Impact of PID Performance on Physics Reach

Shohei NISHIDA

KEK (Belle)

Jan 20, 2004

Super B Factory Workshop in Hawaii

Jan 20, 2004 Super B Workshop in Hawaii

Impact of PID Performance on Physics... (page 1)

Shohei NISHIDA KEK (Belle)

Introduction

Introduction

- PID plays an important role in B factory experiment.
- K/π separation is especially crucial.

Examples:

- Flavor tagging in any type of time dependent *CP* asymmetry measurement.
- 2-body decays: $B \to KK$, $K\pi$, $\pi\pi$.
- $B \to DK$, $B \to D\pi$.
- $B \to K^* \gamma$, $B \to \rho \gamma$.

Present K/π separation

Present KID separation

- Present KID system works well both for Belle and BaBar.
- In Belle, CDC + ACC + TOF.
- Roughly 85% efficiency for K, 10% $\pi \rightarrow K$ fake rate. Similarly for π efficiency / $K \rightarrow \pi$ fake rate.
- BaBar PID separation is better.

	K eff.	$\pi \to K$ fake
Belle $\sim 2 \ { m GeV}/c^2$	$\sim 85\%$	$\sim 10\%$
$BaBar\sim 2~\mathrm{GeV}/c^2$	$\sim 99\%$	$\sim 2\%$
B elle $\sim 3 \text{ GeV}/c^2$	$\sim 83\%$	$\sim 7\%$
BaBar $\sim 3 \text{ GeV}/c^2$	$\sim 87\%$	$\sim 11\%$

Impact of PID Performance on Physics... (page 3)

Shohei NISHIDA KEK (Belle)

 $B^0 \to \pi^+ \pi^-$

Example: $B^0 \rightarrow \pi^+\pi^-$

- $\mathcal{B}(B^0 \to K^+\pi^-) = (1.85 \pm 0.12) \times 10^{-5}$
- $\mathcal{B}(B^0 \to \pi^+\pi^-) = (4.8 \pm 0.5) \times 10^{-6}$
- Thanks to the PID, $K^+\pi^-$ component is reasonably small.
- It would be nice if we can suppress $K^+\pi^-$ more (another factor of $2 \sim 5$).

Impact of PID Performance on Physics... (page 4)

 $B \to KK$, DK

Example: $B \rightarrow KK$, DK

- $\pi \to K$ fake rate improvement will help these analysis.
- ΔE shift (due to different mass hypothesis) can also be used for K/π separation.

 $B \rightarrow \rho \gamma \text{ against } B \rightarrow K^* \gamma$

 $B \to \rho \gamma \text{ against } B \to K^* \gamma$

$$\frac{\mathcal{B}(B^+ \to \rho^+ \gamma)}{\mathcal{B}(B^+ \to K^* \gamma)} = \left|\frac{V_{td}}{V_{ts}}\right|^2 \left(\frac{1 - m_{\rho}^2 / M_B^2}{1 - m_{K^*}^2 / M_B^2}\right) \xi^2 (1 + \Delta R),$$

where $\xi \sim 0.76 \pm 0.06$, $\Delta R < 0.15$.

- Measurement of $|V_{td}|$.
- Direct *CP* Violation can be large in the SM.
- Time dependent asymmetry of $B^0 \rightarrow \rho^0 \gamma$ is expected to be small in the SM, but can be large in the non-SM model \implies sensitive probe for New Physics

Prediction [A.Ali and P.Y.Parkhomenko, Euro. Phys. J. C23, 89 (2002)]

$$\mathcal{B}(B^+ \to \rho^+ \gamma) = (0.85 \pm 0.30 \pm 0.10) \times 10^{-6} \tag{1}$$

$$\mathcal{B}(B^0 \to \rho^0 \gamma) = (0.49 \pm 0.17 \pm 0.04) \times 10^{-6}$$
 (2)

c.f.) $\mathcal{B}(B \to K^* \gamma) \sim 4 \times 10^{-4}$

Jan 20, 2004 Super B Workshop in Hawaii

Impact of PID Performance on Physics... (page 6)

Shohei NISHIDA KEK (Belle)

$$B \rightarrow \rho \gamma$$
 against $B \rightarrow K^* \gamma$

Present status

$$\begin{split} \mathcal{B}(B^+ \to \rho^+ \gamma) &< 2.1 \times 10^{-6} \quad \text{(BaBar)} \\ &< 2.6 \times 10^{-6} \quad \text{(Belle)} \\ \mathcal{B}(B^0 \to \rho^0 \gamma) &< 1.2 \times 10^{-6} \quad \text{(BaBar)} \\ &< 2.7 \times 10^{-6} \quad \text{(Belle)} \end{split}$$

Jan 20, 2004 Super B Workshop in Hawaii

Impact of PID Performance on Physics... (page 7)

Shohei NISHIDA KEK (Belle) $B \to \rho \gamma \text{ against } B \to K^* \gamma$

 $B \to \rho \gamma$ at 50 ${\rm ab}^{-1}$

Simple study with signal MC.

- $|M(\pi\pi) M_{\rho}| < 200 \text{ MeV}/c^2$
- $|M(K\pi) M_{K^*}| > 80 \text{ MeV}/c^2$
- π^0/η veto, $+\;10\%$ efficiency for continuum suppression
- PID: $90\% \ \pi$ efficiency
- $K \to \pi$ mis-identification rate is varied

where $M(K\pi)$ is the invariant mass of $\pi\pi$ assuming kaon mass for the higher momentum π .

$B \to \rho \gamma$ against $B \to K^* \gamma$

Assuming $3\% K \rightarrow \pi$ mis-identification rate:

- ΔE shift is not enough to separate $B \to \rho \gamma$ and $B \to K^* \gamma$ due to energy leakage at the calorimeter for photons.
- $B \to K^* \gamma$ contribution for charged mode is reasonably small (due to large $\rho \gamma$ BF and small $K^{*0} \gamma \to K^+ \pi^0 \gamma$ BF)
- Severe $B \to K^* \gamma$ background for neutral mode. We can still decrease it by tighter selections, but we loose statistics.

• Mis-identification of around 1% is necessary. i.e. 4σ separation.

Impact of PID Performance on Physics... (page 10)

$$\mu/\pi$$
 separation for $b \to s\ell\ell$

 μ/π separation for $b \to s \ell \ell$

Present μ identification

- Muon is identified by the outer muon detector (KLM/IFR).
- We cannot identify μ below 0.7 GeV/ c^2 .
- Impact of μ ID below $0.7~{\rm GeV}/c^2$ to physics ?

μ/π separation for $b \to s\ell\ell$

Example: $b \rightarrow s\ell\ell$

- Sensitive to New Physics.
- Measurement of branching fraction and forward-backward asymmetry.
- $M^2(\ell^+\ell^-) < 3 \text{ GeV}/c^2$ is important.

($c\bar{c}$ resonances such as J/ψ causes theoretical uncertaintly)

Jan 20, 2004 Super B Workshop in Hawaii

Impact of PID Performance on Physics... (page 12)

μ/π separation for $b \to s\ell\ell$

$B^+ \to K^+ \ell^+ \ell^-$ at 50 ab^{-1}

- Signal MC for $p>1.0~{\rm GeV}/c^2$, $p>0.7~{\rm GeV}/c^2$ and $p>0.5~{\rm GeV}/c^2$
- μ identification efficiency is assumed to be 90%

• Improvement on the efficiency at $M(\ell^+\ell^-) < 3 \text{ GeV}/c^2$.

Jan 20, 2004 Super B Workshop in Hawaii

Impact of PID Performance on Physics... (page 13)

Conclusion

Conclusion

- PID (especially K/π separation) has been played an crucial role in the present B factories.
- Further imporvement is essential. $4\sigma~K/\pi$ separation (1% fake rate) is desirable.
- μ/π selection at $p < 0.7 \text{ GeV}/c^2$ also has some impact on physics.

Impact of PID Performance on Physics... (page 14)