is applied to the f_B and B_B .

Chiral perturbation theory with *B* mesons

Wise(1992), Burdman and Donoghu(1992), Grinstein *et al.*(1992), Goity(1992), Booth(1995), Sharpe and Zhang(1996)

Chiral log in $f_{B_{(s)}}$ $(N_f=2 \text{ case})$ $f_B: -\frac{3}{4} (1+3g^2) \frac{m_\pi^2}{(4\pi f)^2} \ln\left(\frac{m_\pi^2}{m_\pi^2 + \mu^2}\right)$ $f_{B_s}: -(1+3g^2) \frac{m_K^2}{(4\pi f)^2} \ln\left(\frac{m_K^2}{m_K^2 + \mu^2}\right)$ $B \xrightarrow{g: BB^*\pi \text{ coupling}} B^*$

 $g = 0.6 (D^* \text{ width, CLEO('02)})$

= 0.27 (One-loop ChPT+ $D^* \rightarrow D\pi(\gamma)$, Stewart('98))

Chiral perturbation theory with *B* mesons

Wise(1992), Burdman and Donoghu(1992), Grinstein *et al.*(1992), Goity(1992), Booth(1995), Sharpe and Zhang(1996)

$$\begin{aligned} \text{Chiral log in } f_{B_{(s)}} &(N_f = 2 \text{ case}) \\ f_B : -\frac{3}{4} (1 + 3g^2) \frac{m_\pi^2}{(4\pi f)^2} \ln\left(\frac{m_\pi^2}{m_\pi^2 + \mu^2}\right) \\ f_{B_s} : -(1 + 3g^2) \frac{m_K^2}{(4\pi f)^2} \ln\left(\frac{m_K^2}{m_K^2 + \mu^2}\right) \end{aligned} \qquad \begin{aligned} \text{Chiral log in } B_{B_{(s)}} &(N_f = 2 \text{ case}) \\ B_B : -\frac{1}{2} (1 - 3g^2) \frac{m_\pi^2}{(4\pi f)^2} \ln\left(\frac{m_\pi^2}{m_\pi^2 + \mu^2}\right) \\ B_{B_s} : \text{No log term} \end{aligned}$$

Log term \rightarrow smaller effect for f_{B_s} , because $m_\pi^2 < m_K^2$.

Log term \rightarrow smaller effect for B_B , because $(1 - 3g^2)$ is small.

g = 0.6 (D^* width, CLEO('02))

= 0.27 (One-loop ChPT+ $D^* \rightarrow D\pi(\gamma)$, Stewart('98))

The relevant coefs. are all present.

Fitting data of $f_{B_{\left(s\right)}}$ to the modified function, we obtain

 $f_B = 191(10) \binom{+\ 0}{-19}(12)(0) \text{ MeV}$ error $(\text{stat.})(\text{chiral})(\text{sys.})(\text{m}_{s})$

(chiral) is sizable in f_B .

Fitting data of $f_{B_{\left(s\right)}}$ to the modified function, we obtain

 $f_B = 191(10) \binom{+\ 0}{-19}(12)(0) \text{ MeV}$ error $(\text{stat.})(\text{chiral})(\text{sys.})(\text{m}_{s})$

(chiral) is sizable in f_B .

$$f_{B_s} = 215(9)\binom{+0}{-2}(13)\binom{+6}{-0} \text{ MeV}$$

Fitting data of $f_{B_{\left(s\right)}}$ to the modified function, we obtain

 $f_B = 191(10) \binom{+\ 0}{-19}(12)(0) \text{ MeV}$ error (stat.)(chiral)(sys.)(m_s)

(chiral) is sizable in f_B .

$$f_{B_s} = 215(9)\binom{+0}{-2}(13)\binom{+6}{-0} \text{ MeV}$$

 \Downarrow

 $f_{B_s}/f_B = 1.13(3)\binom{+12}{-0}(2)\binom{+3}{-0}$

 f_{B_s}/f_B has a sizable uncertainty.

 B_{B_s}/B_B is determined with better precision than f_{B_s}/f_B .

 B_{B_s}/B_B is determined with better precision than f_{B_s}/f_B .

$$\xi = (f_{B_s}\sqrt{B_{B_s}})/(f_B\sqrt{B_B}) = 1.14(3)\binom{+13}{-0}(2)\binom{+3}{-0}$$

Once ΔM_s has been obtained in experiments, $|V_{ts}/V_{td}|$ can be determined with $\sim \pm 5$ %.

 B^0 - \overline{B}^0 mixing in unquenched lattice QCD – p.10

Summary

- We performed the first unquenched calculation of the B^0 - \overline{B}^0 transition amplitude, focusing on the chiral extrapolations.
- Using data obtained with relatively heavy dynamical quarks, we explored the range of errors associated with the chiral extrapolation.
- While *B*-parameters and f_{B_s} are not affected with chiral logs by much, f_B is.
- As a consequence, the error of f_{B_s}/f_B is sizable, while that of B_{B_s}/B_B remains small.

By the way, there is another way to extract $|V_{ts}/V_{td}|$ with better accuracy.

Outlook : Grinstein ratio

B. Grinstein, Phys. Rev. Lett. 71 (1993) 3067

Grinstein ratio of decay constants : $R_1 = (f_{B_s}/f_B)/(f_{D_s}/f_D)$

$$f_{B_s,D_s} = f_{P_d}^{\text{static}} \times \left(1 + O(\Lambda_{\text{QCD}}/M_{B,D}) + O(m_K^2/(4\pi f_\pi)^2) + \cdots \right)$$

Its deviation from 1 is doubly suppressed:

$$R_1 - 1 \sim \left(\frac{\Lambda_{\rm QCD}}{M_B} - \frac{\Lambda_{\rm QCD}}{M_D}\right) \times \frac{m_K^2}{(4\pi f)^2} \ln\left(\frac{m_K^2}{(4\pi f)^2}\right)$$

• uncertainty in chiral extrapolation \Rightarrow small

Lattice QCD can calculate R_1 very precisely!

Numerical results of the GR

 $R_1 = 1.010(3)(8)(5)$ (preliminary)

1 % determination is possible.

SU(3) flavor breaking ratio (revisit)

$$\frac{\Delta M_{B_s}}{\Delta M_{B_d}} = \frac{|V_{ts}|^2}{|V_{td}|^2} \frac{M_{B_s}}{M_{B_d}} \frac{f_{B_s}^2 \hat{B}_{B_s}}{f_{B_d}^2 \hat{B}_{B_d}}$$

With the Grinstein Ratio,

$$\left(\frac{\Delta M_{B_s}}{\Delta M_{B_d}}\right)_{\text{RunII}} = \frac{|V_{ts}|^2}{|V_{td}|^2} \left(\frac{M_{B_s}}{M_{B_d}}\right) \left(\frac{f_{D_s}^2}{f_D^2}\right)_{\text{CLEO-c}} \left(\frac{\hat{B}_{B_s}}{\hat{B}_{B_d}} R_1^2\right)_{\text{Lattice}}$$

Once f_{D_s} , f_D and ΔM_{B_s} have been determined in on-going experiments, $\downarrow \downarrow$ $|V_{ts}/V_{td}|$ can be extracted very precisely!

The Grinstein ratio will give the first precise determination of $|V_{ts}/V_{td}|$.

Outlook2 : Domain-Wall Fermion for light quarks

Clearly, having smaller dynamical quark masses improves the uncertainty in the chiral extrapolations.

Ginsberg-Wilson Fermions \Rightarrow very light quarks ($\lesssim 1/4m_s$) In particular, the domain-wall fermions (DWF) have been successfully used in large scale dynamical simulations of light hadrons (RBC Collaboration).

Outlook2 : Domain-Wall Fermion for light quarks

Clearly, having smaller dynamical quark masses improves the uncertainty in the chiral extrapolations.

```
Ginsberg-Wilson Fermions \Rightarrow very light quarks (\lesssim 1/4m_s)
In particular, the domain-wall fermions (DWF) have been successfully used in
large scale dynamical simulations of light hadrons (RBC Collaboration).
```

Please have their works in your mind!

Backup Slides

Previous results of f_B

S. Ryan@Latice 2001

Present status of *B*_{*B*}

N. Yamada@Latice 2002

$$\hat{B}_{B_s}/\hat{B}_B = 1.00(3)$$

- Unquench results
- Quenched results

The ratio is determined well already.

Constraint on Unitarity Triangle

