Simulation study of $B^0 \rightarrow \phi K_S, \eta' K_S, K^+ K^- K_S$

> Koji Hara (Osaka University)

Super B Factory Workshop in Hawaii

Time-dependent CP Violation in B⁰ Decays

 $\cos\Delta m_d t$

 Interference between the decay and the mixing causes time-dependent CP-violation:

$$A$$

$$B^{0} \qquad f_{CP}$$

$$e^{-2i\phi} \qquad \overline{B}^{0} \qquad \overline{A}$$

$$f_{CP}$$

$$P(B^{0}(t) \rightarrow f_{CP}) = \frac{e^{-t/\tau_{B^{0}}}}{2\tau_{B^{0}}} (1 - S \sin \Delta m_{d}t - A$$

$$\mathcal{P}(\overline{B}^{0}(t) \to f_{CP}) = \frac{e^{-t/\tau_{B^{0}}}}{2\tau_{B^{0}}} (1 + \mathcal{S}\sin\Delta m_{d}t + \mathcal{A}\cos\Delta m_{d}t)$$

$$A_{cp}(t) = \frac{\mathcal{P}(\overline{B}^{0}(t) \to f_{CP}) - \mathcal{P}(B^{0}(t) \to f_{CP})}{\mathcal{P}(\overline{B}^{0}(t) \to f_{CP}) + \mathcal{P}(B^{0}(t) \to f_{CP})}$$
$$= \frac{\mathcal{S}}{\sin \Delta m_{d}t} + \frac{\mathcal{A}}{\mathcal{A}} \cos \Delta m_{d}t$$

CKM complex phase.

$$\lambda \equiv e^{-2i\phi_1} \frac{\overline{A}}{\overline{A}}$$
$$\mathcal{A} \equiv \frac{|\lambda|^2 - 1}{|\lambda|^2 + 1}$$
$$\mathcal{S} \equiv \frac{2\operatorname{Im}\lambda}{|\lambda|^2 + 1}$$

New Physics Effect on \mathcal{A}, \mathcal{S}

$$\begin{split} A &= |A_{SM}| e^{i\phi_{SM}} e^{i\delta_{SM}} + |A_{NP}| e^{i\phi_{NP}} e^{i\delta_{NP}} \\ \overline{A} &= |A_{SM}| e^{-i\phi_{SM}} e^{i\delta_{SM}} + |A_{NP}| e^{-i\phi_{NP}} e^{i\delta_{NP}} \\ \phi_{SM,NP} : \text{CP-violating phase } (\phi_{\text{SM}} = 0 \text{ in } b \rightarrow \overline{\text{sqq}}) \\ \delta_{SM,NP} : \text{CP-invariant strong phase} \end{split}$$

$$\mathcal{A} = -\frac{2\frac{|A_{NP}|}{|A_{SM}|}\sin\delta_{12}\sin\phi_{NP}}{1 + 2\frac{|A_{NP}|}{|A_{SM}|}\cos\delta_{12}\cos\phi_{NP} + \left(\frac{|A_{NP}|}{|A_{SM}|}\right)^{2}} \qquad (\delta_{12} \equiv \delta_{SM} - \delta_{NP})$$

$$\mathcal{S} = -\xi_{f}\frac{\sin 2\phi_{1} + 2\frac{|A_{NP}|}{|A_{SM}|}\cos\delta_{12}\sin(\phi_{NP} + 2\phi_{1}) + \left(\frac{|A_{NP}|}{|A_{SM}|}\right)^{2}\sin(2\phi_{NP} + 2\phi_{1})}{1 + 2\frac{|A_{NP}|}{|A_{SM}|}\cos\delta_{12}\cos\phi_{NP} + \left(\frac{|A_{NP}|}{|A_{SM}|}\right)^{2}}$$

\mathcal{A}, \mathcal{S} measurement and constraint on new physics

CPV Measurement at Super B

MC pseudo-experiments

- Parameters are obtained from 140fb⁻¹ Belle data
 - S/N, ΔE and Mbc shape
 - Δt resolution ~1.4ps
 - background Δt shape
 - flavor tagging performance ϵ_{eff} = (28.7±0.5)%
- 1000 pseudo experiments at 5ab⁻¹
 - φK_S, η′KS, K+K⁻K_S
 - $J/\psi K_s$ (standard model reference)
- Input parameters: A = 0,

 $-\xi_f \mathcal{S} = 0.736$ (Standard Model expectation)

• Significance of $\Delta \mathcal{A}$ and $\Delta \mathcal{S}$ between b—s and J/ ψK_S

Statistical Errors of $A_{\eta'K_S}, S_{\eta'K_S}$

Statistical Errors of A_{KKK_S}, S_{KKK_S} Stat. Err. of S_{01} 0.3978E-01 Mean 5ab⁻¹ RMS -0.8838E-03 -1 30 20 10 -2 ഹ്ന 0 $10^{\overline{4}}$ 10^{3} 0.036 0.038 0.04 0.042 **Error of** \mathcal{S} 1 Stat. Err. of \mathcal{A} 0.2798E-01 Mean 35 0.2774E-03 30 25 -1 20 15 10 -2 5 ᆛᇟᠣ 0.27 $10^{\overline{4}}$ 10^{3} 0.29 0.275 0.28 0.285 Error of \mathcal{A} Luminosity(fb⁻¹) 5ab⁻¹ Mean error 0.040 \mathcal{S} 0.028 \mathcal{A}

Systematic Errors

Systematic errors for 140fb-1

	¢Ks		η'Ks	-	KKK	
	S	Α	S	A	S	A
Wtag fractions	±0.018	8±0.007	±0.005	±0.006	6±0.005	±0.007
Physics parameters	±0.033	3±0.002	±0.006	±0.002	2±0.003	±0.003
Vertexing	±0.022	2±0.046	±0.016	±0.027	7±0.044	±0.024
Background fraction	±0.053	3±0.035	±0.045	±0.026	5±0.029	±0.036
Background Dt	±0.015	5±0.008	±0.003	±0.003	3±0.010	±0.006
Resolution function	±0.013	3±0.005	±0.004	±0.003	3±0.007	±0.004
Boundary bias	+0.06					
SKKKs + f₀Ks bkg.	+0.001	±0.039)			
0 0	-0.084					

Sum	+0.09	±0.07	±0.05	±0.04	±0.05	±0.04
	~					

- How much can we reduce them with high luminosity?
 - Estimate the limit from $J/\psi K_s$ systematic errors

Systematic Error limit

• Estimate irreducible systematic errors with more luminosity from current $J/\psi K_S$

 Wtag fractions Physics parameters Vertexing Background fraction Background Dt Resolution function Resolution parameterization Tag-side interference Possible fit bias 	S 0.006 0.002 0.012 0.006 0.001 0.008 0.007 0.001 0.008	A 0.006 0.001 0.026 0.012 0.000 0.000 0.008 0.003 0.027 0.006 (MC statistics)
Sum	0.020	0.041
reducible	0.014	0.017
Irreducible	0.014	0.038

Other systematic sources

- $K^+K^-K_s$ and f^0K_s background in ϕK_s
 - The error can be reducible by including it in the fit.
 - Need K⁺K⁻ mass distribution.
- Boundary bias of $S_{\phi Ks}$
 - It will be negligible with more data.
- CP even fraction in K⁺K⁻K_s
 - Assumed to be reducible.
 - Amplitude analysis of the Dalitz plot will be done with the high luminosity.
- Some sources cancel by taking difference from \mathcal{A}/\mathcal{S} of $J/\psi K_s$
 - Tag-side interference
 - Tracking charge asymmetry (a part of the vertexing error)
 - As for $K^+K^-K_s$, due to the opposite CP, they do not cancels \rightarrow Very large errors, need more study.

Systematic Error of ΔA and ΔS

Expected 5σ Confidence regions

5σ Discovery Regions

Summary

- CPV parameter \mathcal{A}, \mathcal{S} measurement in b \rightarrow sqq at Super B factory
 - Large discovery potential for new physics
 - Useful to determine new physics parameter
- 5σ observation regions

■ 5ab ⁻¹	ΔS ΔA	_φ K _s >0.42 >0.29	η′K _S >0.26 >0.18
■ 50ab ⁻¹	ΔS ΔA	φK _S >0.17 >0.13	η′K _S >0.13 >0.11

- KKK_s mode suffers from large error due to tag-side interference. \rightarrow study more. It may be reducible using semileptonic decays and ϕ_3 measurements.
- Other modes under study
 - B→φφK, π⁰K_S....

