

Optics and IR design for SuperKEKB

Y.Ohnishi 1/19-22, 2004 Super B Factory Workshop in Hawaii

1

Machine parameters for SuperKEKB

Parameter		LER	HER	Unit
Beam currrent	I	9.4	4.1	А
Horizontal beta at IP	β_{x}	2	20	cm
Vertical beta at IP	β_y		3	mm
Bunch length	σ_{z}		3	mm
Emittance	ε _x	24 (1	8-30)	nm
Coupling	κ	1	-6	%
Crossing angle	θ_{x}	3	30	mrad
Momentum compaction	$lpha_{\sf p}$	2.7x10 ⁻⁴	1.8x10 ⁻⁴	
RF voltage	V _c	15	20	MV
Synchrotron tune	ν_{s}	0.031	0.019	

- Flexibility of lattice :
 - 10 nm < ε_x < 36 nm
 - -4×10⁻⁴ < α_p < 4×10⁻⁴ (Negative α_p → advantage for short bunch length)

Items considered for IR design

- IR magnets closer to IP
 - Lower beta at IP
- Physical aperture .
 - Beam injection
- Dynamic aperture
 - Beam injection / Lifetime
- Crossing angle
 - Beam separation / Magnet design
- Synchrotron radiation from IR magnets
 - Heating of components / Detector background

Magnet aperture (bore) Good magnetic field quality Small leakage field

Layout of beam axis and SuperBelle

- No change of HER axis (already has 22 mrad)
- LER axis is rotated by 8 mrad (θ_x =22 -> 30 mrad).
 - minimize rearrangement of magnets
- No rotation of Belle solenoid (translation is allowed)
- Beam pipe and SVD have 7 mrad w.r.t Belle solenoid.
 (middle of LER and HER)

IR magnet layout

Relationship between SuperBelle and SuperKEKB

- Spatial constraints for IR components :
- We assume the same condition as the present Belle and KEKB.
- Except for EFC (extremely forward calorimeter) replaced with a part of compensation solenoid magnets (ES).

QCS for SuperKEKB and KEKB

IR aperture requirements

 Required acceptance depends on linac beam emittance

 Positron damping ring (DR) will be constructed prior to IR upgrade.

Injector linac for SuperKEKB

- 1. Positron dumping ring (1 GeV)
- Positron energy upgrade with C-band for energy exchange (e⁻LER / e⁺ HER)

IR aperture requirements (cont'd)

Required acceptance depends on linac beam emittance

Beam envelope and IR magnets

Pos. from the IPKEKBQCS-R1920 mmQCS-L1600 mm

Super-KEKB n 1163.3 mm n 969.4 mm

Design of IR magnets

- $\cdot\,$ QCSL and QCSR with ES
- \cdot QC1LE and QC1RE
 - Choice of superconducting or normal magnet
- QC2LP, QC2LE, QC2RP, QC2RE
 - normal magnets
- Synchrotron lights from QCS
 - Effects of dynamic beta and dynamic emittance
 - Orbit displacement from design orbit (estimated from KEKB experience)
 - $P_{\rm SR}\text{=}65~\text{kW}$ from QCSL / 179 kW from QCSR

Dynamic beta and dynamic emittance

QCS and QC1(superconducting magnet)

<u>Crossing angle=30mrad, $\beta_x = 20cm$ </u> beam envelope & synchrotron radiation(SR)

- pink : SR (design orbit)
- green : SR (inc. dynamic effects and orbit displacement)

Synchrotron light passes through cryostat-bore

QC1(superconducting magnet)

G=42.86 T/m L_{eff} =0.232 m I_{op} =1319A, B_{max} =1.62 T I_{op}/I_{c} =59% G=34 T/m L_{eff} =0.266 m I_{op} =1319 A, B_{max} =3.28 T I_{op}/I_{c} =73%

QC1 (normal magnet)

QC2 magnets

17

IR magnets and Belle detector

No interference between QC1 and end yoke.

IR optics

LER IR optics with local chromaticity correction

HER IR optics

LER and HER optics (ring)

2.5π cell and non–interleaved chromaticity correction

Two sextupole magnets in a pair are connected with -I' transformer. Nonlinearities from sextupoles are cancelled. \rightarrow Large dynamic aperture

Optics correction

Local sextupole bumps are utilized to correct optics. It works very well at KEKB.

optical variable	η_{x}	η_y	xy-coupling		$\beta_x \beta_y$
	SF (-I trans)	SD (-I trans)	SD (-I trans)	Skew Q	QD/QF
method	x SF SF Asym. local bumps in x	y SD SD Asym. local bumps in y	y SD SD Symm. local bumps in y	Fudge factors to K-value	Fudge factors to K-value
comment	w/o affecting xy-coupling and β-functions		w/o affecting vertical dispersion		Correction for each power supply

Sextupole movers(±2.5mm) are necessary instead of bump orbit. Large SR may hit beam channel of ante-chamber due to bumps. (SR channel : height ~ 7 mm) 22

Dynamic aperture

- Dynamic aperture in LER
- Machine errors are not included.
- Transverse aperture is acceptable.

Coupling	Lifetime		
1%	51 min		
2%	72 min		
4%	102 min		
6%	145 min		

Summary

- Strategy of IR design
- Positron DR prior to IR upgrade
- Design of IR magnets
- Two options for QC1 :
 - superconducting / normal
- IR magnets is designed so that SR from QCS does not hit QC1 and QC2 as possible.
- Vacuum chamber in IR is under study.
- Optics for SuperKEKB is designed.
 - Dynamic aperture in LER ($\Delta p/p_0 \sim 1.5$ %)
 - Injection aperture can be kept.