Sensitivity to New Physics in $B \rightarrow VV$ Polarization, or

Have we seen new physics in $B \rightarrow \phi K^*$?

Alex Kagan

University of Cincinnati

Outline

- $B \rightarrow VV$ Polarization in the Standard Model for light vectors e.g., ϕK^* , $K^* \rho$, $\rho \rho$
 - Naive Factorization
 - Power Counting for Non-Factorizable amplitudes
- Sensitivity to New Physics, Comparison with data
 - $R_T \sim R_0 \Rightarrow$ new Dirac Structure
 - $R_{\perp} \gg R_{\parallel} \Rightarrow \mathsf{RH} \mathsf{Currents}$
- Which new operators are the most interesting? A few surprises!

Polarization in the SM: Naive Factorization (NF)

● Eg, $\bar{B}^{0,-} \rightarrow \phi K^{*0,-}$ helicity amplitudes

• $A^{0,-,+} \equiv \phi$, K^* longitudinal, negative, positive helicities

 $A^0 = O(1), \quad A^- = O(1/m), \quad A^+ = O(1/m^2)$

A⁻/*A*⁰ = *O*(*m*_φ/*m*_{*B*}), helicity of *s̄* in *φ* flipped
 twist-3 *φ* projection

• $\mathcal{A}^+/\mathcal{A}^- = \mathcal{O}(\Lambda_{QCD}/m_b)$, helicity of s in K^* flipped

 form factor suppression -use large energy form factor relations of Charles et al

Large energy form factor relations and SCET

Large energy relations for soft form factor contributions Charles et al

$$\frac{m_B}{m_B + m_V} V(q^2) = \frac{m_B + m_V}{2E} A_1(q^2) \equiv \zeta_{\perp}(E)$$

$$\frac{m_V}{E} A_0(q^2) = \left(1 + \frac{m_V}{m_B}\right) A_1(q^2) - \left(1 - \frac{m_V}{m_B}\right) A_2(q^2) \equiv \zeta_{\parallel}(E)$$

- Soft form factors receive negligible Sudakov suppresion in SCET Lange, Neubert
- SCET power corrections start at O(1/m) Beneke, Feldmann

$$\implies A_1 - V = O(\frac{1}{m_b})$$

- Corrections from $\mathcal{O}(\alpha_s)$ form factor contributions
 - negligible for $A_0/A_1/A_2$ relation Beneke, Feldmann
 - vanish for A_1/V and T_1/T_2 relations Burdman, Hiller

 V_2 : two upward lines, V_1 : Form factor vector meson

• contributions to the helicity amplitudes, $\mathcal{A}^h(V_1V_2)$:

$$\mathcal{A}^{0}(V_{1}V_{2}) \propto f_{V_{2}} m_{B}^{2} \zeta_{\parallel}^{V_{1}} = O(1)$$

$$\mathcal{A}^{-}(V_{1}V_{2}) \propto -2f_{V_{2}} m_{V_{2}} m_{B} \zeta_{\perp}^{V_{1}} = O\left(\frac{1}{m}\right)$$

$$\mathcal{A}^{+}(V_{1}V_{2}) \propto -f_{V_{2}} m_{V_{2}} m_{B} \times O(\zeta_{\perp}^{V_{1}} \frac{\Lambda_{QCD}}{m_{b}}) = O\left(\frac{1}{m^{2}}\right)$$

- \mathcal{A}^- : quark helicity-flip costs one unit of twist or 1/m
- \mathcal{A}^+ : additional helicity-flip \implies form factor suppression 1/m

Transverse amplitudes in transversity basis:

$$A_{\perp,\parallel} \equiv (A^- \pm A^+)/\sqrt{2}$$

In naive factorization, rates satisfy

$$\frac{\Gamma_{\perp}}{\Gamma_{\parallel}} = 1 + O\left(\frac{1}{m_b}\right)$$

• Total transverse rate, $\Gamma_T = \Gamma_{\perp} + \Gamma_{\parallel}$, satisfies

 $\frac{\Gamma_{\rm T}}{\Gamma_0} = O\left(\frac{1}{m_b^2}\right)$

- Is power counting preserved by non-factorizable effects? Can address in QCD factorization
 - penguin contractions, vertex corrections, spectator interactions, annihilation graphs, $(q\bar{q}g)$ states

Non-factorizable helicity amplitudes in QCD factorization

previous work: Cheng, Yang; Li, Lu, Yang

1) Penguin contractions: charm quark, up quark loops

Each helicity-flip costs $\frac{1}{m}$: one unit of twist or FF suppression

2) Penguin contractions: chromomagnetic dipole operator Q_{8g}

Contribution of a_4^0 to \mathcal{A}^0 is O(1). All other contributions vanish!

Physical reason? would require coupling to longitudinal component of gluon but:

dipole operator tensor current only couples to transverse component

Important implications for NEW PHYSICS

3) Vertex corrections:

	\mathcal{A}^{0}	\mathcal{A}^-	\mathcal{A}^+
$a_{1,,4,9,10}$	O(1)	$O\left(\frac{1}{m_b}\right)$	$O\left(\frac{1}{m_b^2}\right)$
		twist- 3^{V_2}	twist- $3^{V_2} imes FF^{V_1}$
$a_{1,,4,9,10}$	O(1)	$O\left(rac{1}{m_b} ight)$	$O\left(\frac{1}{m_b^2}\right)$
		twist- 3^{V_2}	twist- $3^{V_2} \times FF^{V_1}$
$a_{6,8}$	$O\left(\frac{1}{m_b}\right)$	$\leq O\left(\frac{1}{m_b^3}\right)$	$\leq O\left(\frac{1}{m_b^2}\right)$
	twist- 3^{V_2}	twist-4 ^{V_2} × FF ^{V_1}	twist-4 ^V 2

Each helicity-flip costs $\frac{1}{m}$: one unit of twist or FF suppression

$$A^{0} = O(1), \qquad A^{-} = O\left(\frac{1}{m}\ln\frac{m}{\Lambda_{h}}\right), \qquad A^{+} = O\left(\frac{1}{m^{2}}\ln\frac{m}{\Lambda_{h}}\right)$$

• Soft spectator limit in $V_1 \Longrightarrow$

Log divergences at \geq twist-3, phys cutoff $\Lambda_h \sim \Lambda_{QCD}$

In SCET expect same power counting but: Log divergences ⇒ non-perturbative universal parameters

Spectator interaction summary:

 V_2 : two upward lines, V_1 : Form fa

 V_1 : Form factor vector meson

	\mathcal{A}^0	\mathcal{A}^-	\mathcal{A}^+
$a_{1,,4,9,10}$	O(1)	$O\left(\frac{1}{m}\ln\frac{m}{\Lambda_h}\right)$	$O\left(\frac{1}{m^2}\ln\frac{m}{\Lambda_h}\right)$
		twist- 3^{V_2}	twist- $3^{V_1} imes$ twist- 3^{V_2}
$a_{5,7}$	O(1)	$O\left(\frac{1}{m}\ln\frac{m}{\Lambda_h}\right)$	$O\left(\frac{1}{m^2}\ln\frac{m}{\Lambda_h}\right)$
		twist- 3^{V_2}	twist-3 V_1 × twist-3 V_2
$a_{6,8}$		$O\left(\frac{1}{m}\ln\frac{m}{\Lambda_h}\right)$	$O\left(\frac{1}{m^2}\ln\frac{m}{\Lambda_h}\right)$
		twist- 3^{V_1}	twist-4 V_2

× overall parametric suppression: $\frac{C_F}{N_c^2} \frac{f_B}{m_B \zeta} \approx .02$

Each helicity-flip costs one unit of twist

– p.1

5) Annihilation graphs: e.g., $a_6 < (\bar{d}b)_{S-P} \times (\bar{s}d)_{S+P} >$

$$\mathcal{A}^{0}, \ \mathcal{A}^{-} = O\left(\frac{1}{m^{2}}\ln\frac{m}{\Lambda_{h}}\right), \qquad \mathcal{A}^{+} = O\left(\frac{1}{m^{4}}\ln\frac{m}{\Lambda_{h}}\right)$$

- annihilation topology \implies overall 1/m
- helicity-flips \implies rest of 1/m factors, or twists:

 $\mathcal{A}^{0}, (\mathcal{A}^{-}) = \text{twist-3}^{\phi(K^{*})} \times \text{twist-2}^{K^{*}(\phi)} + \text{twist-3}^{K^{*}(\phi)} \times \text{twist-2}^{\phi(K^{*})}$ $\mathcal{A}^{+} = \text{twist-4}^{\phi} \times \text{twist-3}^{K^{*}} + \text{twist-4}^{K^{*}} \times \text{twist-3}^{\phi}$

Annihilation summary:

	\mathcal{A}^0	\mathcal{A}^-	\mathcal{A}^+
A_1^i	$\frac{1}{m}\ln\frac{m}{\Lambda_h}$	$\frac{1}{m^3}$ (lin div) $\sim \frac{1}{m^2}$	$\frac{1}{m^3}\ln\frac{m}{\Lambda_h}$
A_1^f		$\frac{1}{m^3}\ln\frac{m}{\Lambda_h}$	$\frac{1}{m^3}\ln\frac{m}{\Lambda_h}$
$A_3^{i,f}$	$\frac{1}{m^2}\ln^2\frac{m}{\Lambda_h}$	$\frac{1}{m^2}\ln^2\frac{m}{\Lambda_h}$	$< \frac{1}{m^3}$
Totals	$\frac{1}{m}\ln\frac{m}{\Lambda_h}$	$\frac{1}{m^2}\ln^2\frac{m}{\Lambda_h}$	$\frac{1}{m^3}\ln\frac{m}{\Lambda_h}$

• NF power counting $(1, \frac{1}{m}, \frac{1}{m^2})$ preserved

• Each helicity-flip \implies one unit of twist, $\frac{1}{m}$

6) Higher Fock states with collinear gluons: e.g.,

• $V_2(q\bar{q}g)$ has negative helicity but:

 $\phi(q\bar{q}g)$ distribution amplitudes are twist-3 $\Rightarrow \frac{1}{m}$

 $\implies \mathcal{A}^- \sim O(1/m)$

 \mathcal{A}^+ could be obtained via, e.g.,

 $V_2(q\bar{q}g) + V_1(q\bar{q}g) \implies \mathcal{A}^+ \sim O(1/m^2)$

• $(q\bar{q}g)$ states preserve NF power counting!

NF power-counting maintained in QCD factorization:

$$\frac{\Gamma_{\perp}}{\Gamma_{\parallel}} = 1 + O\left(\frac{1}{m}\right)$$

$$\frac{\Gamma_{\rm T}}{\Gamma_0} = O\left(\frac{1}{m^2}\right)$$

Numerical analysis coming soon!

Experimental situation (R_{0,⊥,||} ≡ Γ_{0,⊥,||}/Γ_{total}):
 $R_0(B^0 → \phi K^{*0}) = 0.58 \pm 0.10, \quad R_0(B^+ → \phi K^{*+}) = 0.46 \pm 0.12$

 $R_0(\bar{B} \rightarrow \phi K^*)_{\rm AVG} = 0.53 \pm 0.08$

New Physics in Polarization

 $\Gamma_{\rm T} \sim \Gamma_0 \implies \text{Non-standard Dirac structure operators}$

 $\Gamma_{\perp} \gg \Gamma_{\parallel} \implies \text{right-handed (RH) currents}$

Tensor × Tensor operators:

$$\frac{G_F}{\sqrt{2}} \,\kappa \,\bar{s} \,\sigma_{\mu\nu} (1 \pm \gamma_5) b \,\bar{q} \,\sigma_{\mu\nu} \,q$$

 \mathcal{A}^{\mp} leading power, \mathcal{A}^{0} subleading !

$$\kappa \sim \frac{C_4^{\rm SM}}{8} \Longrightarrow \Gamma_{\rm T} \sim \Gamma_0^{\rm SM}$$

Tensor operators from conventional NP scenarios? Unlikely.

 $\mathrm{SUSY} + (\tan\beta \gg 1) + (m_{A^0}^2 \neq m_{H^0}^2) \Rightarrow (S+P) (S+P) \text{ operators}$

Fierz \implies tensor operators. But:

 $\kappa \propto \frac{1}{8N_c}$ (Fierz) + $B_s \rightarrow \mu \mu \implies$ negligible effects.

- Tensor operators from gluino / squark box graphs ? Borzumati et al
- Exciting: Flavor changing graviton / string-resonance tensor couplings in large extra dimension / low scale string models!

• $\Gamma_{\perp} \sim \Gamma_{\parallel}$ may be realized with 'standard' opposite chirality 4-quark operators, $\tilde{Q}_i \ (b \to s_R)$, e.g., $(V - A) \ (V + A)$ TREE-LEVEL operators favored!

dependence on SM, NP Wilson coefficients:

 $A_{0,\parallel} \propto C_i^{\rm SM} + C_i^{\rm NP} - \tilde{C}_i^{\rm NP}, \qquad A_{\perp} \propto C_i^{\rm SM} + C_i^{\rm NP} + \tilde{C}_i^{\rm NP}$

- need LARGE $ilde{C}^{\mathrm{NP}}_i$ to beat O(1/m) in \mathcal{A}^+
- \mathcal{A}_{\perp} : constructive interference \mathcal{A}^{0} : destructive interference. Alternatively,
- parity invariance: $C_i^{\rm NP} = \tilde{C}_i^{\rm NP} \Rightarrow A_{\perp}$ enhanced, no effect in $\mathcal{A}^0, \ \mathcal{A}_{\perp}$
- $\Gamma_{\perp} \gg \Gamma_0 \Rightarrow$ opposite-chirality RH operators, e.g., tensor or 'standard' opp. chirality ops
 - \tilde{Q}_i : inverted hierarchy, $A^+/A^- = \mathcal{O}(1/m)$. Recall

$$A_{\perp,\parallel} \equiv (A^- \pm A^+)/\sqrt{2}$$
 -p.14