Theory of exclusive semileptonic and rare B decays

Dan Pirjol

Super B Factory Workshop - p.1

Outline

- Exclusive B decays can test the SM and probe for New Physics
- Theoretical methods:
 - Heavy Quark Effective Theory (HQET)
 - Heavy Hadron Chiral Perturbation Theory (HH χ PT)
 - Soft-collinear effective theory (SCET)
 - Lattice QCD
- Recent analytical progress for heavy-to-light decays in the large recoil region $(E_M \gg \Lambda)$
- How can the Super B factory help?
- Outlook

Why exclusive B decays?

• Semileptonic $B \to M \ell \nu$ decays can be used to determine CKM matrix elements

 $\Gamma(\bar{B} \to D^{(*)}e\nu) \sim |V_{cb}|^2$, $\Gamma(B \to \pi/\rho e\nu) \sim |V_{ub}|^2$

while radiative decays give information about $|V_{td}|$

$$\frac{\mathcal{B}(B \to \rho \gamma)}{\mathcal{B}(B \to K^* \gamma)} = \left| \frac{V_{td}}{V_{ts}} \right|^2 R(1 + \varepsilon_A)$$

- The rare decays $B \to K^* \gamma$ and $B \to K^{(*)} \ell^+ \ell^-$ are sensitive to New Physics effects through their total rate and differential distributions (e.g. photon helicity, forward-backward asymmetry)
- The $B \to M$ form factors are important ingredients entering the theoretical description of nonleptonic B decays $\to CP$ violation
- Experimentally, the detection efficiency is better in exclusive channels, at the expense of statistics → Super B factory Super B Factory Workshop – p.3

Theory issues

- Inclusive $B \to X_s \gamma$ and $B \to X_u e \bar{\nu}$ decays have a clean theoretical description: OPE + $1/m_b$ heavy quark expansion
- Exclusive decay amplitudes depend on more hadronic details than the inclusive modes
- In $b \rightarrow c$ transitions heavy quark symmetry is very predictive:
 - the shapes of $B \rightarrow D$ and $B \rightarrow D^*$ form factors are related Isgur, Wise (1990)
 - the normalization of these form factors is fixed at zero recoil
- No such information on normalization and shape is available in general for heavy-to-light decays $B \to M$

 \rightarrow need to think harder...

Hadronic uncertainty

• The hadronic form factors describing $B \to M$ exclusive transitions are computed in models, QCD sum rules, lattice QCD, etc...

• Large spread of predictions \rightarrow theoretical uncertainties

Good news: In certain regions of phase space, a model-independent description becomes possible Super B Factory Workshop – p.5

 $q^2 \sim q^2_{
m max}$ - small recoil QCD ightarrow HQET

 $q^2 \sim 0$ - the large energy region ${\rm QCD} \rightarrow {\rm SCET}$

Super B Factory Workshop – p.6

Factorization

In the large energy region $E_{\pi} \gg \Lambda$, the heavy-light form factors $B \rightarrow M$ satisfy a factorization theorem {Beneke, Feldmann}, {Bauer, DP, Stewart}, {Lange, Neubert}

$$f_i(E) = C_i^{(0)}(E,\mu)\zeta(E,\mu) + \int_0^1 dx dk_+ C_i^{(1)}(E,\mu,z) J_i(x,z,k_+)\phi_B^+(k_+)\phi_M(x)$$
"popfoctorizable" "foctorizable"

'nonfactorizable"

"factorizable"

Factorization

 $f_i(E) = C_i^{(0)}(E,\mu)\zeta(E,\mu) + \int_0^1 dx dk_+ C_i^{(1)}(E,\mu,z) J_i(x,z,k_+)\phi_B(k_+)\phi_M(x)$

Ingredients

• Nonperturbative matrix elements (soft physics) $\zeta(E_{\pi},\mu) \text{ are matrix elements in the SCET}$

 $\phi_B(k_+)$ and $\phi_{\pi}(x)$ are light-cone wave functions

• Perturbative quantities - calculable

Wilson coefficients $C_i(\mu) = 1 + O(\alpha_s(Q))$

Jet functions $J(x, z, k_+, \mu) = O(\alpha_s(\sqrt{\Lambda Q}))$

Super B Factory Workshop - p.8

Factorization

 $f_i(E) = C_i^{(0)}(E,\mu)\zeta(E,\mu) + \int_0^1 dx dk_+ C_i^{(1)}(E,z,\mu) J_i(x,z,k_+)\phi_B(k_+)\phi_\pi(x)$

Comments

- Both terms are of same order in Λ/E , $f_i(E) \sim (\Lambda/Q)^{3/2}$
- Soft-collinear factorization of $\zeta(E, \sqrt{\Lambda E}, \mu)$, messenger modes Lange, Neubert
- Convergence of the x, k₊ convolutions
 Beneke, Feldmann
- The Wilson coefficients $C(E,\mu)$ contain Sudakov logs $\log^2(2E/\mu)$: $C^{(0)}(E,\mu) \sim E^{-\beta(E)}$, with $\beta(E) \sim 0.12 - 0.24$ (Sudakov suppression)
- Only power-like dependence on m_B/E is in $C^{(0,1)}(E,\mu)$

"Symmetry" relations

Reduction in the number of independent parameters: Assuming that the jet function $J(x, k_+)$ is known, all $B \to M$ form factors are given in terms of a few reduced hadronic matrix elements

- $B \to P$ decays: $f_+(E), f_0(E), f_T(E)$ require $\zeta^P(E, \mu)$
- $B \to V$ decays: $V(E), A_{0,1,2}(E), T_{1,2}(E)$ require $\zeta^V_{\perp}(E), \zeta^V_{\parallel}(E)$

plus the leading twist meson light-cone wave functions $\phi^+_B(k_+)$ and $\phi^P(x), \phi^V_\parallel(x), \phi^V_\perp(x)$

At tree level in the jet function $O(\alpha_s(Q\Lambda))$, only the inverse moments are required

$$\langle k_{+}^{-1} \rangle_{B} = \int dk_{+} \frac{\phi_{B}(k_{+})}{k_{+}}, \quad \langle x^{-1} \rangle_{P,V\parallel,V\perp} = \int_{0}^{1} dx \frac{\phi_{P,V\parallel,V\perp}(x)}{x}$$

Super B Factory Workshop – p.10

Symmetry-breaking corrections

Define calculable combinations of form-factors. E.g. for $B \to \pi$ Ber

Beneke, Feldmann

$$\Delta_{+0}(E) = f_{+}(E) - \frac{m_B}{2E} f_0(E), \qquad \Delta_{+T}(E) = f_{+}(E) - \frac{m_B}{m_B + m_P} f_T(E)$$

<u>Problems</u>: Large hadronic uncertainties from $\phi_B^+(k_+)$ These predictions could have large corrections if $\alpha_s(E\Lambda) \sim O(1)$. Need to include the jet function nonperturbatively!

Model-independent approach

Work to all orders in the jet function $\alpha_s^n(Q\Lambda)$ DP, I. Stewart

E.g. for the $B \rightarrow \pi$ form factors (i = 0, +, T)

$$f_i(E) = C_i^{(0)}(E)\zeta^P(E,\mu) + N\left(c_0^{(i)} + \frac{m_B}{E}c_1^{(i)} + \frac{m_B^2}{E^2}c_1^{(i)}\right)$$

The expansion coefficients $c_{0,1,2}^{(i)}$ satisfy symmetry relations $\frac{c_0^{(+)}}{c_0^{(0)}} = -2, \quad \frac{c_2^{(+)}}{c_2^{(0)}} = -1 + O(\alpha_s(E)), \quad \frac{c_2^{(+)}}{c_2^{(T)}} = 1 + O(\alpha_s(E)).$

Determine the nonperturbative parameters from experiment

Input from experiment

Measure as many independent form factors as possible, and extract the hadronic parameters $\zeta^P, c_j^{(i)}$

QCD based-approach (as opposed to pole fits).

Need more precise data → Super B Factory

$$B \to \gamma e \nu, B \to \gamma e^+ e^-$$

Chirality suppression in leptonic decays $B \rightarrow \ell \nu$ can be avoided by adding one photon to the final state \rightarrow enhanced branching ratios of $\sim 10^{-6}$ Burdman, Goldman, Wyler

Factorization theorem for $E_{\gamma} \gg \Lambda$ Sachrajda, de Gennon; Lunghi, DP, Wyler; Becher et al.

$$f_{i}(E_{\gamma}) = \frac{Q_{q}f_{B}m_{B}}{2E_{\gamma}}C_{i}(E_{\gamma},\mu)\int dk_{+}J(E_{\gamma}k_{+},\mu)\frac{\phi_{B}(k_{+})}{k_{+}}$$

Super B Factory Workshop - p.14

Predictions

The jet function $J(E_{\gamma}k_{+},\mu)$ has an expansion in $\alpha_{s}(\sqrt{\Lambda E_{\gamma}})$

 Predictions to all orders in the jet function: symmetry relations Lunghi, DP, Wyler; Sachrajda, de Gennon

$$f_V(E_\gamma) = f_A(E_\gamma), \qquad \frac{f_T(E_\gamma)}{f_V(E_\gamma)} = 1 + O(\alpha_s(E_\gamma))$$

• Working at lowest order in the jet function, the decay amplitudes are given in terms of $\lambda_B = \langle k_+^{-1} \rangle_B$

Measuring the photon energy spectrum in $B \rightarrow \gamma e \nu$, one can extract information about the B light cone wave function.

 $B \to K^* \gamma$ and $B \to K^* e^+ e^-$

Additional contributions from matrix elements of 4-quark operators in the weak Hamiltonian

→ have to be included in the factorization relation Bosch, Buchalla; Beneke, Feldmann, Seidel; Ali, Parkhomenko

Selected results

• The observed $\mathcal{B}(B \to K^* \gamma)$ gives Beneke, Feldmann, Seidel $T_1(0)|_{\mu=m_b} = 0.27 \pm 0.04$ [vs. 0.38 ± 0.06 (LC-QCDSR)] Ball, 1995

Close to new lattice QCD result $T_1(0) = 0.25(5)(2)$ S.P.QCD R.(2002)

• Corrections to the forward-backward asymmetry in $B \rightarrow K^* e^+ e^-$

The position of the zero q_0^2 gives a relation between C_7 and C_9^{eff} , which are sensitive to the presence of New Physics Burdman, Ali et al.

Power corrections could be significant!

$$\mathsf{Re}\left(\frac{C_7}{C_9^{\text{eff}}}\right) = -\frac{m_b}{q_0^2} \left[\frac{T_2(q_0^2)}{A_1(q_0^2)}(m_B - m_V) + \frac{T_1(q_0^2)}{V(q_0^2)}(m_B + m_V)\right]$$

Super B Factory Workshop – p.17

Conclusions and outlook

- Significant recent progress in the theory of exclusive semileptonic and radiative *B* decays, with input from the soft-collinear effective theory (SCET)
- SCET separates the contributions of the physics on different scales, resulting into a factorization relation for the $B \to M$ form factor
- Model-independent approach for the study of exclusive heavy-light decays with energetic light mesons

Challenge to experimentalists:

- Measure q^2 spectra for semileptonic (e.g. $B \to \rho e \nu$) and rare B decays (e.g. $B \to K^* \ell^+ \ell^-$)
- Measure the photon energy spectrum in the radiative leptonic decays $B \rightarrow \gamma e \nu$ (can give important information about the *B* light-cone wave function)

Further theory progress can come from:

- Resumming all Sudakov logs, potential large numerical impact
- Investigate the structure of the power corrections $\sim \Lambda/Q$

Combined with information from lattice QCD, the SCET approach could give a complete theoretical description of the exclusive B decays