Overview of Trigger/DAQ design for Super-KEKB

based on discussions at Belle Trigger/DAQ workshop in Nara (Nov.03)

Ryosuke Itoh, KEK

- 1. Introduction
- 2. Design of Trigger
- 3. Design of DAQ
- 4. Data Reduction
- 5. Summary

Super B Factory Workshop in Hawaii, 1/20/04

- 1. Introduction
 - Expected trigger rate @ Super-KEKB is more than 10KHz with an event size of a few hundred kilobytes.
 - Belle DAQ : running at ~ 400Hz with the size of ~40KB/event. - currently using Q-to-T conversion + multihit TDC

Belle's DAQ is not usable for SuperKEKB -> need to develop pipelined DAQ

- * Data flow rate
 - Assume 10KHz trigger with 200KB/event size -> results in 2GB/sec data flow at Level 1
 - Online data reduction @ Belle
 - So-called L2.5 trigger
 - ultra-fast tracking to discard off-IP events
 - take "physics-trig'd events" (like Etot > 3GeV)
 - -> Reduction factor : ~50%
 - => flow rate -> reduced to 1GB/sec
 - still too much

c.f. Expected data flow at storage in LHC experiments

~ 200-300MB/sec

We need a factor 5 more reduction!

- Trigger tightening? <- already tight enough
- Sophisticated event selection

->A large scale Level 3 farm is required.

Design strategy

- Make use of know-hows in current Belle's Trigger/DAQ systems as much as possible
- Pipeline based readout is essential
- Use of common electronics as possible \rightarrow CoPPER (Common readout platform)
 - * unified handling of pipeline readout using on-board PC module
 - * detail will be covered in Higuchi's talk
- Scalability

 \rightarrow to keep up with gradual increase in luminosity

- 2. Design of Trigger
 - Belle's trigger scheme is working fine and scalable to SuperKEKB environment.
 - * Belle's design was made in order to minimize the trigger rate to reduce the DAQ deadtime. -> suitable for SuperKEKB
 - Main Triggers
 - CDC : charged track trigger
 - ECL : Total energy and cluster counting

Things not yet fixed

- Event Timing (required for CDC tracking/SVD L0 trigger)
 * Belle's timing : TOF/TSC -> jitter < 10ns
 SuperKEKB : Csl ~ 20ns
- Z-trigger
 - * No fast Trigger output from SVD readout chip
 - * Need to think about inteligent z-trigger using CDC stereo.

Iwasaki @ Nara WS

Available Sub-Triggers

Trigger Type		Belle	Super-Belle	
Charged Track	r/phi	CDC	CDC	
	Z	CDC or SVD	n/a (CDC ???)	
Energy		ECL	ECL	
Cluster		ECL	ECL	
Timing		TOF	ECL	
		ECL		
Muon		KLM	KLM	
Bhabha		ECL	ECL	
		EFC		
Cosmic		ECL	ECL	

- Charged Track Z-Trigger
 - It is very powerful to reduce BG
 - We should think about it : special device or use CDC stereo hits
- Timing source
 - Redundant timing sources are preferable

10:15AM

Iwasaki @ Nara WS L1 Rate @ SKEKB : Rough Estimation

Evp	Eve Bate Luminosity		Current		Magic Number	
Exp.	Rate	Rate / Lum	Rate @ 10^35	Rate / Current	Rate @ 13A	20
7	200	13	13 k	210	2.6 k	n/a
17	250	4.5	4.5 k	130	1.7 k	n/a
27	350	4.4	4.4 k	150	2.0 k	7.0 k

- Vacuum is the biggest factor to estimate the rate
- CDC Z-trigger is included in above numbers
 - We have to live @ SKEKB without Z triggers
 - ~30% increase without Z trigger (Exp.31) $4.4 \text{ kHz} \times 1.3 = 5.7 \text{ kHz}$
 - On the other hand, if we have SVD Z-trigger, we can reduce L1 rate by factor $2 \sim 5$.
- Very important
 - We can not know real BG situation in SKEKB

Physics Rate

1.0 k

3. Design of DAQ

Requirements to DAQ

Physics trigger rate	Belle 100Hz	SuperKEKB(>10 ³⁵) >1KHz
Maximum trigger rate	500Hz	10-30 KHz
Event size at L1	40KB/ev	200-300KB/ev
Data flow rate at L1	20MB/s	> 2 GB/sec (>5 GB/sec w/o z trigger)
Data flow at storage	10MB/s	250MB/sec
Reduction factor in DAQ	2	5~10

How to achieve higher event reduction factor \rightarrow Key of DAQ design

Reference Design

Schematic of the DAQ Platform(CoPPER)

VME 9U sized board

Higuchi@Nara WS

Detector Electronics Quick Summary

- SVD : CMS APV25 chip -> promising!
- Pixel : candidate = CAP(continuous acq.) <==> "striplet" option large data size : 620-1280KB/evt (4bytes/pixel,1% occ.) too much!
- CDC : 3 approaches
 - 1) ADC with waveform sampling (10bit@200MHz)
 - 2) pipelined TDC with current Q-to-T conversion
 - 3) TDC + FADC (TMC+12bitFADC@20MHz)
- ECL : wave form sampling needed to avoid pileup effect (12bit FADC@2MHz for barrel, 20MHz(?) for pure CsI)
- TOP/RICH : need to manage pixel photo-detector
 - * Time stretcher(Varner)/AMT(Arai), analog pipeline(Ikeda)
- KLM : readout scheme is not so much different from Belle's regardless of choice of detection device (RPC/Sci. Tile)
 * "hit" info multiplexing + on-board data compression

all electronics will be equipped as "FINESSE" implemented as daughter board on CoPPER.

Expected event size at L1

	Belle	SuperKEKB
Pixel(Striplet	.) –	~1000KB(!?)(30KB)
SVD	15KB	~30KB
CDC	6KB	~10KB
PID	3KB(TOF/ACC)	~20KB
ECL	8KB	~100KB
KLM	3KB	~3KB
TRG/others	3KB	~3KB
	~40KB	~200KB

* Pixel: event size compression is absolutely necessary

- * ECL : wave form sampling to obtain required resolution (~10 buckets/hit*12bit)
 - -> can be reduced to 1/5 by feature extraction
- * Other: event size compression using word-packing/"zip"

→ Event Processing on CoPPER → ~100KB/ev

Multi-stage event building

 * Event Building is done in 3 steps.
 Stage 1 : Gather event fragments from CoPPERs in a crate Stage 2 : Gather event fragments from one subdetector Stage 3 : Build complete one event

* Event reduction at each stage Stage 1 : Feature extraction, further sparcification -> size reduction Stage 2 : Level 2.5 trigger using partial subdetector info. ex. Trigger Info + fast CDC tracking -> z trigger fast SVD-only tracking -> vertex trigger Stage 3 : -> L3 Farm

Common event building software framwork at all stages ("switchless event builder" + BASF)

Stage 1 Event Building

- * "switchless event builder" software on Readout PC
- * Network switch is used to share (a) 1000base-T port(s) on readout PC. Connection between each CoPPER to Readout PC is fixed port-to-port basis and the switch is "transparent".
- * Further event size reduction on Readout PC

Stage 2 event building

- * Readout from 1 subdetector can be from multiple CoPPER crates
- * Gather them to form an event from the subdetector using network swich complex.
- * The same "swithless event building software" on E1 node
- * Transparent port-to-port connection from ReadoutPC to E1

Stage 3 event building

Current system at Belle : switchless event building farm

- * BASF framework running on all nodes
- * Level 2.5 trigger software on E1 node
- * Event rejection at E2 node

Level 3 Trigger Farm

- * Full event reconstruction capability is necessary to achieve ultimate data reduction.
- * A PC cluster is connected to event builder output.

1 Unit \rightarrow processing power for L=10³⁴/cm²/sec

<u>Storage</u>

Belle: Currently using high speed tape device w/ robot(DTF/PetaSite) * SONY gave up to release faster DTF drives

- * market is small \rightarrow expensive
- Recent disks are much faster than tape drive
 - * ex. Dell/EMC CX600 / Fujitsu ETERNUS
 - 200MB/sec (2Gbps FiberChannel I/F)
 - * preliminary test (Dell CX600) shows
 - >100MB/sec read/write speed
 - cf. DTF : 24MB/sec

Record data on disk directly. Multiple data streams.

 \rightarrow R&D has been started with Computing people.

4. Data reduction

- Data Reduction is very important in high-intensity experiments to keep mass-storage manageable. - We need a versatile and powerful software trigger /event size reduction scheme to obtain reduction factor of <1/10after L1 trigger.

- 1) Level 2 trigger (on CoPPER modules)
 - event trigger after pipeline readout
 - trigger signal is genarated by dedicated hardware(ex. Z-trigger by SVD fast readout)

-> latency < ~50µsec (cf. L1 latency : ~10µsec)

- trigger signal is distributed to CoPPER via timing logic with event tag
- software running on CoPPER CPU rejects the event by looking at the trigger event tag

Trigger rate reduction : $\sim 1/3 - 1/5$ (30 ~ 50 KHz -> 10KHz) R.Itoh, Hawaii W. Event size reduction : 1 (~200-300 KB)

2) Event processing on CoPPER/Readout PC

CoPPER : linux-operated PC on board \rightarrow possibility of versatile event data processing

- Software data sparcification
 - * Feature extraction for wave-form sampling
 - * Event size compression by various method (bit-squeezing, zip, etc.)
- Raw Data Formatting (to Panther / ROOT I/O (?))

Trigger rate reduction : 1 (10KHz) Event size reduction : 1/3 (~200 KB->100KB)

- 3) Level 2.5 trigger
 - Software trigger using partially-built event data
 - (data from one subdetector/several related subdetectors)
 - Current Belle's "L3" scheme can be used
- * Fast Tracking + Hardware trigger information (Belle)

Trigger rate reduction : 1/2 (10KHz->5KHz) Event size reduction : 1

4) Level 3 trigger

- Software trigger using fully-built and fully-reconstructed data
- Trigger at a level of "Physics Skim"
 - * hadronic event selection
 - * selection of specially-interested events

Power of event reduction by "physics skim" at Belle

	Fraction in events after L2.5
Hadronic	14.2%
τ⁺τ⁻/2photon	9.6%

Monitor(= e^+e^- , $\mu^+\mu^-$,etc) ~1% (can be scaled)

Trigger rate reduction : 1/4 (~2KHz) Event size reduction : 1 (+ reconstruction info(~100KB/ev))

> * Data flow rate will increase by a factor of 2 if we leave reconst. info together on storage \rightarrow requires more multiplicity in storage

5. Summary

Trigger/DAQ for SuperKEKB are being designed based on

- * "Tight" L1 trigger strategy based on Belle's
- Timing Distribution based on multi-level tree structure utilizing a high-speed serial bus on LVDS
- * Pipeline Readout implemented on a Common Readout Platform FINESSE + CoPPER
- * Multi-step event building based on the "switchless event building"

Data Reduction is performed by multi-step software trigger

- Level 2 on CoPPER
- Event processing on CoPPER/PC 300KB/ev -> 100KB/ev
- Level 2.5 on event building farm 10KHz -> 5KHz
- Level 3 on Reconstruction (L3) farm 5KHz -> ~2KHz

~30KHz->10KHz 300KB/ev -> 100KB/ev 10KHz -> 5KHz 5KHz -> ~2KHz

Backup Slides

Physics Processes

Process	C.S. (nb)	R @ 10 ³⁴ (Hz)	R @ 10 ³⁵ (Hz)
Upsilon(4S)	1.2	12	120
Continuum	2.8	28	280
μμ	0.8	8	80
ττ	0.8	8	80
Bhabha	44	4.4	44
γ-γ	2.4	0.24	2.4
Two photon	15	35	350
Total	67	96	960

- Cross-sections are calculated in acceptance - Bhabha and $\gamma\text{--}\gamma$ are pre-scaled by factor 100

- Two photon is with pt>0.3 GeV cut

ECL Trigger (B.G.Cheon)

Trigger bit	Rate @ 1035
E _{TOT} >0.5GeV	6.5K
E _{TOT} >1.0GeV	3.4K
E _{TOT} >3.0GeV	2.5K
ICN bit-0	18.0K
ICN bit-1	5.0K
ICN bit-2	0.5K
ICN bit-3	0.2K
Bhabha	5.0K
Pre-Bhabha	1.5K
Cosmic	38.0K
CsI timing	110.0K

- Extrapolated by Lum.
- TC pulse width : 1us
 - TC occupancy < 10KHz @ 1035
- Current L1 trigger system may be kept.
 → Too optimistic ???
 → Beam BG level ???
- More simple/fast/flexible system against >10³⁵

Design Concept of Backend DAQ

- Multi-stage event building and selection
 "Build and select" scheme at each level of event building
- Versatile and powerful level 3 trigger farm
 - -> "Full event reconstruction" is performed to obtain ultimate data reduction factor
- Maximum use of existing technology
 - * Switchless event building technology
 - * NSM based control
- Common software framework at all levels
 - * BASF + Panther is used from CoPPER to L3 farm
 - * Full use of Belle Software Library
 - <- the same software environment as that in offline
 - => easy development of data reduction software