Physics Analysis and Skims

Shohei NISHIDA

KEK (Belle)

Jan 21, 2004 Super B Factory Workshop in Hawaii

Jan 21, 2004 Super B Factory Workshop in Hawaii

Physics Analysis and Skims (page 1)

Present Analysis/Skims at Belle

Hadron data

- We have been accumulated $\sim 150 \text{ fb}^{-1}$ data.
- Hadron data ("mdst") size: $1 \text{ fb}^{-1} \sim 50 \text{ GB}$.
- All the hadron data are on disks. Users can read these data through network.
- MC data have been kept on disks and tapes; but we will try to put (new) MCs to disks.
- $\sim 10 \text{ TB}$ to keep hadron data and MC.

Jan 21, 2004 Super B Factory

Workshop in Hawaii

Physics Analysis and Skims (page 2)

Physics Skim

- ~ 20 skims are officially made.
- "index" scheme: only event number is saved. file size is small/negligible.
- Each skim includes $1 \sim 10\%$ of hadron events.
- full_recon skim: 5% of hadron events.
- No skim for systematic study.

b2dlnu_skim	dpart_skim	etapk_skim	psi_skim
b2ulnu_skim	dsds_skim	frec_skim	radb_skim
blamc_skim	dstarpi_skim	hh_skim	tau_skim
ddk_skim	dsubspi_skim	icpv_skim	
dilep_skim	endlep_skim	lepton_skim	
dmix_kpi_skim	etac_skim	ppp_skim	

Jan 21, 2004

Super B Factory Workshop in Hawaii Physics Analysis and Skims (page 3)

CPU / Disks

- Main group servers have only ~ 1.5 TB disk space for all users (HSM is also available to users).
- "analysis farm" is newly set up.
 - 6 TB user disks
 - 80 servers (2.8 GHz Xeon, 2 CPU)
- Each insititute has their own CPUs/disks, but not so many institutes can read the hadron data at their institute.

Users' Analysis

- Most users analyze skimmed data, but many users still analyze all hadron data (new mode; systematic study; just don't want to follow the official scheme).
- Roughly 1 day to read 10 fb⁻¹ (per job) if we do not use skim.
 ⇔ network access ~ 10 MB/s
- 3 days \sim 1 week to analyze all the data (except before conferences).
 - it depends on the analysis mode or whether we use skim.
- more time to analyze MC (due to large amount).
 - almost 1 month if we try to read all the MC on tape.
- Many users are still using PAW and hbook. (users' hbook files are sometimes too large...)

Jan 21, 2004

Super B Factory Workshop in Hawaii Physics Analysis and Skims (page 5)

CP analysis with 140 fb^{-1}

- Number of events used in the fit.
 - $J/\psi K_S^0$ final CP fit sample: ~ 2000 events
 - ϕK_S^0 final CP fit sample: ~ 100 events
 - Control sample for resolution / wrong tag fraction $(D^* \ell \nu, D^{(*)} \pi(\rho), J/\psi K^{(*)})$: $\sim 2 \times 10^5$ events
- Time necessary for fit.
 - Final fit: $\sim \mathcal{O}(1)$ sec.
 - resolution/wtag fit (34 parameters) ~ 2 hours. [Xeon 2.8 GHz 29 CPUs]
 - Need to repeat a few hundred times \implies 10 days for systematic error.

Jan 21, 2004 Super B Factory Workshop in Hawaii

Physics Analysis and Skims (page 6)

CP analysis with 140 fb^{-1} (cont'd)

- Basically, systematic study is time consuming.
- Calculation of significance requires large amount of toy MC \rightarrow another few days.

Analysis/Skims at super B factory

If we just scale to 5 ab^{-1}

- hadron data $\sim 250 \text{ TB}$ (or hadron data + MC $\sim 1 \text{ PB}$).
- ~ 1 year to analyze all the data (?)

 \implies some improvement necessary both on disks and analysis speed.

Disk size

- Technology progress.
 - We will be able to buy a few times larger disks with the same price.
 - But, probably not 50 times larger...
- Need to try to make the data size smaller (?).
 - Smaller data size per event.
 - Tighter hadron criteria.
- Effective use of disk.
 - Distribute hadron data to several institute and share them.
- Just buy more.

Jan 21, 2004

Super B Factory Workshop in Hawaii Physics Analysis and Skims (page 9)

Analysis speed

- Technology progress.
 - faster CPU.
 - disk I/O & network speed.
- Skim selection criteria.
 - More data \implies tighter selection criteria.
 - Start from full reconstruction sample.
- More compact information ("mini-mdst"?)
 - Data that includes only 4-vector, PID, (...) and reference to the usual data ("mdst").

Jan 21, 2004

Super B Factory Workshop in Hawaii Physics Analysis and Skims (page 10)

CP fit at super B (5 ab^{-1})

Time necessary for fit

- Final fit will take $\mathcal{O}(10)$ sec with $1 \ GHz$ CPU.
- resolution/wtag fit (34? parameters) \sim 3 days. [Xeon 2.8 GHz 29 CPUs]
- more than 1 year with present CPU power (e.g. Xeon 2.8GHz 150 CPU) and same method.

Solution

- It seems the CPU power is the main problem in this case.
- Most tasks run in parallel. Increasing the number of CPU.
- Change of the analysis method can save CPU power.
 - Unbinned ML fit \rightarrow Binned ML fit.

Jan 21, 2004 Super B Factory Workshop in Hawaii

Physics Analysis and Skims (page 11)

CP fit at super B (5 ab^{-1}) (cont'd) Note

- The system tends to be limited by I/O when we extends the system.
- Giga bits ethernet + fast hard drive
- How about Grid?

User analysis

- Time for reading all data is now 3 days --1 week.
 - The faster, the better.
 - But, 1 week is reasonable (acceptable).
 - If we can analyze much faster, we will be careless.
 - Is it possible?
- It will (at least) take more time to analyze all the hadron data.
 - Usage of official skim.
 Perform skim continuously; users submits skim codes anytime when necessary.
 - Users can start from full reconstruction skim for example.

Jan 21, 2004 Super B Factory Workshop in Hawaii

Physics Analysis and Skims (page 13)

User analysis (cont'd)

- Probably, once we can read the data, the situation is not changed so much (I hope).
 - More data / difficult mode \implies tight selection criteria.
- But, we may need to through away PAW/hbook.

Physics Analysis and Skims (page 14)

Summary

Summary

- hadron data size: $10~TB \rightarrow 250~TB$
- users' analysis
 - tough work to read all the hadron data...
 - continuous skimming scheme.
 - "mini-mdst"
 - ...
- network is always an key issue.
- ...

Jan 21, 2004

Super B Factory Workshop in Hawaii Physics Analysis and Skims (page 15)