Measuring $lpha/\phi_2$ from B o ho ho

Zoltan Ligeti

- Introduction
- Isospin analysis
 - ... complications due to $\Gamma_{\rho} \neq 0$
 - ... present constraints on $\alpha \alpha_{\rm eff}$
- Other small corrections ... $\propto (1 - f_0)$ and EW penguins
- Summary

see: Falk, Z.L., Nir, Quinn, hep-ph/0310242, To appear in PRD

Introduction

• Want to determine CKM angle $\alpha \equiv \phi_2 \equiv \arg \left[-\left(V_{td}V_{tb}^*\right) / \left(V_{ud}V_{ub}^*\right)\right]$ from S_{+-} :

$$\frac{\Gamma(\overline{B}^{0}_{\text{phys}}(t) \to \rho^{+}\rho^{-}) - \Gamma(B^{0}_{\text{phys}}(t) \to \rho^{+}\rho^{-})}{\Gamma(\overline{B}^{0}_{\text{phys}}(t) \to \rho^{+}\rho^{-}) + \Gamma(B^{0}_{\text{phys}}(t) \to \rho^{+}\rho^{-})} = S_{+-}\sin(\Delta m t) - C_{+-}\cos(\Delta m t)$$

If amplitudes with a single weak phase dominate, then $S_{+-} = \sin 2\alpha$

• Summer '03 news: $B \to \rho \rho$ almost purely longitudinally polarized $\mathcal{B}(B \to \rho^0 \rho^0) / \mathcal{B}(B \to \rho^- \rho^+) < 0.1 \quad (90\% \text{ CL})$ [compare: $\mathcal{B}(B \to \pi^0 \pi^0) / \mathcal{B}(B \to \pi^- \pi^+) \simeq 0.4$]

• $S_{\rho^+\rho^-}$ may soon give accurate model independent determination of α ... concentrate on differences compared to $B \to \pi \pi$

$B \rightarrow \pi \pi$: the problem

There are tree and penguin amplitudes, just like in $B \rightarrow \psi K_S$

"Tree"
$$(b \rightarrow u\bar{u}d)$$
: $\overline{A}_T = V_{ub}V_{ud}^* A_{u\bar{u}d}$
"Penguin": $\overline{A}_P = V_{tb}V_{td}^* P_t + V_{cb}V_{cd}^* P_c + V_{ub}V_{ud}^* P_u$
unitarity: $\overline{A}_{\pi^+\pi^-} = \underbrace{V_{ub}V_{ud}^*}_{Vud} [A_{u\bar{u}d} + P_u - P_t] + \underbrace{V_{cb}V_{cd}^*}_{Vcd} [P_c - P_t]$
same as Tree phase not suppressed
Define P and T by: $\overline{A}_{\pi^+\pi^-} = T_{+-}e^{-i\gamma} + P_{+-}e^{+i\beta}$

Two amplitudes with different weak- and possibly different strong phases; their values are not known model independently

• $\mathcal{B}(B \to K^- \pi^+) = (18.2 \pm 0.8) \times 10^{-6}$ to $\mathcal{B}(B \to \pi^- \pi^+) = (4.6 \pm 0.4) \times 10^{-6}$ ratio implies $|P/T| \sim 0.3$, so need $B \rightarrow \pi^0 \pi^0$

D

Isospin Symmetry

Isospin analysis

 $\mathcal{B}(B\to\pi^0\pi^0)=(2.0\pm0.5)\times10^{-6},$ so triangles are not squashed

 $\rho\rho$: Mixture of *CP* even/odd (L = 0, 1, 2), but since *B* is spin-0, the combined space and spin wave function of the two ρ 's is symmetric under particle exchange Bose statistics: isospin of $\rho\rho$ symmetric under particle exchange $\Rightarrow I = 1$ absent

Same holds in transversity basis: isospin analysis applies for each σ (= 0, ||, \perp)

Complications due to $\Gamma_{ ho} eq 0$

• Even for $\sigma = 0$ the possibility of I = 1 is reintroduced by finite Γ_{ρ}

Can have antisymmetric dependence on both the two ρ mesons' masses and on their isospin indices $\Rightarrow I = 1$ $(m_i = \text{mass of a pion pair}; B = \text{Breit-Wigner})$ $A \sim B(m_1)B(m_2)\frac{1}{2}[f(m_1, m_2)\rho^+(m_1)\rho^-(m_2) + f(m_2, m_1)\rho^+(m_2)\rho^-(m_1)]$ $= B(m_1)B(m_2)\frac{1}{4}\left\{[f(m_1, m_2) + f(m_2, m_1)]\underbrace{[\rho^+(m_1)\rho^-(m_2) + \rho^+(m_2)\rho^-(m_1)]}_{I=0,2} + [f(m_1, m_2) - f(m_2, m_1)]\underbrace{[\rho^+(m_1)\rho^-(m_2) - \rho^+(m_2)\rho^-(m_1)]}_{I=1}\right\}$

If Γ_{ρ} vanished, then $m_1 = m_2$ and I = 1 part is absent

- E.g., no symmetry in factorization: $f(m_{\rho^-}, m_{\rho^+}) \sim f_{\rho}(m_{\rho^+}) F^{B \to \rho}(m_{\rho^-})$
- Could not rule out $\mathcal{O}(\Gamma_{\rho}/m_{\rho})$ contributions; no interference $\Rightarrow \mathcal{O}(\Gamma_{\rho}^2/m_{\rho}^2)$ effects How would they show up...?

Constraining I = 1

• Leading I = 1 term can be parameterized as [e.g., from $B_i H_j^{kl} (\rho_k^i \partial^2 \rho_l^j - \rho_l^j \partial^2 \rho_k^i)$]

$$\left[c \, \frac{m_1 - m_2}{m_\rho}\right]^2 \left|B_\rho(m_1^2)B_\rho(m_2^2)\right|^2$$

Unfortunately, subleading I = even contribution (cross-term) can have same form

$$\left[a+b\,\frac{(m_1-m_2)^2}{m_\rho^2}\right]^2 \left|B_\rho(m_1^2)B_\rho(m_2^2)\right|^2$$

Expect $a, \, b, \, c \text{ of the same order, so } ab/c^2 = \mathcal{O}(1)$

- To constrain them, either:
 - Add new term to fit and check for stability of the a^2 term, for which the isospin analysis should be carried out (I = 1 absent for $\rho^0 \rho^0$)
 - Decrease the widths of the ρ bands or impose a cut on $|m_1 m_2|$ to eliminate possible I = 1 term

Bounds on
$$\delta(=lpha-lpha_{ ext{eff}})$$

• Until the $\mathcal{B}[B^0 \to (\rho^0 \rho^0)_{\sigma}]$ and $\mathcal{B}[\overline{B}{}^0 \to (\rho^0 \rho^0)_{\sigma}]$ tagged rates are separately measured, one can bound δ_{σ} using Babar & Belle data

$$\mathcal{B}_{+-} = \frac{1}{2} \left(|A_{+-}|^2 + |\bar{A}_{+-}|^2 \right) = (27 \pm 9) \times 10^{-6}, \qquad (f_0)_{+-} = 0.99^{+0.01}_{-0.07} \pm 0.03$$
$$\mathcal{B}_{+0} = \frac{1}{2} \left(|A_{+0}|^2 + |\bar{A}_{-0}|^2 \right) = (26 \pm 6) \times 10^{-6}, \qquad (f_0)_{+0} = 0.97^{+0.03}_{-0.07} \pm 0.04$$
$$\mathcal{B}_{00} = \frac{1}{2} \left(|A_{00}|^2 + |\bar{A}_{00}|^2 \right) = (0.6^{+0.8}_{-0.6}) \times 10^{-6}, \qquad [\mathcal{B}_{00} < 2.1 \times 10^{-6} \text{ (90\% CL)}]$$

First two measured, and upper bound on \mathcal{B}_{00} constrains $\mathcal{B}_{00}^0 \ll \mathcal{B}_{+-}^0$, \mathcal{B}_{+0}^0

• Can bound δ_0 the same way as in $B \to \pi\pi^-$

[Grossman-Quinn / Gronau-London-Sinha-Sinha]

$$\cos 2\delta_0 \ge 1 - \frac{2\mathcal{B}_{00}^0}{\mathcal{B}_{+0}^0} + \frac{(\mathcal{B}_{+-}^0 - 2\mathcal{B}_{+0}^0 + 2\mathcal{B}_{00})^2}{4\mathcal{B}_{+-}^0\mathcal{B}_{+0}^0} + \dots$$

The bound also depends on experimental constraints on C_{+-} and C_{00}

Resulting constraints

Present data implies: $\cos 2\delta_0 > 0.83$ or $|\delta_0| < 17^\circ$ (90% CL)

Took $\mathcal{B}_{+-} = \mathcal{B}_{+-}^0$ and $\mathcal{B}_{+0} = \mathcal{B}_{+0}^0$ for simplicity [Fits done using CKMfitter package]

Presently allowed range of *CP* **asymmetries**

• Small $\mathcal{B}_{00}/\mathcal{B}_{+0}$ also bounds direct CPV:

Corrections...

Corrections proportional to $1-f_0$

• If S_{+-} not measured in longitudinal mode alone, use $S_{+-} = \sum_{\sigma} f_{\sigma} S_{+-}^{\sigma}$ to bound

$$|S_{+-}^{0} - S_{+-}| \le (1 - f_0) \left(1 + |S_{+-}^{0}|\right)$$

Expect the error in estimating S_{+-}^0 to be smaller — to zeroth order in $|P_{+-}^{\sigma}/T_{+-}^{\sigma}|$ we have $S_{+-}^{\parallel} = -S_{+-}^{\perp} = S_{+-}^0$, so

$$S_{+-}^{0} - S_{+-} = (1 - f_0 - f_{\parallel} + f_{\perp}) S_{+-}^{0} + \mathcal{O}\left[(1 - f_0) |P_{+-}/T_{+-}|\right]$$

Non-resonant $B \rightarrow 4\pi$ decays and other resonances that decay to 4π could have opposite CP than the dominant longitudinal mode

Contamination due to such contributions effectively included in the fit error of $1-f_0$

Electroweak penguins

In $B \to \pi\pi$ isospin analysis, neglecting EWP: one more observable than unknown Including EWP: 2 new unknowns, but in $B \to \rho\rho$ yet one more observable, $S_{\rho^0\rho^0}$ Insufficient: constrains a combination of $|P_{\rm ew}|$ and $\arg(P_{\rm ew})$, but does not fix $\Delta 2\delta$ For now, consistent to neglect them: $\mathcal{A}_{\mp 0} = \frac{|\bar{A}_{-0}|^2 - |A_{+0}|^2}{|\bar{A}_{-0}|^2 + |A_{+0}|^2} = -0.09 \pm 0.16$

Isospin violation due to $\rho - \omega - \phi$ mixing expected to be small

Conclusions

Summary

- Present measurements of the various $B \to \rho \rho$ rates already give significant limits on the uncertainty in the extraction of α from the CP asymmetry in $B \to \rho^+ \rho^-$
- With higher precision, need to parameterize the data to allow for impact of possible I = 1 contributions that can affect results at the $O(\Gamma_{\rho}^2/m_{\rho}^2)$ level
- $S_{\rho^+\rho^-}$ may give best model independent determination of α for some time to come
- Limit on theory error of α seems to be at the 5° level (data may tell us it's larger)

