$$B \to K \nu \bar{\nu}$$

Shohei NISHIDA & Nobu KATAYAMA

KEK (Belle)

Jan 21, 2004

Super B Factory Workshop in Hawaii

Jan 21, 2004 Super B Workshop in Hawaii

 $B \rightarrow K \nu \bar{\nu}$ (page 1)

S.Nishida & N.Katayama KEK (Belle)

 $B^+ \rightarrow K^+ \nu \bar{\nu}$ MC study

Assumption

- 50 ab^{-1} .
- full reconstruction is perfect.
- full reconstruction efficiency is 0.2%.
- the detector performance is the same as present Belle detector.

 $\mathsf{MC} \ \mathsf{study}$

- Geant simulation.
- Only one charged track.
- Kaon identification to the track.
- Selection to E (ECL energy of unmatched clusters) and p^* (CM momenta of the only track)

 p^* distribution for signals and typical background.

• Phase space is assumed for $B \to K \nu \bar{\nu}$.

 $B \rightarrow K \nu \bar{\nu}$ (page 3)

S.Nishida & N.Katayama KEK (Belle)

If we apply similar selection criteria as present analysis....

- no PID
- $p^* > 0.7 \text{ GeV}/c^2$

Obviously, we need tighter selection criteria.

Jan 21, 2004 Super B Workshop in Hawaii

Our optimized selection criteria:

- Tight KID
- 2.0 $\text{GeV}/c^2 < p^* < 2.7 \text{ GeV}$

$B \to K \nu \bar{\nu}$	43.0 ± 1.1
$B \text{ decays } (b \rightarrow u)$	21.6 ± 3.3
rare B decays	7.8 ± 0.8
$B \to \tau \nu$	4.3 ± 1.2

significance 5.1σ

Jan 21, 2004 Super B Workshop in Hawaii

Background Breakdown

Mode	E < 1.0	E < 1.0 with KID	E < 0.5 with KID
$B^- \to D^{*0} \mu^- \bar{\nu}$	265.7 ± 11.7	8.2 ± 2.1	2.1 ± 1.0
$B^- \to D^0 \pi^-$	199.0 ± 10.1	7.7 ± 2.0	3.1 ± 1.3
$B^- \to D^{*0} e^- \bar{\nu}$	181.1 ± 9.6	8.7 ± 2.1	2.1 ± 1.0
$B^- \to D^0 \mu^- \bar{\nu}$	131.3 ± 8.2	25.1 ± 3.6	5.1 ± 1.6
$B^- \to D^{*0} \pi^-$	110.3 ± 7.5	3.6 ± 1.4	0.0 ± 0.0
$B^- \to D^0 \rho^-$	95.9 ± 7.0	6.2 ± 1.8	1.0 ± 0.7
$B^- \to D^0 e^- \bar{\nu}$	85.7 ± 6.6	19.5 ± 3.2	4.1 ± 1.5
$B^- \to D^{*0} \rho^-$	43.6 ± 4.7	3.6 ± 1.4	0.5 ± 0.5
$B^- \to D^0 K^-$	13.3 ± 2.6	8.7 ± 2.1	2.1 ± 1.0
$B^- \to D^{*0} K^-$	5.6 ± 1.7	4.6 ± 1.5	0.5 ± 0.5
Other $b \rightarrow c$ decays	29.8 ± 3.9	3.1 ± 1.3	1.0 ± 0.7
$b \rightarrow c$ decays total	1161.4 ± 24.4	99.0 ± 7.1	21.5 ± 3.3

Mode	E < 1.0	E < 1.0 with KID	E < 0.5 with KID
$B^- \to K^{*-} \pi^- \pi^+$	28.0 ± 1.5	0.8 ± 0.2	0.2 ± 0.1
$B^- \to \pi^- \bar{K}^0$	22.8 ± 1.3	0.5 ± 0.2	0.0 ± 0.0
$B^- \to \rho^+ \pi^0$	21.1 ± 1.3	0.4 ± 0.2	0.0 ± 0.0
$B^- \to K^- f_2'(1525)$	19.1 ± 1.2	12.5 ± 1.0	1.1 ± 0.3
$B^- \to K^- \pi^0$	18.5 ± 1.2	12.7 ± 1.0	3.3 ± 0.5
$B^- \to K^{*-} \rho^0$	13.6 ± 1.0	0.2 ± 0.1	0.1 ± 0.1
$B^- \to K^{*-} f_2(1270)$	10.9 ± 0.9	0.4 ± 0.2	0.0 ± 0.0
$B^- \to K^{*-} f_2'(1525)$	10.7 ± 0.9	8.2 ± 0.8	1.3 ± 0.3
$B^- \to \pi^- \pi^0$	9.3 ± 0.8	0.4 ± 0.2	0.2 ± 0.1
Other rare B decays	16.7 ± 1.1	3.2 ± 0.5	0.2 ± 0.1
Rare B decays total	215.6 ± 4.1	51.6 ± 2.0	7.8 ± 0.8
Total	1377.0 ± 24.7	150.6 ± 7.3	29.3 ± 3.4

Future studies

- Full reconstruction.
 - Hadronic modes only / With semi-leptonic modes?
 - Background from full reconstruction.

— ...

- Solid angle coverage $/ K_L$ reconstruction.
- $B^0 \to K_S \nu \bar{\nu}, \ B \to K^* \nu \bar{\nu}$
-