New physics through $b \rightarrow s\gamma$

Mikihiko Nakao (KEK, IPNS)

mikihiko.nakao@kek.jp

January 19, 2004 SuperB Workshop in Hawai'i

Physics cases at 5 and 50 ab^{-1}

Outline

p.2

 $B \rightarrow X_s \gamma$ has been the best mode — giving tightest constraints

- Inclusive $B \rightarrow X_s \gamma$ branching fraction
- Sign of C7
- Mixing induced *CP* asymmetry
- Direct CP asymmetry
- (Not much on $b \rightarrow d\gamma$)

No new physics hint from $b \rightarrow s\gamma$ *, yet — hope is to find with Super-B*

$B \rightarrow X_s \gamma$ branching fractions

Many constraints

- Sensitive to charged Higgs, SUSY, ... but many dramatic senarios have been already excluded
- NP effect may be small (10–20%) or hidden in a tiny corner (SM like senarios (e.g. minimal flavor violating SUSY) are favored)

• $|C_7|$ needed for C_9 , C_{10} from $B \to X_s \ell^+ \ell^-$, $A_{FB}(B \to K^* \ell^+ \ell^-)$ • $\langle E_{\gamma} \rangle$ and $\langle E_{\gamma}^2 \rangle - \langle E_{\gamma} \rangle^2$ needed for V_{ub} and $M(X_s)$ of $B \to X_s \ell^+ \ell^-$

$B \rightarrow X_s \gamma$ backgrounds

Continuum background

off-resonance subtraction

 $B \rightarrow \pi^0 X$ π^0 spectrum can be measured

 $B \to \eta X$

 η spectrum can be measured

- other $B \to X(=\eta' \dots) \to \gamma$ small and less harmful
- *B* → hadronic shower (mis-id.) Poorly simulated (by GEANT) No good control sample!

Beam background

subtracted with off-data

Roughly ×2 *background when* E_{γ}^{\min} *lowered by* 0.1 *GeV*

Analysis techniques

	Full inclusive (γ (+ <i>l</i> -tag))	Sum of exclusive ($K + n\pi\gamma$)
	CLEO(01), BaBar(ICHEP02)	Belle(01), BaBar(ICHEP02)
<i>q</i> ā backg.	off-resonance subtraction	fit to the $M_{\rm bc}$ - ΔE signal peak
$B \rightarrow \pi^0 X, \eta X$	use measured data	complicated peaking b.g., need MC ($D^0\pi^0$, $D^0\rho^-$ etc)
other b.g.	Monte Carlo	less problematic
S/N	poor	good
Coverage	$E_{\gamma} > E_{\gamma}^{\min}$ (90–95%)	~50% of X_s (or 70% with K_L^0)
Advantage	small theory error	clear signal
Disadvantage	tough analysis , constraints and control samples limited, $b \rightarrow d\gamma$ unknown	irreducible model uncertain- ties ($M(X_s)$, hadronization), large syst. error
Next step	lower E_{γ}^{\min} , main method	include η , 5π , $2\pi^0$, $3K$, Λ

p.6

Beam backgrounds

Two worries, if we have **20 times** more beam backgrounds!

Fake photon from beam

Should be correctly subtracted with off-resonance, but careful watching is necessary to avoid large systematics.

Efficiency / Resolution

So far (for Belle update design), it won't be a serious problem. Loss is compensated by thinner PID material and waveform sampled digitization.

No big change in the photon energy response and efficiency even with 20 times background.

(In $B \to K^* \gamma \Delta E$ distribution)

$B \rightarrow X_s \gamma$ model errors

O(5%) error with $E_{\gamma}^{\min} = 2.0 \text{ GeV} \Rightarrow O(2\%)$ with $E_{\gamma}^{\min} = 1.8 \text{ GeV}$ (Kagan-Neubert)

But more ambiguity? Fraction below E_{γ}^{\min} may be larger can be checked only with lower E_{γ}^{\min}

$B \rightarrow X_s \gamma$ systematic errors

Some errors scale with (off-resonance) luminosity

- $B \rightarrow \pi^0/\eta X$ background subtraction
- Energy correction for off-resonance
- Hadronic shower fake rate (K_L from $e^+e^- \rightarrow \phi \gamma$, etc)

Some errors are reduced more slowly

- Photon efficiency (from $e^+e^- \rightarrow e^+e^-\gamma$, τ decays, ...)
- Shape variable efficiency (need a better $M(X_s)$ understanding)
- $b \rightarrow d\gamma$ subtraction ($|V_{td}/V_{ts}|$?, E_{γ} for $b \rightarrow d\gamma$?)

Wild guess: 60% of stat. error \oplus 3%?

Tag the rest of particles

From the rest of particles, one can tag X_s and X_d with "some" mis-tag fraction $\Rightarrow B \rightarrow X_d \gamma$ measurement!

[*s* → *d*] $w_s = 33$ to 50%, mainly due to missing K_L^0 and $K_S^0 \to \pi^0 \pi^0$ [*d* → *s*] $w_d = 5$ to 20%, mainly due to mis-PID (optimistic? how about other *B*?)

Sum of exclusive method

- JETSET is not reliable, need to measure the break-down
- Cannot measure all modes even at 5 ab⁻¹, huge cross-feeds, model error would be still VERY large
- Essential input for fully inclusive $b \rightarrow s\gamma$
 - Systematic error due to $M(X_s)$ and multiplicity modeling
 - Also for $B \to X_s \ell^+ \ell^-$ (fully inclusive study would be tough)

$B \rightarrow X_s \gamma$ error extrapolation

$B \rightarrow X_s \gamma$ prospects

- 4–5 % measurement error is possible
 (Comparable error would be expected for NNLO prediction, too)
- No big chance to see the new physics effect in the rate itself
- Pursue other measurements:
 - Sign of C_7 , from $b \to s\ell^+\ell^-$, $B \to K^*\gamma$ isospin asymmetry or $B \to \rho\gamma$
 - Photon polarization from mixing induced CP, $B \rightarrow K\pi\pi\gamma$ angular analysis, low q^2 end of $B \rightarrow K^*e^+e^-$
 - Direct CP violation: $A_{CP}(B \to K^*\gamma), A_{CP}(B \to X_s\gamma)$
 - More with $b \rightarrow d\gamma$

$B \rightarrow K^* \gamma$ isospin asymmetry

$$\Delta_{+0} \equiv \frac{(\tau_{B^+}/\tau_{B^0})\mathcal{B}(B^0 \to K^{*0}\gamma) - \mathcal{B}(B^+ \to K^{*+}\gamma)}{(\tau_{B^+}/\tau_{B^0})\mathcal{B}(B^0 \to K^{*0}\gamma) + \mathcal{B}(B^+ \to K^{*+}\gamma)}$$

is sensitive to sign (C_6/C_7) [Kagan-Neubert PLB539,227(2002)]

Δ_{+0} prospects

SM predicts +5 to 10% asymmetry $\Leftrightarrow \sim 2\%$ error is needed

- Stat. error will become negligible 1.8% at 500 fb⁻¹, 0.5% at 5 ab⁻¹
 Syst. error from K⁺/K⁰_S and π⁺/π⁰ eff. difference 1.8% will decrease slowly
- f_+/f_0 is already very crucial $\left[\delta(\Delta_{+0}) = \frac{1}{2}\delta(f_+/f_0)\right]$ 2.5% error in Δ_{+0} will decrease slowly (systematics limited)

Sooner or later it becomes systematic error dominant,			
BaBar	charmonium	$f_{\pm}/f_0 = 1.10 \pm 0.06 \pm 0.05$	[PRD65,032001]
Belle	dilepton	$f_+/f_0 = 1.01 \pm 0.03 \pm 0.09$	[PRD67,052004]
CLEO	$D^*\ell v$ partial recon.	$f_+/f_0 = 1.041 \pm 0.054 \pm 0.050$	[PRD66,052003]

but if 2% level is feasible with $O(1 ab^{-1})$, no need to wait A_{FB} !

Mixing induced CPV

- $B^0 \to K^{*0} \gamma \to K^0_S \pi^0 \gamma$
- $B^0 \to K^0_S \phi \gamma$ Next slides
 - $B \rightarrow K\pi\pi\gamma$
 - $\bullet B \to K_1(1270)^0 \gamma \to K_S \rho^0 \gamma$
 - Triple momentum correlation in $B \rightarrow K_1(1400)\gamma$
 - Dalitz analysis is necessary, no technique available yet

Sensitivity is similar to $B \to \eta' K_S^0$ ($\delta S_{\eta' K_S^0} = 0.27$ for 421 event)

5 ab^{-1} 5 ab^{-1} 50 ab^{-1} 2000 events $\delta S = 0.12$ $\delta S = 0.04$

~ 160 event at 5 ab^{-1} to get started, with $\delta S \sim 0.5$ cf. 89 event of $B^0 \rightarrow J/\psi K^{*0}$ event $\Rightarrow \sin 2\phi_1 = 0.04 \pm 0.63$

• at 50 fb⁻¹, $\delta S \sim 0.15$

Direct CPV in $b \rightarrow (s, d)\gamma$

- Very small in SM (0.42 + 0.17 %) [T.Hurth et al hep-ph/0312260]
- Even smaller for untagged: $A_{CP}(B \rightarrow X_{s+d}\gamma)$, even in various SUSY scenarios
- With EDM constraint, almost no asymmetry is possible for naive SUSY scenarios ⇒ Sensitive to exotic new physics

Lepton flavor tag for inclusive photon

 $\Lambda_{s+d}/$

- Can't select X_s only (tagging X_s/X_d will be difficult)
- Mistag due to mixing and cascade $b \rightarrow c \rightarrow s \ell v$, Still wrong tag fraction w = 0.13 is not a serious problem.
- Systematic error under very good control (statistics dominant)
- $X_s \gamma$ and $X_{s+d} \gamma$ have different new physics sensitivity

[J.Libby 2nd SLAC SuperB WS]

0.1 ab^{-1}	$\pm 0.1(\text{stat})$	±0.01(syst)
1 ab^{-1}	± 0.03 (stat)	±0.003(syst)
10 ab^{-1}	± 0.01 (stat)	(model error?)

Need "sum of exclusive" method to tag X_s Known large systematic error are:

 $A_{CP}(B \rightarrow X_{S}\gamma)$

- Signal shape (~ 0.8% at 140 fb⁻¹)
 - $M(X_s)$ spectrum model error should be reduced from fully inclusive $b \rightarrow s\gamma$ measurement
 - Multiplicity distribution scale with statistics
- A_{CP} in Rare B (~ 2% at 140 fb⁻¹)
 - Now, up to 100% asymmetry is allowed
 - Will significantly reduce by using measured limits
 - Charge asymmetry in the cuts (~ 2.9% at 140 fb⁻¹)
 - Limited by the control sample, scale with statistics
 - $\pm 0.009(\text{stat}) \pm 0.006(\text{syst})$
- 50 ab^{-1} \Rightarrow $\pm 0.003(stat)$ $\pm 0.002(syst)$ $\pm 0.003(model)$ [extrapolated from Belle LP03 result]

 5 ab^{-1}

- No deviation from zero: $A_{CP}(B \rightarrow K^* \gamma) = (-0.5 \pm 3.7)\%$
- No serious systematic error source, error just scales with luminosity $\Rightarrow 1.8\%$ at 0.5 ab⁻¹, 0.6% at 5 ab⁻¹, 0.2% at 50 ab⁻¹
- Is it as sensitive as inclusive for new physics?

A few words on $b \rightarrow d\gamma$

- Still need to observe the signal in $B \rightarrow \rho \gamma, \omega \gamma$ a few hundred fb⁻¹?
- **B**F, $\Gamma(\rho\gamma/K^*\gamma)$, A_{CP} , isospin asymmetry, mixing induced CPV, ... possible only at SuperB
- Inclusive need a serious study to find ω_s and ω_d in inclusive and sum-of-exclusive methods

[BaBar extrapolation, Eigen CKM WS'03]

Luminosity	signifi cance	$(\sigma_{\mathcal{B}}/\mathcal{B})_{exp}$	$\sigma(V_{td}/V_{ts})$
$100 {\rm ~fb^{-1}}$	$1.9 - 2.8\sigma$	0.38-0.53	0.19-0.27
$200 {\rm ~fb^{-1}}$	$2.7 - 3.9\sigma$	0.28-0.38	0.14-0.19
300 fb^{-1}	$3.3 - 4.8\sigma$	0.23-0.31	0.12-0.15
$400 {\rm ~fb^{-1}}$	$3.9 - 5.5\sigma$	0.20-0.27	0.1-0.14
$500 {\rm ~fb^{-1}}$	$4.3 - 6.2\sigma$	0.18-0.25	0.09-0.13
1000 fb^{-1}	$6.0 - 8.7\sigma$	0.14-0.18	0.07-0.09

Summary

	_	

•	0.5 ab^{-1}	5 ab^{-1}	50 ab^{-1}
Branching fraction			
$\mathcal{B}(B \to X_s \gamma)$	<10%	" 5%"	still 5%
$\mathcal{B}(B \to X_d \gamma)$			possible?
Sign of C ₇			
$\Delta_{0+}(B \to K^* \gamma)$	4%	2%	no better
$\Delta_{0+}(B \to \rho \gamma)$	possible?	reasonable	precise
Mixing CPV			
$S(K_S^0\pi^0\gamma)$		0.12	0.05
$S(K_S^0\phi\gamma)$		0.5	0.15
$S(K_1(1270)\gamma)$		difficult?	possible?
Direct CPV			
$A_{CP}(B \rightarrow X_s \gamma)$ inclusive	4.5%	1.4%	0.5%
$A_{CP}(B \rightarrow X_s \gamma)$ sum-of-excl.	3%	1%	0.5%
$A_{CP}(B \to K^* \gamma)$	1.8%	0.6%	0.2%

New physics through $b \rightarrow s\gamma$ — Mikihiko Nakao (KEK, IPNS)

sign(C_7) **from** $B \rightarrow \rho \gamma$

[Hurth-Lunghi hep-ph/0307142]

- One can do the same thing using $B \rightarrow \rho \gamma$ isospin asymmetry Maybe a better test since expected asymmetry is larger
- However, it will demand ~ 0.5 ab^{-1} for $B \rightarrow \rho \gamma$ observation. especially where $R(\rho \gamma / K^* \gamma)$ is small.

New physics through $b \rightarrow s\gamma$ — Mikihiko Nakao (KEK, IPNS)

p.27