Measuring α / ϕ_{2} from $B \rightarrow \rho \rho$

Zoltan Ligeti

- Introduction
- Isospin analysis
... complications due to $\Gamma_{\rho} \neq 0$
... present constraints on $\alpha-\alpha_{\text {eff }}$
- Other small corrections
$\ldots \propto\left(1-f_{0}\right)$ and EW penguins
- Summary

see: Falk, Z.L., Nir, Quinn, hep-ph/0310242, To appear in PRD

Introduction

- Want to determine CKM angle $\alpha \equiv \phi_{2} \equiv \arg \left[-\left(V_{t d} V_{t b}^{*}\right) /\left(V_{u d} V_{u b}^{*}\right)\right]$ from S_{+-}:

$$
\frac{\Gamma\left(\bar{B}_{\mathrm{phys}}^{0}(t) \rightarrow \rho^{+} \rho^{-}\right)-\Gamma\left(B_{\mathrm{phys}}^{0}(t) \rightarrow \rho^{+} \rho^{-}\right)}{\Gamma\left(\bar{B}_{\mathrm{phys}}^{0}(t) \rightarrow \rho^{+} \rho^{-}\right)+\Gamma\left(B_{\mathrm{phys}}^{0}(t) \rightarrow \rho^{+} \rho^{-}\right)}=S_{+-} \sin (\Delta m t)-C_{+-} \cos (\Delta m t)
$$

If amplitudes with a single weak phase dominate, then $S_{+-}=\sin 2 \alpha$

- Summer '03 news: $B \rightarrow \rho \rho$ almost purely longitudinally polarized

$$
\begin{aligned}
& \mathcal{B}\left(B \rightarrow \rho^{0} \rho^{0}\right) / \mathcal{B}\left(B \rightarrow \rho^{-} \rho^{+}\right)<0.1 \quad(90 \% \mathrm{CL}) \\
& \text { [compare: } \left.\mathcal{B}\left(B \rightarrow \pi^{0} \pi^{0}\right) / \mathcal{B}\left(B \rightarrow \pi^{-} \pi^{+}\right) \simeq 0.4\right]
\end{aligned}
$$

- $S_{\rho^{+} \rho^{-}}$may soon give accurate model independent determination of α ... concentrate on differences compared to $B \rightarrow \pi \pi$

$B \rightarrow \pi \pi$: the problem

- There are tree and penguin amplitudes, just like in $B \rightarrow \psi K_{S}$
"Tree" $(b \rightarrow u \bar{u} d): \bar{A}_{T}=V_{u b} V_{u d}^{*} A_{u \bar{u} d}$
"Penguin": $\quad \bar{A}_{P}=V_{t b} V_{t d}^{*} P_{t}+V_{c b} V_{c d}^{*} P_{c}+V_{u b} V_{u d}^{*} P_{u}$

Define P and T by: $\bar{A}_{\pi^{+} \pi^{-}}=T_{+-} e^{-i \gamma}+P_{+-} e^{+i \beta}$

Two amplitudes with different weak- and possibly different strong phases; their values are not known model independently

- $\mathcal{B}\left(B \rightarrow K^{-} \pi^{+}\right)=(18.2 \pm 0.8) \times 10^{-6}$ to $\mathcal{B}\left(B \rightarrow \pi^{-} \pi^{+}\right)=(4.6 \pm 0.4) \times 10^{-6}$ ratio implies $|P / T| \sim 0.3$, so need $B \rightarrow \pi^{0} \pi^{0}$

Isospin Symmetry

Isospin analysis

$\pi \pi$: Bose statistics $\Rightarrow I=0,2$

$$
\begin{aligned}
& A_{i j}=T_{i j} e^{+i \gamma}+P_{i j} e^{-i \beta} \\
& \bar{A}_{i j}=T_{i j} e^{-i \gamma}+P_{i j} e^{+i \beta}
\end{aligned}
$$

$A_{i j}\left[\bar{A}_{i j}\right]$ denote $B^{+}, B^{0}\left[B^{-}, \bar{B}^{0}\right]$ decays

$$
\widetilde{A}^{i j} \equiv e^{2 i \gamma} \bar{A}^{i j}
$$

$\mathcal{B}\left(B \rightarrow \pi^{0} \pi^{0}\right)=(2.0 \pm 0.5) \times 10^{-6}$, so triangles are not squashed
$\rho \rho$: Mixture of $C P$ even/odd ($L=0,1,2$), but since B is spin- 0 , the combined space and spin wave function of the two ρ 's is symmetric under particle exchange Bose statistics: isospin of $\rho \rho$ symmetric under particle exchange $\Rightarrow I=1$ absent Same holds in transversity basis: isospin analysis applies for each $\sigma(=0, \|, \perp)$

Complications due to $\Gamma_{\rho} \neq 0$

- Even for $\sigma=0$ the possibility of $I=1$ is reintroduced by finite Γ_{ρ}

Can have antisymmetric dependence on both the two ρ mesons' masses and on their isospin indices $\Rightarrow I=1 \quad\left(m_{i}=\right.$ mass of a pion pair; $B=$ Breit-Wigner $)$

$$
\begin{aligned}
& A \sim B\left(m_{1}\right) B\left(m_{2}\right) \frac{1}{2}\left[f\left(m_{1}, m_{2}\right) \rho^{+}\left(m_{1}\right) \rho^{-}\left(m_{2}\right)+f\left(m_{2}, m_{1}\right) \rho^{+}\left(m_{2}\right) \rho^{-}\left(m_{1}\right)\right] \\
&=B\left(m_{1}\right) B\left(m_{2}\right) \frac{1}{4}\{\left[f\left(m_{1}, m_{2}\right)+f\left(m_{2}, m_{1}\right)\right] \underbrace{\left[\rho^{+}\left(m_{1}\right) \rho^{-}\left(m_{2}\right)+\rho^{+}\left(m_{2}\right) \rho^{-}\left(m_{1}\right)\right]}_{I=0,2} \\
&+\left[f\left(m_{1}, m_{2}\right)-f\left(m_{2}, m_{1}\right)\right] \underbrace{\left[\rho^{+}\left(m_{1}\right) \rho^{-}\left(m_{2}\right)-\rho^{+}\left(m_{2}\right) \rho^{-}\left(m_{1}\right)\right]}_{I=1}\}
\end{aligned}
$$

If Γ_{ρ} vanished, then $m_{1}=m_{2}$ and $I=1$ part is absent
E.g., no symmetry in factorization: $f\left(m_{\rho^{-}}, m_{\rho^{+}}\right) \sim f_{\rho}\left(m_{\rho^{+}}\right) F^{B \rightarrow \rho}\left(m_{\rho^{-}}\right)$

- Could not rule out $\mathcal{O}\left(\Gamma_{\rho} / m_{\rho}\right)$ contributions; no interference $\Rightarrow \mathcal{O}\left(\Gamma_{\rho}^{2} / m_{\rho}^{2}\right)$ effects How would they show up...?

Constraining $I=1$

- Leading $I=1$ term can be parameterized as [e.g., from $\left.B_{i} H_{j}^{k l}\left(\rho_{k}^{i} \partial^{2} \rho_{l}^{j}-\rho_{l}^{j} \partial^{2} \rho_{k}^{i}\right)\right]$

$$
\left[c \frac{m_{1}-m_{2}}{m_{\rho}}\right]^{2}\left|B_{\rho}\left(m_{1}^{2}\right) B_{\rho}\left(m_{2}^{2}\right)\right|^{2}
$$

Unfortunately, subleading $I=$ even contribution (cross-term) can have same form

$$
\left[a+b \frac{\left(m_{1}-m_{2}\right)^{2}}{m_{\rho}^{2}}\right]^{2}\left|B_{\rho}\left(m_{1}^{2}\right) B_{\rho}\left(m_{2}^{2}\right)\right|^{2}
$$

Expect a, b, c of the same order, so $a b / c^{2}=\mathcal{O}(1)$

- To constrain them, either:
- Add new term to fit and check for stability of the a^{2} term, for which the isospin analysis should be carried out ($I=1$ absent for $\rho^{0} \rho^{0}$)
- Decrease the widths of the ρ bands or impose a cut on $\left|m_{1}-m_{2}\right|$ to eliminate possible $I=1$ term

Bounds on $\delta\left(=\alpha-\alpha_{\text {eff }}\right)$

- Until the $\mathcal{B}\left[B^{0} \rightarrow\left(\rho^{0} \rho^{0}\right)_{\sigma}\right]$ and $\mathcal{B}\left[\bar{B}^{0} \rightarrow\left(\rho^{0} \rho^{0}\right)_{\sigma}\right]$ tagged rates are separately measured, one can bound δ_{σ} using Babar \& Belle data

$$
\begin{array}{rll}
\mathcal{B}_{+-} & =\frac{1}{2}\left(\left|A_{+-}\right|^{2}+\left|\bar{A}_{+-}\right|^{2}\right)=(27 \pm 9) \times 10^{-6}, & \\
\mathcal{B}_{+0} & \left.=\frac{1}{2}\left(\mid f_{0}\right)_{+-}=\left.0.9\right|^{2}+\left.\left|\bar{A}_{-0}\right|^{2}\right|^{2}\right)=(26 \pm 6) \times 10^{-6}, & \\
\mathcal{B}_{00} & \left.=\frac{1}{2}\left(\mid f_{00}\right)_{+0}=\left.0.9\right|^{2}+\left|\bar{A}_{00}\right|^{2}\right)=(0.0 .03 \\
\left.\mathcal{B}_{-0.6}^{+0.8}\right) \times 10^{-6}, & & {\left[\mathcal{B}_{00}<2.1 \times 10^{-6}(90 \% \mathrm{CL})\right]}
\end{array}
$$

First two measured, and upper bound on \mathcal{B}_{00} constrains $\mathcal{B}_{00}^{0} \ll \mathcal{B}_{+-}^{0}, \mathcal{B}_{+0}^{0}$

- Can bound δ_{0} the same way as in $B \rightarrow \pi \pi$

$$
\cos 2 \delta_{0} \geq 1-\frac{2 \mathcal{B}_{00}^{0}}{\mathcal{B}_{+0}^{0}}+\frac{\left(\mathcal{B}_{+-}^{0}-2 \mathcal{B}_{+0}^{0}+2 \mathcal{B}_{00}\right)^{2}}{4 \mathcal{B}_{+-}^{0} \mathcal{B}_{+0}^{0}}+\ldots
$$

The bound also depends on experimental constraints on C_{+-}and C_{00}

Resulting constraints

- Present data implies: $\cos 2 \delta_{0}>0.83$ or $\left|\delta_{0}\right|<17^{\circ}(90 \% \mathrm{CL})$

Took $\mathcal{B}_{+-}=\mathcal{B}_{+-}^{0}$ and $\mathcal{B}_{+0}=\mathcal{B}_{+0}^{0}$ for simplicity
[Fits done using CKMfitter package]
$Z L-p .7$

Presently allowed range of $C P$ asymmetries

- Small $\mathcal{B}_{00} / \mathcal{B}_{+0}$ also bounds direct CPV:

$$
\left|C_{+-}^{\sigma}\right|<2 \sqrt{\frac{\mathcal{B}_{00}^{\sigma}}{\mathcal{B}_{+0}^{\sigma}}-\left(\frac{\mathcal{B}_{00}^{\sigma}}{\mathcal{B}_{+0}^{\sigma}}\right)^{2}} \Rightarrow\left|C_{+-}^{0}\right|<0.53(90 \% \mathrm{CL})
$$

$$
Z L-p .8
$$

Corrections...

Corrections proportional to $1-f_{0}$

- If S_{+-}not measured in longitudinal mode alone, use $S_{+-}=\sum_{\sigma} f_{\sigma} S_{+-}^{\sigma}$ to bound

$$
\left|S_{+-}^{0}-S_{+-}\right| \leq\left(1-f_{0}\right)\left(1+\left|S_{+-}^{0}\right|\right)
$$

Expect the error in estimating S_{+-}^{0} to be smaller — to zeroth order in $\left|P_{+-}^{\sigma} / T_{+-}^{\sigma}\right|$ we have $S_{+-}^{\|}=-S_{+-}^{\perp}=S_{+-}^{0}$, so

$$
S_{+-}^{0}-S_{+-}=\left(1-f_{0}-f_{\|}+f_{\perp}\right) S_{+-}^{0}+\mathcal{O}\left[\left(1-f_{0}\right)\left|P_{+-} / T_{+-}\right|\right]
$$

- Non-resonant $B \rightarrow 4 \pi$ decays and other resonances that decay to 4π could have opposite $C P$ than the dominant longitudinal mode
Contamination due to such contributions effectively included in the fit error of $1-f_{0}$

Electroweak penguins

In $B \rightarrow \pi \pi$ isospin analysis, neglecting EWP: one more observable than unknown Including EWP: 2 new unknowns, but in $B \rightarrow \rho \rho$ yet one more observable, $S_{\rho^{0} \rho^{0}}$ Insufficient: constrains a combination of $\left|P_{\text {ew }}\right|$ and $\arg \left(P_{\text {ew }}\right)$, but does not fix $\Delta 2 \delta$ For now, consistent to neglect them: $\mathcal{A}_{\mp 0}=\frac{\left|\bar{A}_{-0}\right|^{2}-\left|A_{+0}\right|^{2}}{\left|A_{-0}\right|^{2}+\left|A_{+0}\right|^{2}}=-0.09 \pm 0.16$

Isospin violation due to $\rho-\omega-\phi$ mixing expected to be small

Conclusions

Summary

- Present measurements of the various $B \rightarrow \rho \rho$ rates already give significant limits on the uncertainty in the extraction of α from the $C P$ asymmetry in $B \rightarrow \rho^{+} \rho^{-}$
- With higher precision, need to parameterize the data to allow for impact of possible $I=1$ contributions that can affect results at the $\mathcal{O}\left(\Gamma_{\rho}^{2} / m_{\rho}^{2}\right)$ level
- $S_{\rho^{+} \rho^{-}}$may give best model independent determination of α for some time to come
- Limit on theory error of α seems to be at the 5° level (data may tell us it's larger)

