Focusing DIRC prototype

J. Va'vra, SLAC

Present collaborators:

C. Field, T. Hadig, David W.G.S. Leith, G. Mazaheri, B. Ratcliff, J. Schwiening, J. Va'vra

Plan of this talks

- Summary of the prototype status
- **Principle of DIRC-like detectors :** (BaBar DIRC, Focusing DIRC prototype, TOP counter, Ultimate DIRC)
- Focusing DIRC prototype design parameters: (Optical design, mechanical design, etc.)
- Methods of testing:

(New timing laser diode, APDs to evaluate it, scanning setup, etc.)

• Electronics:

(Amplifier, Constant fraction discriminator, TDC, etc.)

• Results with new detectors:

(Flat Panel H-8500, MCP-PMT, gaseous detectors ?)

Focusing DIRC prototype concept

- **3D imaging:** x,y, and TOP (TOP = time-of-propagation of photon in the bar)
- **TOP is measured to σ <100ps**, which allows:
 - a) to get the 3-rd dimension, and
 - b) to correct out the chromatic error contribution to the Cherenkov angle error.
- **Spherical mirror** removes a thickness of the bar from the resolution consideration.

Focusing DIRC prototype status

The main accomplishments so far:

- a) New photon detectors tested:
 - Burle MCP-PMT
 - Hamamatsu Multi-anode H-8500 PMT.
- b) Developed a methodology to measure the timing resolution to < 100ps for single photon, and the relative response across the PMT face.
- d) Developed new electronics.
- e) Designed optics of the prototype.
- f) Prototype's mechanics is almost finished.

Long road still ahead ... :

- a) Actual tests in the cosmic ray telescope, and then in the test beam.
- b) Learn how to correct the chromatic effects.
- c) Aging tests of MCP-PMT detectors.
- d) Improve efficiency of MCP-PMT detectors.
- e) Tests in the magnetic field of 1.5 Tesla.
- f) Design a final electronics, etc.

DIRC principle

- A concept invented by B. Ratcliff
- $TOP(\Phi,\theta_c) = [L/v_g(\lambda)] q_z(\Phi,\theta_c)$
 - θ_{c} Cherenkov angle,
 - L distance of light travels in the bar,
 - $v_g(\lambda)$ group velocity of light,
 - $\boldsymbol{\lambda}$ wavelength , and
 - $q_z(\Phi, \theta_c)$ z-comp. of the unit velocity vector.
- To determine the Cherenkov angle θ_c , one measures (a) a track position, (b) a photon time-of-propagation (TOP), and Δz and Δr (= Δy). This <u>over-determines</u> the triangle.
- In the present BaBar DIRC, the time measurement is not good enough to determine the Cherenkov angle θ_c . The time is, however, used to reduce the background.

DIRC-like detectors

- **DIRC-like detectors** are detectors which are using the internally reflected Cherenkov light, as opposed to CRID, which used the transmitted light.
- The DIRC-like concept uses a "pinhole"
 geometry, where the bar's exit area,
 together with a photon detecting pixel
 position, define the photon exit angles in
 2D; the time and the track position defines
 the 3-rd coordinate if time is measured
 well enough (<100ps).
- Differences in imaging methods:
 BaBar DIRC: x & y
 Focusing DIRC prototype: x & y & TOP
 TOP counter: x & TOP

Examples of two "DIRC-like" detectors

TOP counter with a mirror (Nagoya):

- 2D imaging:
 - a) x (gives Φ angle)
 - b) TOP (σ < 80ps).

Focusing DIRC prototype (SLAC):

3D imaging:
a) x-coordinate
b) y-coordinate
c) TOP (σ < 100ps).

Focusing DIRC Prototype almost finished

1/17/04

What matching liquid to use in the box ?

- KamLand experiment mineral oil is good match to Fused silica refraction index.
- However, its transmission is worse than that of water.
- No purification attempted yet at SLAC.
- In BaBar DIRC, it is the EPOTEK-301-2 optical glue which limits the bandwidth.
- The mineral oil is a temporary solution, as the final mirror of the Focusing DIRC would be made of solid Fused silica, probably.
- The impact of the mineral oil transmission on efficiency will be discussed later.

J. Va'vra, Hawaii Workshop on Super

B-factory

Focusing DIRC prototype - can we run without oil?

- It is possible, if necessary.
- One can even switch to water.

1/17/04

Timing dependence on the chromaticity

- Bialkali photocathode.
- $\Theta_{\text{track}} = 90^{\circ}$.
- Photons propagate in y-z plane only in these calculations.
- 4 GeV/c, ~3.5m or 7m long bar.
- 1-2ns overall effect.
- Need 100-150ps resolution to see it.
- One can introduce a chromatic cut by a slight change of incident angle. Could be useful in the test beam.

J. Va'vra, Hawaii Workshop on Super

B-factory

Expected performance and angular errors

- Focusing DIRC assumes ~6mm² pixel size, completely corrected chromatic error,optics to remove the bar thickness, no loss of photons in the photon detectors, and improvement in tracking accuracy compared to BaBar DIRC.
- The ultimate DIRC assumes, in addition, an "infinitely precise" photon detector, and a further tracking improvement.

Contribution to Cherenkov angle resolution [mrads]	Present <u>BaBar</u> DIRC	Focusing DIRC prototype	Ultimate DIRC of the future
$\Delta \theta_{ m track}$	~1	~1	~1
$\Delta \theta_{chromatic}$	~5.4	~1	~1
$\Delta heta_{ ext{transport along the bar}}$	2-3	2-3	2-3
$\Delta \theta_{\rm bar\ thickness}$	~4.1	~1	~1
$\Delta \theta_{\rm PMT \ pixel \ size}$	~5.5	~4	~ 1
$\Delta \Theta_{c}^{track}$	~2.4	~1.5	~1.0
Total $\Delta \theta_{c}^{\text{photon}}$	~9.6	~4.8	~3.3

- Goal: a true 3D imaging using x,y and TOP.
- The real question is what would be a photon detector !!

What are the candidates for a photon detector ?

Manufacturer	Name	PMT	σ _{TTD} [ps]
Photonis	Quantacon	XP2020	250
Photonis	PMT	XP2020/UR	150
ETL	DIRC PMT	9125B	1500
Hamamatsu	Flat-panel	H-8500	~130
Hamamatsu	Multi-mesh	R-6135	~80
Burle	MCP-PMT		<50
Dolgoshein	Silicone PM	SiPM	~60

How to verify that the light pulser works or is tuned properly ?

- To verify that the laser works as advertised, use a $<100 \mu m$ dia. GaP APD operating in a Geiger mode with active quenching.
- Systematic errors at this level of timing resolution are non-trivial. A true result is somewhere between 16-25ps. Nevertheless, it is reassuring that our result is consistent with what the manufacturer of the laser diode claims.

Scanning setup

- We have built a stepper motor controlled scanning setup to measure the relative PMT response.
- The setup uses a PiLas laser diode operating at 635nm (on one occasion, we borrowed a 430nm version of this laser diode from T. Sumyioshi).
- A single photon mode of operation.
- Spot size: <1mm
- A hit is accepted if it is within a time window.
- To get a relative efficiency we normalize a count to a DIRC and Photonis PMTs.
- Typically: X-step = 100μm Y-step = 1mm.

Focusing DIRC prototype electronics at the moment

Amplifier:

CFD:

- Elantek 2075EL amplifier
- BW ~2GHz @ Gain = 1
- Voltage Gain: ~130x
 (Done with two stages: 13x10)
- TDC: TAC & 12 bit ADC
- Prototyping finished
- Building 350 channels
- This type of electronics is just for this prototype.

Hamamatsu H-8500 Flat panel PMT

Hamamatsu Co. data sheet

Parameter	Value	< Parameters of	
Photocathode type	Bialkali		
Number of dynodes	12	the old PM1.	
Total average gain @ -1kV	$\sim 10^{6}$		
Geometrical collection efficiency of the 1-st dynode	70-80%		
Geometrical packing efficiency	97%		
Measured single electron resolution (σ_{major}) - SLAC	138ps	70-80%	
Fraction of late photoelectron arrivals	~5%	total	
Matrix of anode pixels	8 x 8	photoelectron	
Number of anode pixels	64	loss	
Pixel size	5mm x 5mm		

Burle 85011-501 MCP-PMT

Burle Co. data sheet

Parameter	Present	Future plan	
Photocathode type	Bialkali	Bialkali	
Number of MCPs	2	2	
Total average gain @ -2.4kV	$\sim 5 \times 10^{5}$	$\sim 10^{6}$	
MCP hole diameter	25µm	10µm	
MCP hole angle relative to perpendicular	12°	12°	
Geometrical collection efficiency of the 1-st MCP	60-65%	70%	
Geometrical packing efficiency (raw tube)	67%	85%	
Fraction of late photoelectron arrivals	~20%	-	
SLAC measurement of single electron resolution (σ_{major})	54ps	-	50 60%
Amplifier used in SLAC measurement	Elantec 2075C	-	30-00 %
Voltage gain of SLAC amplifier	130	-	total
Matrix of anode pixels	8 x 8	32 x 32	photoelectron
Number of pixels	64	1024	loss
Pixel size	5mm x 5mm	1mm x 1mm	

1/17/04

Detection efficiency relative to most efficient point on PMT at 635nm

Burle MCP-PMT detection efficiency measured relative to DIRC PMT (ETL 9125FLB17)

• At 635nm, which is close to the end of QE of Bialkali photocathode, and therefore not very reliable, the relative efficiency is 70-100%.

• At 430nm, the relative efficiency is 50-60% of the present DIRC PMT, as expected!!

Timing studies

- Use the 635nm PiLas laser diode for timing studies.
- Hamamatsu PMT resolution is still good enough to correct the chromatic error, but not good enough for true 3D-imaging.
- Burle MCP-PMT has a very long tail due to recoil electrons from the MCP surface (~20% effect). To reduce this effect, Burle Co. is planning to reduce the distance between the MCP surface and the cathode.

BaBar DIRC and Focusing DIRC relative efficiency

J. Va'vra, Nucl.Instr.&Meth., A453(2000)262

•

•

•

•

BaBar DIRC:

Focusing DIRC:

- **BaBar DIRC**:
- ETL PMT 9125B (Bialkali)
- $N_0: 31 \text{ cm}^{-1} \& N_{pe}/\text{ring}: 28 @ \theta_{\text{track}} = 90^{\circ}.$

Focusing DIRC:

(if we would build it as it is for the Super BaBar - "know how" as of 1.10.2004).

Burle MCP-PMT (Bialkali) - future version.

$$N_0: 29 \text{ cm}^{-1} \& N_{pe}/ring: 27 @ \theta_{track} = 90^{\circ}.$$

- Main Degradation factors: Mineral oil + MCP-PMT losses.
- What we lost due to the mineral oil and MCP-PMT losses, we seem to gain back in other factors inherent in the BaBar DIRC. Examples:
 - BaBar DIRC loses ~40% of photons at quartz/water interface due to mismatch of refraction indices.
 - Overall packing fraction loss in BaBar SOB is ~48%, due to sector gaps, light catchers, PMT packing.

J. Va'vra, Hawaii Workshop on Super

B-factory

Conclusions

- So far, no show stopper found.
- We learned how to measure the timing resolution on single photons, and a relative response to single photons across the PMT face.
- We are very close of completing the mechanics of the Focusing DIRC prototype. The first tests could start in February.
- However, much more has to happen in the area of the photon detectors before we would be able to build a final 3D Focusing DIRC:

a) Detector efficiency improvements.

- b) Capability to run at 1.5Tesla.
- c) Photocathode aging.
- d) We need a real MC program to design the final optics.
- e) We need to develop a final electronics.
- We are excited because until this point, the chromatic error was considered an uncorrectable quantity.

Backup slides

MCP operation in the magnetic field

Measurements by M.Akatsu et al., Nagoya, Japan - preliminary

• Gain in MCP: G~e^(A*MCP thickness/MCP dia)

gets severely reduced in a large magnetic field of 1.5 Tesla.

The 25 μ m dia. holes are too large. One needs to reduce their size to ~10 μ m dia., or even less. This is our next step.

• In addition, one needs to increase the electric field between anode and cathode.

Aging of the MCP Bialkali photocathode by ions

V.V. Anashin et al., Nucl.Instr.&Meth., A357(1995)103

10-2

TOTAL CHARGE (C/CM2)

10

18-1

- Early work of V.V. Anashin et al. indicated real problem after an anode charge of **10-20mC/cm²** (operated at a gain of 10⁷!!!).
- DIRC, if equipped with such a MCP, would last a year only.
- That is why all manufacturers now incline holes (~12°)., plus apply various tricks.
- Burle Co.'s measurement:
 a 50% response loss after
 ~200mC/cm², i.e., a factor of ~10 improvement. This was not yet verified by us !!

Capillary+Micromegas+pads

J.Va'vra,T. Sumiyioshi, presented at IEEE, Portland, Oregon, Oct. 2003

• Works like a charm in the single electron mode!!

- Supports a very high gain (even though one would want to run at much lower gain in the final application).
- Would work at 1.5 Tesla.
- Timing resolution ? Based on the
 - C. Williams results, one may reach a timing resolution of <100ps per single photon.
- How to add a Bialkali photocathode ? Talking to Burle Co. and Hamamatsu.
- Can a gaseous device compete with the vacuum MCP-PMT ?!

